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Spontaneous neural activity in
the three principal networks
underlying delay discounting:
a resting-state fMRI study
Songyue Ji, Fan Yang and Xueting Li*

Department of Psychology, Renmin University of China, Beijing, China
Delay discounting, the decline in the subjective value of future rewards over time,

has traditionally been understood through a tripartite neural network model,

comprising the valuation, cognitive control, and prospection networks. To

investigate the applicability of this model in a resting-state context, we

employed a monetary choice questionnaire to quantify delay discounting and

utilized resting-state functional magnetic resonance imaging (rs-fMRI) to explore

the role of spontaneous brain activity, specifically regional homogeneity (ReHo),

in influencing individual differences in delay discounting across a large cohort (N

= 257). Preliminary analyses revealed a significant negative correlation between

delay discounting tendencies and the ReHo in both the left insula and the right

hippocampus, respectively. Subsequent resting-state functional connectivity

(RSFC) analyses, using these regions as seed ROIs, disclosed that all implicated

brain regions conform to the three principal networks traditionally associated

with delay discounting. Our findings offer novel insights into the role of

spontaneous neural activity in shaping individual variations in delay discounting

at both regional and network levels, providing the first empirical evidence

supporting the applicability of the tripartite network model in a resting-

state context.
KEYWORDS

delay discounting, ReHo, functional connectivity, the tripartite network model, resting-
state fMRI
1 Introduction

Consider two everyday dilemmas: You’re aware of the long-term health benefits of

physical exercise, yet the immediate allure of a riveting television show or an engaging video

game keeps you anchored to the couch. Or, you’re a student facing an impending exam that

could shape your academic future, but the temptation to socialize or dive into another

round of gaming is strong. Given the choice, will you favor the immediate satisfaction or

defer gratification for future gains? Often, when faced with a smaller, immediate reward
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(SIR), such as a riveting television show or another round of

gaming, and a larger, delayed reward (LDR), such as health

benefits from exercise or enhanced academic future, we tend to

opt for the former. This tendency is termed delay discounting, a

psychological construct defined by the diminishing subjective value

of a reward as the waiting period increases (1). Delay discounting is

found to be associated with a plethora of unhealthy behaviors,

including drug addiction (2), obesity (3), internet addiction (4),

gambling (5), and alcohol use disorder (6).

The systematic devaluation of future rewards is commonly

understood to arise from the complex interplay among a tripartite

neural network model: valuation, cognitive control, and prospection,

as delineated in existing neuroscientific paradigms (7). The valuation

network, composed of the ventral medial prefrontal cortex (vmPFC),

medial orbitofrontal cortex (mOFC), ventral striatum (VS), and

posterior cingulate gyrus (PCC), is considered crucial for valuation,

with the insula playing a potential role (8, 9). The cognitive control

network, encompassing the lateral prefrontal cortex (LPFC) and

anterior cingulate gyrus (ACC), facilitates cognitive control, conflict

monitoring, and strategy adaptation. The prospection network,

primarily involving the medial temporal lobe areas like the

hippocampus, facilitates future-oriented thinking. These networks

are widely employed to explain delay discounting at the neural level

(9–12). Nonetheless, the extent to which spontaneous neural activity

relevant to delay discounting aligns with the theoretical

underpinnings of the tripartite neural network model has yet to be

elucidated. We posit that these principal neural networks, which are

instrumental in governing delay discounting behavior, persist in their

interactions during the resting state and may account for observed

individual variances in delay discounting propensities.

Our research focuses on the regional homogeneity (ReHo) of

spontaneous neural activity in a resting state. ReHo quantifies the

temporal synchronicity between a specific voxel (a unit of three-

dimensional space) and its neighboring voxels, serving as a metric

for local functional connectivity. To test our hypothesis, we initially

aimed to pinpoint brain regions implicated in delay discounting by

examining the correlation between ReHo and delay discounting

across each voxel in a substantial sample of participants (N = 257).

Following the identification of salient brain regions, we employed

these areas as seed regions to calculate whole-brain functional

connectivity. This approach was designed to explore the interplay

among neural networks at rest and elucidate their roles in shaping

individual tendencies toward delay discounting.
2 Materials and methods

2.1 Participants

Our study enrolled 310 university students, ranging in age from

18 to 23 years (mean age = 20.36 years, SD = 0.85). Of these, 186

were females. Eight participants did not disclose their age. All

participants had no reported history of neurological or psychiatric

disorders. The study received approval from the Institutional

Review Board of Beijing Normal University, and all participants

provided informed consent before commencing the experiment.
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2.2 Behavioral measures

2.2.1 Delay discounting - money
choice questionnaire

We employed the Money Choice Questionnaire to evaluate the

level of delay discounting among participants. This questionnaire,

composed of 27 items, prompts participants to choose between

smaller immediate rewards and larger delayed rewards. An example

item is, “Would you prefer to receive ¥31 immediately following the

experiment, or ¥85 after 7 days?” The questionnaire did not impose

a time limit.

To encourage participants to make choices reflective of their

genuine preferences, each participant was informed they would not

only receive a reward after the experiment, but also a randomly

determined reward corresponding to one of their 27 choices. In our

study, the Money Choice Questionnaire was utilized to classify

delayed rewards into three categories: small (S), medium (M), and

large (L). Each category is associated with 10 distinct choice

patterns, each linked to a specific ‘k’ value. Participants were

assigned a ‘k’ value that corresponded to the highest proportion

of their choices aligning with that value. Essentially, for each

participant, we calculated the proportion of their choices

consistent with each of the 10 ‘k’ values defined by the

questionnaire. The ‘k’ value that demonstrated the highest

consistency with the participant’s choices was then assigned to

them. To ensure the precision of our data, only participants who

exhibited a consistency rate of 85% or higher in their responses were

included in our analysis.

Although the participants’ delay discounting rates in our study

were determined by aligning their choices with the 10 specific ‘k’

values, the significance of the ‘k’ value itself warrants a detailed

explanation. The hyperbolic discounting model, expressed as V =

A/(1 + k*D), is a foundational mathematical model in delay

discounting research (13). In this formula, A represents the

delayed reward, D the delay duration, and V the present value of

reward A at delay D. This model delineates the reduction in

subjective value of a future reward (V) as the delay (D) increases

in relation to the actual reward value (A), where ‘k’ is an indicator of

an individual’s delay discounting level. A higher ‘k’ value, for a given

A and D, results in a lower present value (V), indicating greater

levels of delay discounting and impulsivity. However, it is crucial to

recognize that in the hyperbolic discounting model, the distribution

of ‘k’ values is typically skewed (14–16). The subjective value V does

not surpass the actual value A after a brief delay and becomes

negative after an extended delay (14). Therefore, in our analysis, we

employed the median as a measure of central tendency and applied

a natural logarithm transformation to the ‘k’ values, ensuring a

normal distribution of the calculated Ln(k) (17).

2.2.2 Intelligence measurement - Raven’s
advanced progressive matrices

Previous meta-analytic research has suggested a negative

correlation between intelligence and delay discounting—higher

intelligence associates with lower delay discounting (18).

Moreover, fMRI studies have reported that greater self-control,

reflected as lower delay discounting, correlates with higher
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intelligence (19). General intelligence may influence the preference

for immediate rewards, thus reducing impulsivity in delay

discounting tasks (20). To consider intelligence’s impact on delay

discounting, we utilized Raven’s Advanced Progressive Matrices to

measure participants’ intelligence. This test, comprising 36 items,

requires participants to select the missing figure to complete a 3 × 3

matrix. We used the number of correct responses provided within a

30-minute window as the intelligence score.
2.3 Image acquisition

We collected imaging data using a Siemens MAGNETOM Trio

3T scanner equipped with a 12-channel phased-array head coil at the

Brain Imaging Research Center, Beijing Normal University, Beijing,

China. The resting-state scan included 240 consecutive echo-planar

imaging (EPI) volumes (TR = 2000 ms; TE = 30 ms; flip angle = 90°;

number of slices = 33; matrix = 64 × 64; FOV = 200 × 200 mm²;

acquisition voxel size = 3.125 × 3.125 × 3.6 mm³). Additionally, we

acquired high-resolution T1-weighted images using a magnetization-

prepared gradient echo sequence (MPRAGE: TR/TE/TI = 2530/3.39/

1100 ms; flip angle = 7°; matrix = 256×256; number of slices = 128;

voxel size = 1 × 1 × 1.33 mm³) to facilitate spatial registration. During

the scanning session, we instructed participants to close their eyes,

maintain stillness, stay awake, and refrain from engaging in

purposeful thinking.
2.4 Image data preprocessing

Resting-state fMRI data underwent preprocessing using the

FMRI Expert Analysis Tool (FEAT Version 5.98), part of

FMRIB’s Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl).

The preprocessing involved several steps: head motion correction

(each volume was aligned to the central volume of the image series

using MCFLIRT), spatial smoothing (applying a Gaussian kernel of

6-mm FWHM), intensity normalization, and linear trend removal.

To mitigate the impact of physiological noise, including artifacts

related to head motion, cardiac and respiratory cycles, our study

employed a regression of 18 nuisance signals. These signals were

derived from cerebrospinal fluid, white matter, global brain average,

and motion correction parameters, as suggested in previous studies

(21, 22). Specifically, our nuisance regressors encompassed the

average cerebrospinal fluid signal, average white matter signal,

global signal from the entire brain, six parameters from rigid-

body head motion correction, and their derivatives (23). This

approach in data preprocessing was meticulously chosen to

address both linear and non-linear effects of head motion, thus

substantially bolstering the reliability and validity of our

study’s outcomes.

The registration of each participant’s resting-state fMRI to their

anatomical images was accomplished using FMRIB’s Linear Image

Registration Tool (FLIRT) to generate a 6 degree-of-freedom affine

transformation matrix. The registration of each participant’s

anatomical images to the Montreal Neurological Institute (MNI)
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space was accomplished by employing FLIRT to compute a 12

degree-of-freedom linear affine matrix (24, 25). In addition,

considering the sensitivity of low-frequency fluctuations to

spontaneous brain activity in gray matter regions (26), we defined

a gray mask with a probability threshold of 0.5 in SPM8. The

resulting gray mask incorporated a total of 128,190 voxels.
2.5 Statistical analysis

In our initial cohort, exclusions were made as follows: 37

participants due to incomplete scan data, 5 participants for

demonstrating less than 85% consistency in the delay discounting

task (17), 6 participants for lacking intelligence test data, 1 participant

for missing age information, 1 participant for an intelligence score

exceeding ±3 standard deviations, and 3 participants for head motion

exceeding ±3 standard deviations. Following these exclusions, the

final dataset consisted of 257 participants (157 females). Their ages

ranged from 18 to 23 years (mean = 20.35, SD = 0.87), intelligence

scores spanned from 15 to 34 (mean = 25.74, SD = 3.99). In our study,

we employed Framewise Displacement (FD), measured in

millimeters (mm), as the parameter for assessing head motion.

Following the exclusion of participants with head motion exceeding

±3 standard deviations, as previously described, the head motion

parameters for those included in the final dataset were as follows: The

FD values ranged from 0.036 to 0.213 mm, with an average of

0.102 mm and a standard deviation of 0.033 mm. So that, our study

did not encompass participants whose mean FD value was greater

than 0.3mm. Consequently, the head motion of the participants

included in our study remained within acceptable levels (27). The

kurtosis and skewness of age (− 0.21, 0.06) and Raven scores (− 0.32,

− 0.11) ranged from −1 to +1, indicating both age and intelligence

data conformed to a normal distribution (28).

2.5.1 Regional homogeneity-delay discounting
correlation analysis

Regional Homogeneity (ReHo), a voxel-based measure of brain

activity, operates on the assumption that the temporal pattern of a

given voxel is akin to its neighboring voxels (29). This methodology

aligns with the hypothesis that intrinsic brain activity is reflected by

clusters of voxels rather than isolated voxels (30). In this study, we

utilized the Kendall’s coefficient of concordance (KCC) as a metric

to gauge ReHo (31). After controlling for age, sex, intelligence, and

head motion parameters, we computed the correlation between the

natural logarithm of k (Ln(k)) and ReHo, which measures the

regional homogeneity of the whole-brain Blood-Oxygen-Level-

Dependent (BOLD) signal. Multiple comparison correction in our

study was conducted using the Gaussian Random Field theory

(GRF) as implemented in the DPABI software (32). GRF is an

established method in the domain of neuroimaging data analysis,

particularly adept for handling 3D data. This approach is notable

for its consideration of the spatial structure of neuroimaging data,

which enhances the accuracy of multiple comparison corrections.

For our analysis, we set the significance thresholds for both voxel

level and cluster level evaluations at p < 0.05.
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2.5.2 Resting-state functional connectivity-delay
discounting correlation analysis

Building upon the ReHo-delay discounting correlation analysis,

we sought to further investigate the neural network associated with

delay discounting during resting-state by employing resting-state

functional connectivity (RSFC). Initially, the clusters identified in

the ReHo-delay discounting correlation analysis were used as seeds.

To ensure an adequate capture of the BOLD signal changes within

the clusters, we created a sphere (radius of 5 mm) centered on the

voxel demonstrating the most robust ReHo-delay discounting

correlation within the cluster (33). The mean time series of the

overlap between this cluster and the sphere were then extracted.

Subsequently, we computed the functional connectivity by

correlating the mean time series obtained from the seed with the

time series of each voxel across the whole brain, while controlling

for head motion, age, gender, and intelligence. Ultimately, for each

seed, we identified the neural network involved in delay discounting

by assessing the correlation between its functional connectivity and

delay discounting for each voxel in the whole brain. In our analysis,

the r-maps were converted into T-score maps. For the purpose of

multiple comparison correction, we utilized the GRF as

implemented in the DPABI software, following the guidelines of

Yan et al. (32). We established the significance threshold for voxel

level analysis at p < 0.05. Recognizing the importance of minimizing

type I errors (false positives), a more stringent threshold of p < 0.01

was adopted at the cluster level. This approach aimed to achieve a

balance between sensitivity and specificity in our statistical analysis,

within the constraints of the current methodology and data.
3 Results

The delay discounting of the participants was denoted by the Ln

(k) value, with higher Ln(k) values signaling elevated impulsivity

levels, indicative of a preference for immediate and smaller rewards.

The average Ln(k) for the participants was − 5.2, accompanied by a

standard deviation of 1.53. The Ln(k) distribution followed a

normal distribution pattern with a kurtosis of − 0.09 and

skewness of − 0.07, both within the − 1 to 1 range. This attests to

the reliability of using Ln(k) as a measure of delay discounting to

probe the neural mechanisms of individuals in a resting state (28).

To investigate all brain regions implicated in delay discounting at

a resting state, we computed the correlation between regional

homogeneity (ReHo) and delay discounting in each voxel of the

entire brain across all subjects. Post adjustment for head motion, age,

and sex, we discovered a significant negative correlation of Ln(k) with

two regions: the left insula (cluster size = 569; MNI coordinate: − 28,

0, − 16; GRF corrected, two tailed, voxel level p < 0.05, cluster level p <

0.05) and the right hippocampus (cluster size = 404; MNI coordinate:

16, − 14, − 16; GRF corrected, two tailed, voxel level p < 0.05, cluster

level p < 0.05). This outcome implies that the insula and

hippocampus contribute to individual differences in delay

discounting at a resting state. More specifically, stronger ReHo of

the insula and hippocampus translates to lower delay discounting,

and an increased propensity to consider future choices of delayed

rewards. In this analysis, no other significant results were identified.
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Individual intelligence is associated with the functioning of

several brain regions, and both the hippocampus (34–37) and the

insula (36, 38) have demonstrated associations with intelligence.

Consequently, to control for the confounding influence of

individual differences in intelligence on the associations between

delay discounting and spontaneous brain activity in both the left

insula and the right hippocampus, we performed supplementary

analyses using intelligence as a covariate. Upon controlling for

intelligence, head motion, age, and gender, we still observed a

significant association between the left insula and delay

discounting (cluster size = 570; MNI coordinate: − 40, 18, − 12;

GRF corrected, two tailed, voxel level p < 0.05, cluster level p < 0.05;

Figure 1A), and the right hippocampus and delay discounting

(cluster size = 405; MNI coordinate: 16, − 14, − 16; GRF

corrected, two tailed, voxel level p < 0.05, cluster level p < 0.05;

Figure 1B). Such findings suggest that the relationship between the

left insula and delay discounting, and the right hippocampus and

delay discounting at a resting state is stable and is not attributed to

variations in intelligence. Notably, the relationships between the left

insula and delay discounting, as well as the right hippocampus and

delay discounting, were not found to be statistically significant

when analyzed using a permutation test with threshold-free cluster

enhancement (PT TFCE), involving 1,000 permutations and

adhering to a family-wise error rate (FWER) of less than 0.05.

Upon establishing the roles of the left insula and the right

hippocampus in delay discounting during resting states, we used

these ROIs separately as seed regions to investigate the neural

network associated with delay discounting via whole-brain

resting-state functional connectivity (RSFC). Specifically, we

assessed the correlation between the Ln(k) values and RSFC for

each voxel relative to the left insula and right hippocampus across

all participants. These analyses were conducted after controlling for

variables such as intelligence, age, gender, and head motion. We

found that the RSFC between the left insula and the right insula was

significantly positively correlated with participants’ Ln(k) values (r

= 0.20, p < 0.01; Table 1, Figure 2; the right insula cluster size: 560;

MNI coordinate: 46, − 6, 8; GRF corrected, two tailed, voxel level p <

0.05, cluster level p < 0.01). Specifically, increased RSFC between the

left and right insula was associated with higher Ln(k) values,

indicating a greater tendency for participants to opt for smaller,

immediate rewards (SIRs) due to a steeper discounting of future

values. Conversely, when the right hippocampus served as the seed

ROI, we identified significant positive or negative correlations

between the RSFC of the right hippocampus and five discrete

clusters in the vmPFC, PCC, and LPFC with participants’ Ln(k)

values, as illustrated in Table 1; Figure 2. These results underscore

the modulatory effect of resting-state functional connectivity among

these neural regions on individuals’ delay discounting.
4 Discussion

This study employed rs-fMRI to probe the brain networks

involved in individual differences in delay discounting, using a

substantial sample of healthy university students. Initially, we

observed the significant negative correlations between regional
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homogeneity (ReHo) and delay discounting, particularly within the

left insula and the right hippocampus. Stronger regional

homogeneity of spontaneous activity in these brain regions was

associated with lower delay discounting, implying a higher

likelihood of choosing delayed rewards. Further exploration of the

neural networks involved in delay discounting at rest was

conducted using the left insula and the right hippocampus as seed

regions. Interestingly, all the brain regions implicated in individual

differences in delay discounting that we identified in the resting-

state functional connectivity (RSFC) analysis belong to the three

principal networks: the valuation, cognitive control, and

prospection networks. This study is the first to elucidate, from the

perspective of spontaneous neural activity, how these three neural

networks interact with each other to influence individual variability

in delay discounting.

Drawing on empirical evidence from cognitive neuroscience

methodologies such as fMRI, previous research has posited that

three principal neural networks (valuation, cognitive control, and

prospection) are predominantly engaged in modulating delay

discounting behavior (40–42). Moreover, Mehta et al. (43)

conducted a connectome-wide association study (CWAS) to

explore the interplay between RSFC and delay discounting in a

demographic spanning 9 to 23 years. Their study pinpointed the

posterior cingulate cortex (PCC), ventromedial prefrontal cortex

(vmPFC), and lateral prefrontal cortex (LPFC) as crucial elements
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of these neural networks, substantially involved in delay

discounting. Such findings provide additional validation for our

research. Nonetheless, there remains a notable gap in empirical

literature concerning the validation of this tripartite neural network

framework in the context of spontaneous neural activity. Our

current study aims to bridge this gap. Employing comprehensive

whole-brain analyses at both regional and network scales, it is

noteworthy that all identified brain regions associated with delay

discounting fell exclusively within these three principal networks, as

illustrated in Figure 3. Particularly, our study’s unique contribution

is in delineating the interconnections among these principal

networks through an RSFC analysis.

Firstly, in our study, we found a significant positive correlation

between the RSFC of the left and right insula and delay discounting

behaviors. The insula is a crucial component of the valuation

network, which involves several brain regions responsible for

evaluating and appraising the intrinsic value of rewards (9, 44,

45). Increased activity within this network has been linked to

impulsive choices and behaviors (7). Numerous studies have

emphasized the insula’s significant role in the valuation process

during decision-making (46, 47). In this context, enhanced RSFC

between the left and right insular regions may suggest an increased

integration and coordination within the valuation network. This

augmented connectivity could potentially lead to a more efficient

and rapid assessment of rewards, thus facilitating quicker response
TABLE 1 Correlations between RSFC and delay discounting.

RSFC
Cluster size
(voxels)

Peak T score MNI coordinate Statistic Correlation coefficient

x y z

Insula_L-Insula_R 560 3.24 46 − 6 8 p<0.01, corrected 0.20

Hippocampus-vmPFC 1038 − 4.19 − 10 − 4 − 12 p<0.001, corrected − 0.25

Hippocampus-PCC 1663 − 3.63 12 − 44 6 p<0.001, corrected − 0.23

Hippocampus-LPFC1 657 3.79 − 56 12 2 p<0.001, corrected 0.23

Hippocampus-LPFC2 921 3.71 58 20 8 p<0.001, corrected 0.25

Hippocampus-LPFC3 689 4.64 54 10 38 p<0.001, corrected 0.28
A B

FIGURE 1

Associations between delay discounting and neural activity in the left insula and right hippocampus. (A) A cluster in the left insula exhibited a
significant negative correlation between ReHo values and the Ln(k) values. (B) Similarly, a cluster in the right hippocampus also displayed a significant
negative correlation between ReHo values and the Ln(k) values. For illustrative purposes, the scatter plot shows the correlations, adjusted for
covariates including intelligence, age, gender, and head motion. Each data point represents an individual participant.
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to reward-related stimuli. Consequently, this heightened state of

responsiveness in the valuation network, as a result of increased

insula connectivity, could predispose individuals to more impulsive

decision-making. This is because the amplified insula

communication may accelerate the valuation process, making

immediate rewards appear more salient and desirable, and thus

skewing choices towards impulsivity. This effect might overshadow

the consideration of long-term outcomes, leading to a preference for

immediate gratification over delayed rewards.

Secondly, the hippocampus, a central structure in the prospection

network, interacts with the valuation and cognitive control networks.

The ventromedial prefrontal cortex (vmPFC) and posterior cingulate

cortex (PCC) are core regions within the valuation network, playing a
Frontiers in Psychiatry 06
role in individual value representation (48–52). The hippocampus-

dominated prospection network is thought to be closely intertwined

with the valuation network, as certain areas within the valuation

network also belong to the prospection network (7). The prospection

network is concerned with future planning and the projection of

oneself into future scenarios. Consequently, the right hippocampus-

vmPFC RSFC and right hippocampus-PCC RSFC may reflect the

cooperative function of the prospection and valuation networks. Our

study reveals that a stronger connectivity between the prospection

network and the valuation network is associated with a greater

propensity for individuals to opt for delayed rewards. This may be

attributed to the prospection network’s emphasis on the future

consequences of current choices (53, 54). Enhanced connectivity
FIGURE 3

The three principal networks underlying delay discounting. This illustration delineates the three principal networks implicated in delay discounting:
the valuation network (represented in yellow), the cognitive control network (represented in purple), and the prospection network (represented in
green). The various colored dashed lines signify distinct relationships between resting-state functional connectivity (RSFC) and delay discounting.
Specifically, red dashed lines denote significant positive correlations between functional connectivity and delay discounting across different brain
regions, whereas blue dashed lines illustrate significant negative correlations.
FIGURE 2

Seed-Based RSFC analysis highlighting associations with delay discounting. Utilizing the left insula and the right hippocampus as seed regions,
distinct connectivity patterns were observed. The RSFC between the left insula and the right insula, denoted by red markers in the figure, was
significantly positively correlated with the Ln(k) values. With respect to the right hippocampus as a seed region, its RSFC with both the vmPFC and
the PCC demonstrated a significant negative correlation with the Ln(k) values. Conversely, connectivity with three clusters in the LPFC showed a
significant positive correlation with the Ln(k), as indicated by blue markers in the figure. Nodes and edges representing these connectivity patterns
are overlaid on inflated cortical surface maps, generated using BrainNet Viewer (39).
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with the valuation network appears to inhibit the latter’s facilitative

effect on impulsive choices, thereby aiding individuals in making

decisions that favor long-term benefits over immediate gratification.

Furthermore, the lateral prefrontal cortex (LPFC), a crucial

component of the cognitive control network, plays a pivotal role in

managing decision-making complexities, particularly when choices

bear comparable values (7). It primarily functions as a conflict

monitor, aiding in the resolution of decision-making conflicts (55,

56). In our study, we observed a positive correlation between the RSFC

of the right hippocampus and all three LPFC clusters in relation to

delay discounting. This suggests that stronger RSFC between the right

hippocampus and these LPFC clusters is associated with increased

impulsivity. To elucidate further, the hippocampus is integral in

encoding and retrieving memories (57, 58), and its interaction with

the LPFC is critical for integrating past experiences into current

decision-making processes. When the RSFC between these regions is

enhanced, it could imply an overemphasis on immediate experiences

or rewards at the expense of long-term considerations. This heightened

connectivity may lead to a dominance of immediate rewards in

decision-making, overshadowing the rational evaluation of delayed

outcomes typically modulated by the LPFC. Consequently, this

imbalance, where the cognitive control exerted by the LPFC is

compromised by the amplified influence of the hippocampus, may

result in a bias towards impulsive choices. This scenario highlights a

potential mechanism whereby increased hippocampal-LPFC

connectivity disrupts the equilibrium between immediate and future

reward evaluation, steering decisions towards impulsivity.

Methodologically, our study supplements existing research on

the neural networks involved in delay discounting during rest in

three significant ways. Firstly, capitalizing on our substantial

participant sample, we executed a whole-brain analysis at both

the regional and neural network levels. This diverges from the

common practice of merely selecting specific regions of interest for

exploration (10, 59–63). A whole-brain-based analysis allows for a

more comprehensive identification of the neural networks

implicated in delay discounting. Secondly, in the computation of

functional connectivity, we determined the mean time series within

the region where regional homogeneity (ReHo) demonstrated the

strongest correlation with delay discounting. We centered a 5-mm

radius sphere in this region (33, 64–67). This method enhances the

representativeness of our results and provides a valuable

contribution to the study of neural networks involved in delay

discounting. Thirdly, we considered the established connection

between individual delay discounting and intelligence, where

individuals with lower intelligence exhibit higher delay

discounting (68, 69). Consequently, we controlled for the

influence of intelligence when computing correlations, thus

lending greater credibility to our findings.

However, this study also has certain limitations. Firstly, a

significant limitation of our study pertains to the reliance on the

threshold level selected for multiple comparisons correction. While

our results demonstrated significance under more liberal

thresholds, they did not sustain this significance when subjected

to more stringent multiple comparisons correction. Specifically, at

both the regional and network levels, the outcomes did not meet the

rigorous voxel-level threshold of less than 0.01 (GRF correction).
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Additionally, our results were also unable to pass the permutation

test with a p-value threshold of less than 0.05. This limitation

accentuates a core challenge in neuroimaging research: balancing

the identification of true effects (sensitivity) against the prevention

of false positives (specificity). The employment of stringent

thresholds, aimed at reducing false positive rates, concurrently

elevates the risk of missing true small effect sizes, which were the

primary focus of our investigation. Moreover, our adoption of a

whole-brain correction approach, while methodologically rigorous,

encountered difficulties in detecting small effect sizes due to the

extensive correction base. This methodological choice necessitates a

cautious interpretation of our findings, particularly concerning their

replicability and applicability to other studies and diverse

populations. It is crucial to consider these factors when evaluating

the implications and generalizability of our research findings within

the broader scientific context. Secondly, in our examination of the

role of spontaneous neural activity in shaping individual variations

in delay discounting at both regional and network levels, one

notable limitation is the exclusion of socioeconomic status (SES)

as a variable. Prior studies have highlighted the relevance of both

subjective and objective SES in influencing delay discounting

behaviors. For instance, research has shown that individuals with

a higher perceived social status (subjective SES) tend to exhibit

lower levels of delay discounting (70, 71). Similarly, objective

measures of SES, such as parental education levels, have been

linked to variations in delay discounting, as demonstrated in

studies like Mehta et al. (43). Our study’s focus on neural

mechanisms did not encompass the potential modulatory effects

of SES, which could be a significant factor in delay discounting.

Recognizing this, we suggest that future investigations in this field

would benefit from integrating SES into their analytical frameworks

to provide a more comprehensive understanding of the neural

underpinnings of delay discounting.

In summary, by integrating results at the regional and neural

network levels, this study contributes preliminary evidence

illuminating how the valuation network, the cognitive control

network, and the prospection network interact during resting state

to influence individual delay discounting. Future research should

delve deeper into this area. Firstly, although our whole-brain analysis

only implicated certain brain regions within the three networks, this

does not preclude the potential involvement of other brain regions

within these networks. Their effects might approach statistical

significance but fall short of our current threshold. Therefore,

future investigations might select regions of interest within these

three networks for in-depth examination. Secondly, our participant

cohort comprised healthy university students. Future research could

consider extending the focus to groups characterized by high

impulsivity levels (i.e., high delay discounting), such as individuals

with addiction. Insights at the neural level from such studies could be

valuable for devising effective intervention and treatment strategies.

Thirdly, delay discounting is traditionally utilized as a method for

measuring impulsivity (72, 73). Importantly, prior research has

identified a relationship between impulsivity, as measured by the

Barratt Impulsiveness Scale, and in-scanner motion. Therefore, future

research endeavors could be directed towards exploring delay

discounting as a behavioral indicator of impulsivity. This would
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particularly include probing whether increased impulsivity, as

manifested in delay discounting tasks, is associated with elevated

in-scanner motion.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Institutional

Review Board of Beijing Normal University in Beijing, China. The

studies were conducted in accordance with the local legislation and

institutional requirements. The participants provided their written

informed consent to participate in this study.
Author contributions

SJ: Writing – original draft, Data curation. FY: Data curation,

Writing – original draft. XL: Conceptualization, Writing – review

& editing.
Frontiers in Psychiatry 08
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. The research

was financially supported by the Renmin University of China’s New

Faculty Startup Fund (15XNLF07) and the China Postdoctoral

Science Foundation (2015M571186).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Kirby KN, Maraković NN. Modeling myopic decisions: evidence for hyperbolic
delay-discounting within subjects and amounts. Organizational Behav Hum Decision
Processes (1995) 64(1):22–30. doi: 10.1006/obhd.1995.1086

2. Gray JC, MacKillop J. Impulsive delayed reward discounting as a genetically-
influenced target for drug abuse prevention: a critical evaluation. Front Psychol (2015)
6:1104. doi: 10.3389/fpsyg.2015.01104

3. Amlung M, Petker T, Jackson J, Balodis I, MacKillop J. Steep discounting of
delayed monetary and food rewards in obesity: a meta-analysis. psychol Med (2016) 46
(11):2423–34. doi: 10.1017/s0033291716000866

4. Cheng Y-S, Ko H-C, Sun C-K, Yeh P-Y. The relationship between delay
discounting and Internet addiction: A systematic review and meta-analysis. Addictive
Behav (2021) 114:106751. doi: 10.1016/j.addbeh.2020.106751

5. Stea JN, Hodgins DC, Lambert MJ. Relations between delay discounting and low
to moderate gambling, cannabis, and alcohol problems among university students.
Behav Processes (2011) 88(3):202–5. doi: 10.1016/j.beproc.2011.09.002

6. Bailey AJ, Gerst K, Finn PR. Delay discounting of losses and rewards in alcohol
use disorder: The effect of working memory load. Psychol Addictive Behav (2018) 32
(2):197–204. doi: 10.1037/adb0000341

7. Peters J, Büchel C. The neural mechanisms of inter-temporal decision-making:
understanding variability. Trends Cogn Sci (2011) 15(5):227–39. doi: 10.1016/
j.tics.2011.03.002

8. Carter RM, Meyer JR, Huettel SA. Functional neuroimaging of intertemporal
choice models: A review. J Neurosci. Psychol. Economics (2010) 3(1):27–45.
doi: 10.1037/a0018046

9. Stanger C, Elton A, Ryan SR, James GA, Budney AJ, Kilts CD. Neuroeconomics
and adolescent substance abuse: individual differences in neural networks and delay
discounting. J Am Acad Child Adolesc Psychiatry (2013) 52(7):747–755.e746.
doi: 10.1016/j.jaac.2013.04.013

10. Rosch KS, Mostofsky SH, Nebel MB. ADHD-related sex differences in fronto-
subcortical intrinsic functional connectivity and associations with delay discounting. J
Neurodev Disord (2018) 10(1):34. doi: 10.1186/s11689-018-9254-9

11. Chen Z, Becker B, Qin P, Lei W, Chen J, Liu P, et al. Neural networks during
delay discounting as trans-disease marker: A meta-analytical review. J Psychiatr Res
(2021) 139:62–70. doi: 10.1016/j.jpsychires.2021.05.008

12. Yu M, Liu T, Shangguan F, Sui J, Shi J. The neurodevelopment of delay
discounting for monetary rewards in pre-adolescent children. Sci Rep (2021) 11
(1):8337. doi: 10.1038/s41598-021-87282-z
13. Mazur JE. An adjusting procedure for studying delayed reinforcement. In: The
effect of delay and of intervening events on reinforcement value. Hillsdale, NJ, US:
Lawrence Erlbaum Associates, Inc (1987). p. 55–73.

14. Rachlin H, Raineri A, Cross D. Subjective probability and delay. J Exp Anal
Behav (1991) 55(2):233–44. doi: 10.1901/jeab.1991.55-233

15. Myerson J, Green L. Discounting of delayed rewards: Models of individual
choice. J Exp Anal Behav (1995) 64(3):263–76. doi: 10.1901/jeab.1995.64-263

16. Richards JB, Zhang L, Mitchell SH, deWit H. Delay or probability discounting in
a model of impulsive behavior: Effect of alcohol. J Exp Anal Behav (1999) 71(2):121–43.
doi: 10.1901/jeab.1999.71-121

17. Kirby KN, Petry NM, Bickel WK. Heroin addicts have higher discount rates for
delayed rewards than non-drug-using controls. J Exp Psychol Gen (1999) 128(1):78–87.
doi: 10.1037/0096-3445.128.1.78

18. Shamosh NA, Gray JR. Delay discounting and intelligence: A meta-analysis.
Intelligence (2008) 36(4):289–305. doi: 10.1016/j.intell.2007.09.004

19. Shamosh NA, DeYoung CG, Green AE, Reis DL, Johnson MR, Conway ARA,
et al. Individual differences in delay discounting. psychol Sci (2008) 19(9):904–11.
doi: 10.1111/j.1467-9280.2008.02175.x

20. Bailey AJ, Gerst K, Finn PR. Intelligence moderates the relationship between
delay discounting rate and problematic alcohol use. Psychol Addictive Behav (2020) 34
(1):175–81. doi: 10.1037/adb0000471

21. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The
human brain is intrinsically organized into dynamic, anticorrelated functional
networks. Proc Natl Acad Sci (2005) 102(27):9673–8. doi: 10.1073/pnas.0504136102

22. Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C, Smith SM, et al. Toward
discovery science of human brain function. Proc Natl Acad Sci (2010) 107(10):4734–9.
doi: 10.1073/pnas.0911855107

23. Kong XZ, Wang X, Pu Y, Huang L, Hao X, Zhen Z, et al. Human navigation
network: the intrinsic functional organization and behavioral relevance. Brain Structure
Funct (2016) 222(2):749–64. doi: 10.1007/s00429-016-1243-8

24. Jenkinson M, Smith S. A global optimization method for robust affine
registration of brain images. Med Image Anal (2001) 5(2):143–56. doi: 10.1016/
S1361-8415(01)00036-6

25. Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the
robust and accurate linear registration and motion correction of brain images.
NeuroImage (2002) 17(2):825–41. doi: 10.1006/nimg.2002.1132
frontiersin.org

https://doi.org/10.1006/obhd.1995.1086
https://doi.org/10.3389/fpsyg.2015.01104
https://doi.org/10.1017/s0033291716000866
https://doi.org/10.1016/j.addbeh.2020.106751
https://doi.org/10.1016/j.beproc.2011.09.002
https://doi.org/10.1037/adb0000341
https://doi.org/10.1016/j.tics.2011.03.002
https://doi.org/10.1016/j.tics.2011.03.002
https://doi.org/10.1037/a0018046
https://doi.org/10.1016/j.jaac.2013.04.013
https://doi.org/10.1186/s11689-018-9254-9
https://doi.org/10.1016/j.jpsychires.2021.05.008
https://doi.org/10.1038/s41598-021-87282-z
https://doi.org/10.1901/jeab.1991.55-233
https://doi.org/10.1901/jeab.1995.64-263
https://doi.org/10.1901/jeab.1999.71-121
https://doi.org/10.1037/0096-3445.128.1.78
https://doi.org/10.1016/j.intell.2007.09.004
https://doi.org/10.1111/j.1467-9280.2008.02175.x
https://doi.org/10.1037/adb0000471
https://doi.org/10.1073/pnas.0504136102
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1007/s00429-016-1243-8
https://doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.1016/S1361-8415(01)00036-6
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.3389/fpsyt.2024.1320830
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Ji et al. 10.3389/fpsyt.2024.1320830
26. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the
motor cortex of resting human brain using echo-planar MRI.Magnetic Resonance Med
(1995) 34(4):537–41. doi: 10.1002/mrm.1910340409

27. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE.
Methods to detect, characterize, and remove motion artifact in resting state fMRI.
Neuroimage (2014) 84:320–41. doi: 10.1016/j.neuroimage.2013.08.048

28. Marcoulides GA, Hershberger SL. Multivariate Statistical Methods: A First
Course. Hillsdale: Lawrence Erlbaum Associates, Inc (1997).

29. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data
analysis. NeuroImage (2004) 22(1):394–400. doi: 10.1016/j.neuroimage.2003.12.030

30. Agarwal S, Sair HI, Pillai JJ. The resting-state functional magnetic resonance
imaging regional homogeneity metrics—Kendall's coefficient of concordance-regional
homogeneity and coherence-regional homogeneity—Are valid indicators of tumor-
related neurovascular uncoupling. Brain Connectivity (2017) 7(4):228–35. doi: 10.1089/
brain.2016.0482

31. Kendall M, Gibbons JD. Rank Correlation Methods. Oxford: Oxford Univ. Press
(1990).

32. Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: data processing & Analysis for
(Resting-state) brain imaging. Neuroinformatics (2016) 14(3):339–51. doi: 10.1007/
s12021-016-9299-4

33. Holmes C, Owens M, Beach SRH, McCormick M, Hallowell E, Clark US, et al. Peer
influence, Frontostriatal connectivity, and delay discounting in African American emerging
adults. Brain Imaging Behav (2020) 14(1):155–63. doi: 10.1007/s11682-018-9977-y

34. Colom R, Stein JL, Rajagopalan P, Martıńez K, Hermel D, Wang Y, et al.
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