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This educational review article aims to discuss growing evidence from PET studies in

the diagnosis and treatment of depression. PET has been used in depression to explore

the neurotransmitters involved, the alterations in neuroreceptors, non-neuroreceptor

targets (e.g., microglia and astrocytes), the severity and duration of the disease, the

pharmacodynamics of various antidepressants, and neurobiological mechanisms of

non-pharmacological therapies like psychotherapy, electroconvulsive therapy, and

deep brain stimulation therapy, by showing changes in brainmetabolism and receptor

and non-receptor targets. Studies have revealed alterations in neurotransmitter

systems such as serotonin, dopamine, GABA, and glutamate, which are linked to the

pathophysiology of depression.Overall, PET imaging has furthered the neurobiological

understanding of depression. Despite these advancements, PET findings have not yet

led to significant changes in evidence-based practices. Addressing the reasons behind

inconsistencies in PET imaging results, conducting large sample size studies with a

more standardized methodological approach, and investigating further the genetic

and neurobiological aspects of depression may better leverage PET imaging in

future studies.
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fluorodeoxyglucose; NIMH, National institute of mental health; CBT, Cognitive behavioral therapy; SSRIs,

Selective serotonin reuptake inhibitors; SNRIs, Serotonin-Norepinephrine reuptake inhibitors; TCA, Tricyclic

antidepressants; 3D, Three dimensional; NREM, Non-rapid eye movement; mmPLS, multi-modal partial

least squares; LLD, Late-life depression; MOR, mu-opioid receptor; MDD, Major depressive disorder; BPND,

Binding potential; HDRS, Hamilton depression rating scale; CGI-S, Clinical global impression-severity;

TSPO, Translocator protein; [18F]FE-PE2I, [18F]-(E)-N-(3-iodoprop-2-enyl)-2b-carbofluoroethoxy-3b-(4′-
methyl-phenyl)nortropane.
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Introduction

According to the WHO, depression affects approximately 5% of

the world’s population and is a major contributor to disability and

global health challenges (1). Based on estimates from the National

Institute of Mental Health, 21 million adults in the United States

experienced one or more depressive episodes in 2021, with adult

females (10.3%) experiencing higher rates of depressive episodes

than males (6.2%) (2). Depression is characterized by lasting sadness,

low mood, and reduced pleasure in previously pleasurable activities.

Other clinical symptoms include sleep and appetite disturbances,

poor concentration, and fatigue. Consequences of depression can be

long-lasting or recurrent and can significantly impact patients’ ability

to function, often leading to somatic symptoms and worsened

physical health (1). Depression is precipitated and exacerbated by

complex social, psychological, and biological interactions. For

instance, unemployment, grief or mourning, and traumatic

experiences all increase vulnerability to depression. Depression is

currently diagnosed based on criteria set by the Diagnostic and

Statistical Manual of Mental Disorders-5 (DSM-5) or International

Classification of Diseases-11 (ICD-11). Depression has several

treatment options of increasing intensity and support. Selective-

serotonin reuptake inhibitors (SSRIs) are used most frequently in the

first-line setting, but serotonin-norepinephrine reuptake inhibitors

(SNRIs) and tricyclic antidepressants (TCAs) are used in second and

third-line cases depending on the severity and pattern of depressive

episodes as well as other comorbid conditions like chronic pain (1).

In addition to pharmacological therapies, psychological therapies

(such as cognitive behavioral therapy, interpersonal psychotherapy,

and behavioral activation therapy) have been used to various degrees

in treating depression (1).

Advances in positron emission tomography (PET) imaging

techniques and radiotracers have elucidated mechanisms of disease

that increase understanding of depression and provide a foundation

for translational research and drug development. For example, PET

allows for advanced imaging of glucose metabolism and examination

of complex biological activity in healthy and pathological states

through the creation of three-dimensional (3D) maps using

positron-emitting radiopharmaceuticals like [18F]fluorodeoxyglucose

[(18F)FDG] (3–5). In particular, PET has shown that abnormalities of

5-HT1A and 5-HT1B receptors, subtypes of serotonin receptors located

in presynaptic and postsynaptic regions, are hallmarks of affective

disorders like depression (6–9). In this educational primer, we

emphasize the applications of PET in depression. We begin with a

brief overview of PET, followed by a discussion of the primary clinical

applications of PET and its radiotracers in the diagnosis and

management of depression. We conclude with a discussion of how

PET imaging can contribute to future depression research.
Positron emission tomography

Principle and mechanism

PET is an imaging procedure that allows for 3D mapping of

administered positron-emitting radiopharmaceuticals and facilitates
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the study of biological activity (3, 10). Radioisotopes used in PET

reach stable configurations by the emission of positrons. The

positrons emitted from radioisotopes travel a few millimeters

through surrounding tissues, which causes a significant loss in

kinetic energy. Then, the slowed positrons interact with electrons

to generate two 511 keV g-rays, which travel approximately but not

completely in opposite directions. PET scanning comprehensively

detects millions of coincidental events between these rays to display

the concentration and spatial distribution of positron emitters within

the patient (11, 12). The distance traveled by the positron before

annihilation (positron range) varies depending on the energy of the

positron and the density of the surrounding tissue. Higher energy

positrons travel further, leading to a larger positron range, which can

reduce the spatial resolution of the PET image.
Radiotracers

The first step in developing the radioactive tracers used for PET

imaging is understanding the biological target, most notably its

expression level, brain distribution pattern, and their interactions

with radiotracers. It is paramount that the radioligands (injected in

tracer doses) used in PET imaging and labeling are stable and have

high selectivity, specificity, and affinity for a target with minimal off-

target binding. In brain PET, theymust also be able to pass through the

blood-brain barrier to reach the target. The most commonly used

radioisotopes for labeling radiopharmaceuticals are [11C] and [18F]

(13). PET is most commonly used in clinical practice with the

radiotracer [18F]FDG, an analog of glucose (14). Although [18F]FDG

PET is used clinically in oncology, none of PET is used in clinical

psychiatric applications currently. In research settings, [18F]FDG PET

sometimes involves blood sampling and full quantification, but most

often [18F]FDG PET does not involve blood sampling with the use of a

semi quantitative approach (15). The development of radiotracers has

aided in better understanding the various neurobiological mechanisms,

neural pathologies, and pharmacodynamics of drugs used to treat

multiple neuropsychiatric disorders, including depression. [11C]DASB

and [11C]MADAM(N,N-dimethyl-2-(2-amino-4-methylphenyl-thio)

benzylamine) are well-known PET radioligands for serotonin

transporters, given their high specificity and selectivity for binding

sites; this in turn allows for reliable estimation of the serotonin

transporters (16). Similarly, [18F]FMeNER-D2 (S,S)-2-(a-(2-[18F]
fluoro[2H2]methoxyphenoxy) benzyl)morpholine) has been used as

a radioligand for norepinephrine-based PET studies (17, 18). Table 1

lists a sample of currently available PET radiotracers that have been

studied in depression, gathered from references included in this article.

Importantly, although PET radiotracers used in depression have

enhanced our understanding of its pathophysiology and treatment

response, none of them have been able to make it to clinical

practice yet.
Limitations of PET

Although PET is a promising modality for the diagnosis,

management, and monitoring of neuropsychiatric disorders, it
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has several limitations, including limited accessibility (especially in

developing nations), temporally lengthy examination, high

operating costs, physical constraints, and difficulty manufacturing

radiotracers (19). Due to the utilization of radioactive tracers, PET

imaging has a concomitant potential for radiation exposure. On

average, a brain [18F]FDG PET scan entails exposure of

approximately 5-7 milliSievert (a measure of radiation exposure),

contingent upon the specific imaging protocol (20). Moreover, the

need for further improved sensitivity and anatomical resolution (∼5
mm) remains (21, 22).

When [18F]FDG is used with PET to image regional cerebral

glucose metabolism in neuropsychiatric diseases, physiologically

high [18F]FDG uptake in the brain poses a challenge for

appreciating findings (23, 24). Approximately 95% of the energy

consumption required for brain function is provided by glucose

metabolism. The cerebral glucose metabolism is closely linked to

neuronal activity, and changes in neuronal activity induced by

diseases are reflected as an alteration in glucose metabolism. The

high glucose metabolism may be challenging in all brain studies with

possible alteration of the metabolism, for example, due to

psychotropic drugs or other interventions. Furthermore, the blood

glucose level significantly affects the [18F]FDG uptake of the brain

when hyperglycemia is present. There is an increased competition

between elevated plasma glucose and [18F]FDG during

hyperglycemia, and the uptake of [18F]FDG decreases in such

situations. Thus, due to the high physiological uptake of [18F]FDG

in normal brain gray matter, moderate to minor alterations in [18F]

FDG PET may be challenging to detect (23, 24). Therefore, a
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standardized acquisition protocol is recommended to improve the

comparability between subsequent scans or among different patients.

PET imaging may also be uncomfortable for patients with

neuropsychiatric disorders or physical disabilities, as stillness is

required during imaging. Further developed individualized

protocols for patients with these needs are necessary to reduce

scan time and address discomfort associated with the procedure.
The utility of PET in the diagnosis
of depression

In patients with depression, PET imaging generally reveals

generalized malfunction shown as reductions in cerebral blood

flow and metabolism (25, 26). [18F]FDG PET is useful in the study

of depression due to its ability to measure regional cerebral glucose

metabolism. Glucose metabolism can demonstrate brain activity,

while changes in regional metabolism can provide insights into the

underlying neural mechanisms associated with depression (27, 28).

Oxygen-15 H2O [(15O)-water] PET is another useful technique in

depression due to its ability to measure regional cerebral blood flow,

providing information about blood perfusion and neuronal activity.

Changes in blood flow are associated with alterations in neural

activity, making [15O]-water PET a valuable tool for understanding

the vascular aspects of depression (29, 30). In depression, [18F]FDG

PET measures long-term changes in glucose metabolism, reflecting

longer-term changes in neural activity, while [15O]-water PET

specifically assesses cerebral blood flow, providing a dynamic

snapshot of immediate effects on blood perfusion in brain regions

associated with mood regulation. The physiological specificity of

[15O]-water PET complements the metabolic information from [18F]

FDG PET, offering a better understanding of the neural and vascular

factors in depression. Changes in glucose metabolism patterns and

vascular functions may also indicate treatment response or help

identify potential biomarkers for treatment outcomes. However,

discrepancies may exist between papers that study [18F]FDG or

[15O]-water PET in depression; the discrepancies are usually due to

methodological differences, patient heterogeneity, or sample size

considerations (27–30). An early PET study in patients with

depression used [15O]-water to demonstrate decreased blood flow

in both the left dorsolateral prefrontal cortex and left anterior

cingulate gyrus (31). A separate but similar PET study conducted

with [15O]-water showed decreased cerebral blood flow in the left

anterior medial prefrontal cortex and increased cerebral blood flow

in the cerebellar vermis of patients with comorbid cognitive

impairment and depression (32).

Similarly, [18F]FDG PET has shown distinct utility in depressed

patients by demonstrating uniquely lower glucose metabolism of

glucose in cortical, subcortical, and cerebellar regions as well as the

frontal and limbic systems (33, 34). Additional [18F]FDG PET

studies showed globally lowered brain metabolism in bipolar

patients in a depressive episode (27, 28).

Studies have also been conducted to identify the role of tau and

amyloid proteins in the pathophysiology of depression. Tau and

amyloid pathology are hallmarks of certain neurodegenerative

disorders notably Alzheimer’s Disease. These proteins are less
TABLE 1 Examples of PET radiotracers that have been studied in
depression, gathered from references included in this article.

Target Radiotracers

Serotonin [11C]DASB, [11C]MADAM (specific to serotonin transporter)
[11C]WAY 100635 (specific to serotonin 1A receptor),
[11C]AZ10419369 (selective to serotonin 1B receptor)

Dopamine [18F]FE-PE2I (binds to dopamine transporter)
[11C]raclopride (binds to D2 dopamine receptor)
[18F]fallypride, [11C]FLB 457 (binds to D2 and D3 dopamine
receptors)
[18F]FDOPA (taken up by dopaminergic neurons and
converted into fluorodopamine, which then accumulates in
presynaptic dopamine storage vesicles)

Norepinephrine [18F]FMeNER-D2 (binds to norepinephrine transporter)

Gamma-
Aminobutyric
Acid

[11C]Flumazenil (binds to GABA-A benzodiazepine receptor)

Opioid [11C]carfentanil (binds to Mu-opioid receptors)

Tau [18F]flortaucipir (binds to tau protein and detect its deposits)

Amyloid [18F]florbetapir, [11C]-Pittsburgh Compound B (binds to
amyloid plaques)

Glutamate [11C]ABP688 (binds to Metabotropic glutamate receptor
subtype 5 i.e. mGluR5 receptor)

Translocator
protein

[18F]FEPPA (binds to 18-kDa Translocator protein found
predominantly on the mitochondrial membrane of microglial
cells, used to assess neuroinflammation)
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directly implicated in the commonly proposed pathophysiology of

depression. Nevertheless, clinical co-occurrence of depression and

dementia or neurodegenerative disease remains high where those

with Alzheimer’s disease often experience mood changes (29),

including symptoms of depression, whereas patients with

depression also have cognitive difficulties (30). Pathologically, the

accumulation of beta-amyloid plaques and tau tangles in

Alzheimer’s disease are known to disrupt neurotransmitter

systems, particularly serotonin and norepinephrine, linking the

neurobiological changes to mood alterations observed in

depression (35). A PET study by Gonzales et al. using tracers

[11C]-Pittsburgh Compound B ([11C]PiB) and [18F]flortaucipir

tau showed that midlife depression and tau-PET uptake in the

amygdala and entorhinal cortex were positively associated (36). In

another PET radiotracer study using [18F]flortaucipir (AV1451) for

tau and [18F]florbetapir (AV45) for amyloid, tau uptake was again

linked to depression in patients with normal cognition (37).

However, there was no association between depression and

amyloid in this study (37). Notably, the evidence derived from

PET studies around beta-amyloid (Ab) accumulation in late-life

depression is mixed. While studies have shown that late-life

depression is not associated with higher cortical Ab accumulation

(38–40), one PET study by Smith et al. using [11C]PiB found that

patients with late-life depression had more Ab accumulation in the

left parietal cortex in comparison to patients in the control group.

Here, the degree of Ab deposition in the left parietal cortex was

linked to more severe depressive symptoms and impairment of

visual-spatial memory as well as increased likelihood of

unsuccessful clinical improvement after treatment with SSRIs (41).

Late-life depression also increases patients’ future risk of

cognitive decline. A recent PET investigation among 20

unmedicated late-life depressive patients and 20 controls was

conducted using tracers [11C]PiB (for Ab) and [11C]DASB (for
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using a multi-modal partial least squares (mmPLS) algorithm.

Patients with late-life depression were distinguished from healthy

controls with a spatial covariance pattern showing higher levels of

Ab in the temporal, parietal, and occipital cortices and lower levels

of 5-HTT in the putamen, thalamus, amygdala, hippocampus, and

raphe nuclei. Stronger expressions of the spatial covariance pattern,

linking elevated beta-amyloid and reduced serotonin transporter

levels, directly correlated with increased severity of depressive

symptoms (Figure 1), suggesting a potential neurobiological

mechanism underlying late-life depression (42). Although the

study suggests that in late-life depression patients there is an

inverse relationship between beta-amyloid and serotonin

transporter levels, the exact reason for this inverse relationship

and its implications for younger-onset depression is not clear. The

inverse relation between beta-amyloid and serotonin transporter

levels is hypothesized to result from complex interactions between

neurochemical and neurodegenerative mechanisms common to

depression and dementia, but further investigation is needed

particularly in the context of younger onset depression.

Regardless, this unique pattern might serve as a biological marker

for antidepressant treatment response and/or cognitive decline in

late-life depression patients.

A meta-analysis explored 5-HT1A density and its binding in

individuals with depression compared to healthy controls. There

was a significant decrease in 5-HT1A density observed in the

mesiotemporal cortex of depressed patients. In addition, smaller

reductions in 5-HT1A receptor binding were noted in the

hippocampus, insular cortex, raphe nucleus, occipital cortex, and

anterior cingulate cortex in the depressed group (43). However,

other PET studies using different quantification techniques have

produced conflicting findings in patients with depression (44). For

example, unlike the above meta-analysis, where there was a decrease
FIGURE 1

Voxel-wise, statistical parametric mapping unimodal analysis for [11C]-PiB and [11C]-DASB. Voxel-wise, statistical parametric mapping and separate
unimodal analysis for [11C]-PiB and [11C]-DASB showed higher beta-amyloid (left, hot-colored areas) and lower serotonin transporter availability
(right, cool-colored areas) observed in Late-Life Depression (LLD) patients when compared to normal controls. Here, the Monte-Carlo Simulation
Method is used to address the issue of multiple comparison correction in this study [with permission from reference (42)].
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in 5-HT1A density in depression, another study reported increased

5-HT1A density in depression (45). Nevertheless, when full

quantification is used with PET, 5-HT1A density has been found

to be higher in depressed patients; this fact highlights the critical

nature of fully quantitative PET in research. The higher 5-HT1A

density in depression observed during full quantification is possibly

due to compensatory upregulation of 5-HT1A receptor expression

in response to serotonin dysregulation, a phenomenon commonly

observed in depression (46). On the other hand, in terms of 5-HT1A

transporter, a PET study using [11C]-DASB tracer revealed patients

with major depression had decreased binding of the serotonin

transporter in the frontal cortex, anterior cingulate cortex,

brainstem, caudate-putamen, and thalamus (47).

Emerging evidence from recent studies suggests that changes in

excitatory neurotransmission (i.e., glutamate) play a role in the

pathophysiology of depression (48, 49). Using PET scans with

[11C]ABP688 tracer, Deschwanden et al. studied the binding of

metabotropic glutamate receptor 5 (mGluR5) in 11 unmedicated

patients with major depressive disorder vs. 11 healthy controls (48).

The [11C]ABP688 PET scans showed that those with depression

had lower mGluR5 binding in various brain regions, including the

prefrontal and cingulate cortex, insula, thalamus, and hippocampus.

Moreover, the severity of depression was associated with reduced

mGluR5 binding in the hippocampus. Thus, [11C]ABP688 PET

suggested changes in excitatory neurotransmission may be involved

in the development of major depressive disorder. These findings were

supported by western blot analysis of postmortem brain samples of

15 deceased individuals who had depression and 15 who did not. The

analysis found lower mGluR5 protein expression in the prefrontal

cortex of the depressed group (48). Similarly, Kim et al. conducted

another study using [11C]ABP688 PET on 16 patients with major

depression who had not taken any psychotropic drugs and had no

other mental health conditions, comparing them with 15 healthy

individuals (49). Their analysis showed that the depressed patients

had significantly reduced mGluR5 availability, especially in the

prefrontal cortex and other brain regions, such as the temporal and

parietal cortices, further supporting the glutamatergic hypothesis of

depression. Additionally, using resting-state functional MRI, the

authors also found notable differences in brain connectivity, with

the depressed group showing less negative connectivity out of the

inferior cortical areas than that seen in controls (49). Note that while

the aforementioned studies are not an exhaustive compendium of all

evidence regarding mGluR5 binding, they collectively represent the

most recent, rigorous data, which was also collected through more

refined methods and advanced technology than data from less

recent studies.

Other neurotransmitters have also been found to be associated

with clinical manifestations of depression. When using MRI and

[18F]FDOPA PET in patients with depression to evaluate the effects

of dopamine in causing psychomotor retardation vs. impulsivity, a

study showed decreased uptake of [18F]FDOPA, indicating lower

dopamine uptake in the left caudate of patients with depression who

had psychomotor retardation compared to those who had high

impulsivity (50). The reduced dopamine activity likely contributed

to the observed symptoms of psychomotor dysfunction in those

patients with depression (50). A separate study using [11C]
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flumazenil ([11C]-FMZ) tracer showed reduced GABA-A binding

in the para-hippocampus and superior temporal lobes of the brain

(51). When [11C]carfentanil was used to measure and assess the

presence of mu-opioid receptors (MORs) in the brain (given its

strong affinity as an agonist for MORs), multiple regions, including

the amygdala and hippocampus showed less MOR availability in

patients with subclinical depression (52).
The utility of PET in the treatment
of depression

Pharmacotherapy

PET has an essential role in research concerning the

pharmacodynamics of depression therapies, as it allows for the

assessment of drug doses and therapeutic effects based on receptor

occupancy. Although earlier studies showed limited ability to discern

changes in molecular imaging markers, more recent meta-analysis

support the theory of decreased availability of serotonin transporter

in depression (53). SSRIs are the most common first-line major

depressive disorder medications that target the serotonin transporter.

Serotonin transporter blockage in the synaptic cleft is presumed to be

the primary mechanism of action in SSRIs. A number of SSRIs have

been studied for their ability to occupy and block serotonin

transporters (i.e. occupancy) by using PET modalities (47, 54, 55).

Occupancy metrics and plasma concentrations can be incorporated

into a saturable binding model to estimate a drug’s efficacy (e.g. IC50)

and maximum occupancy (e.g. Rmax). Understanding the

connection between antidepressant dosage and serotonin

transporter occupancy, as well as how different antidepressants

interact with serotonin transporters, may help explain why the

antidepressant treatment approaches may have variable efficacy.

Multiple studies have established a clinical threshold of between

70-80% serotonin transporter occupancy for antidepressants like

SSRIs (specifically paroxetine, sertraline, fluvoxamine, citalopram,

and fluoxetine), SNRIs, and TCAs (56–59). Serotonin transporter

occupancy was higher than norepinephrine transporter occupancy

for the same dose of duloxetine (an SNRI) in one study (60); however,

the serotonin transporter and norepinephrine transporter occupancy

were similar for milnacipran (another SNRI) (61). An [18F]FMeNER-

D2 PET study showed the antidepressant efficacy of venlafaxine is

due to the blockade of the norepinephrine transporter, in addition to

the serotonin transporter. The [18F]FMeNER-D2 PET study aiming

to quantify the binding potential of norepinephrine transporter in the

brain of 12 patients with depression found that patients on a daily

dose of 150 to 300 mg of venlafaxine had significantly lower binding

potential of norepinephrine transporter compared to 9 control

subjects. This indicates that clinically relevant doses of venlafaxine

extended release block the norepinephrine transporter in the brain of

patients with depression. Norepinephrine transporter occupancy

varied between 8-61% and increased with the dose, though no clear

difference was noted beyond 150 mg/day (62). Relatedly, one [11C]

DASB PET study found that a 100mg dose of tramadol, an opioid

analgesic, corresponded to a 50% occupancy of the serotonin

transporter (63).
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Monitoring of pharmacological
treatment response

PET has also been used to monitor treatment responses.

Multiple cortical brain areas and the midbrain tend to have

higher metabolism rates when patients are taking SSRIs (25, 64).

Also, when depressed patients on SSRI medications start to feel

better, there is often an increase in the number of specific receptors,

called 5-HT2A, in the frontal cortex of the brain (65, 66).

Furthermore, one [18F]FDG PET study showed olanzapine (an

atypical antipsychotic) and fluoxetine (an SSRI) combination

therapy yielded metabolic changes in the brain in patients with

therapy-resistant depression, resembling those observed in

individuals with therapy-responsive major depression (67).

Ketamine, an NMDA receptor antagonist, has been suggested to

have a possible effective antidepressant effect in acute and chronic

settings, though transient issues with cognition, dissociation,

amnesia, and perception may exist (68). Ketamine exerts its effect

through glutamatergic neurotransmission. There have been mixed

findings on the level of glutamate in depression. While a 2019 meta-

analysis investigating the level of glutamatergic neuro-metabolite in

depression using proton magnetic resonance spectroscopy revealed

their decreased levels (69), a 2018 meta-analysis had found no

significant differences between the levels of glutamate (70). A study

utilizing magnetic resonance spectroscopy to examine whether a

ketamine infusion would raise cortical glutamine levels in healthy

participants came to the conclusion that slow, low-dose ketamine

infusions at antidepressant dosages do not alter cortical glutamate

or glutamine in healthy volunteers (71). Similarly, other research

implicated the clinical effect of ketamine on depression with a

significant reduction in the regulation of G-protein signaling

(RGS4), hence inhibiting glutamatergic transmission (72).

Although the antidepressant role of ketamine is due to its effect

on the glutamatergic system, curiosity exists on how it affects 5-

HT1B receptors - which have a more established role in depression.

Recently, the effect of ketamine on 5-HT1B receptors in regulating

the antidepressant effects has been investigated (73). A [11C]

AZ10419369 PET study, following a randomized, double-blind,
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placebo-controlled design, investigated the binding of 5-HT1B

receptors before and 24–72 hours after ketamine infusion in

SSRI-resistant MDD patients (see Figure 2). The study showed

that ketamine reduced depression symptoms in MDD patients in a

manner inversely related to the binding of the 5HT1B receptor in the

ventral striatum at baseline, indicating that 5HT1B receptors could

serve as a possible biomarker for monitoring the treatment response

of ketamine in depression (73).
Deep brain stimulation

Deep brain stimulation (DBS) therapy is a safe and effective

alternative treatment option for depression that does not respond to

other treatments (75). DBS is a procedure in which electrical

stimulation of dysfunctional brain circuits leads to focal modulation

of their function. On a metabolic basis, DBS leads to increased blood

flow and, hence, increased glucose metabolism in the corresponding

brain regions. This activates the reward system, heightens the sense of

well-being, and decreases symptoms of depression (76). DBS of the

subgenual cingulate (Brodmann region 25) has been shown to

interrupt focal abnormal activity in limbic-cortical circuits and can

significantly reduce symptoms in patients with otherwise therapy-

resistant depression (77). [18F]FDG PET studies on DBS have

corroborated its safety and effectiveness while bolstering evidence

concerning mechanistic underpinnings. DBS of the superolateral

branch of the medial forebrain bundle has been performed safely

and with a rapid antidepressant effect (78).
Electroconvulsive therapy

Electroconvulsive therapy is another important treatment

modality for depression resistant to first-line therapy. Evidence

from [18F]FDG PET studies suggests that ECT can gradually

normalize severe brain hypometabolism in a major depressive

episode (78, 79). Other conclusions tentatively drawn from

[18F]FDG PET studies suggest that ECT improves clinical
FIGURE 2

PET images of ketamine-treated patients. PET images of patients zooming in on the hippocampi (red boxes) before (left) and after (right) ketamine
treatment. [11C]AZ10419369 radiotracer was used in this study. During PET imaging analysis, the regional binding potential for non-displaceable
binding (BPND) was calculated using the simplified reference tissue model (SRTM) (74), with the cerebellum as the reference region. [with permission
from reference (73)].
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symptoms by modulating corticolimbic function by increasing

limbic/paralimbic metabolism and decreasing neocortical

metabolism (80). ECT has also been associated with increased

binding of the 5HT1B receptor in the hippocampus of depressed

patients following treatment, a mechanism analogous to the clinical

improvement observed in patients with treatment-resistant

depression after rapid-acting ketamine (Figure 3) (81). While the

complete mechanism of how electroconvulsive therapy causes

improvement of symptoms in depression is precisely not clear,

PET imaging could be an essential part of future research that aims

to elucidate these pathways. [18F]FE-PE2I PET study in depression

revealed that ECT reduces dopamine transporter binding in the

striatum. This decrease was associated with a reduction in the

severity of depression, as measured by standard rating scales. The

results of this research suggest that alterations in the brain’s

dopamine system may contribute to the antidepressant effects of

electroconvulsive therapy (82). Using [11C]FLB 457 PET, another

brain imaging study supported the idea that ECT for depression

possibly works through a dopamine-related mechanism. In this

study, all 7 patients with depression responded to ECT, and they

had reductions in the binding of dopamine D2 receptors in the

rostral anterior cingulate region of the brain after the treatment as

compared to the measurements before ECT (83). Similarly, a

different PET study using [11C]raclopride (a selective dopamine

D2/D3 antagonist tracer) found patients experiencing major

depressive episodes had lower dopamine D2/D3 binding in the

striatum compared to those who did not have depression. However,

in this study, ECT did not result in a significant improvement in

D2/D3 binding in patients with depression (84).
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Alternate therapies

Given the subjective interpretation and self-perception of mental

activities that affect neural circuitry and plasticity at multiple levels of

functioning, mentalistic elements must be considered alongside

psychotherapy for successful depression treatment (85). PET imaging

has furthered our understanding of the neural changes associated with

alternative treatment modalities and psychotherapies.

Neuroinflammation has been implicated in the pathophysiology

of depression. Since microglia are crucial to neuroinflammation, Li

et al. conducted a PET study using [18F]FEPPA to investigate

the translocator protein total distribution volume (TSPO VT).

TSPO is a surrogate of the activity of microglia and, hence,

neuroinflammation and TSPO VT is an index of TSPO density.

According to this [18F]FEPPA-PET study, the microglial density in

individuals with major depression was reduced in the neocortex

gray matter, temporal cortex, frontal cortex, and hippocampal

regions following clinical improvement after cognitive behavioral

therapy (CBT) treatment, therein bolstering evidence supporting

the efficacy of CBT for depression (86).
Conclusion

PET is becoming increasingly viable as an imaging tool for

diagnosis, treatment, and management of depression. PET imaging

has shown useful findings in depression with respect to differences in

metabolism in the brain, involved neurotransmitters, neuroreceptors,

the disease’s severity and duration, the pharmacodynamics of
FIGURE 3

PET images of the serotonin1B receptor effect of electroconvulsive therapy for severe major depressive episodes. Average parametric [11C]
AZ10419369 PET images overlaid over MR images, showing decreased 5-HT1B receptor binding in the hippocampus before ECT (top) when
compared with images taken within one week of (bottom) ECT in major depressive disorder patients [with permission from reference (81)].
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different antidepressants, and the neurobiological underpinnings

of non-pharmacological treatments such as psychotherapy,

electroconvulsive therapy, and deep brain stimulation therapy.

Although many studies related to [18F]FDG and [15O]-water have

found some kind of metabolic dysfunction, they do not agree on

which parts of the brain are implicated. This is true for amyloid PET

as well. The possible reason could be heterogeneity among the studies

and the small sample size. The absence of uniform findings in this

context has prevented the clinical translation of [18F]FDG, [15O]-

water, and amyloid PET in depression. Several neurotransmitter-

related PET findings have been associated with clinical manifestations

of depression, the important ones being decreased 5-HT1A receptors

in several parts of the brain. However, the determination of 5-HT1A

in depression has been confounded by quantification technique.

PET studies have indicated disruptions in various other

neurotransmitter systems (such as dopamine, GABA, and

glutamate) as underlying pathophysiology of depression. PET has

demonstrated reductions in dopamine uptake, decreased GABA-A

receptor binding, and altered excitatory neurotransmission,

particularly involving glutamate. PET scans with the [11C]

ABP688 tracer have consistently shown lower mGluR5 receptor

binding in depressed patients, a finding that correlates with the

severity of depression (associated with mGluR5 binding in the

hippocampus) and is supported by western blot analyses of

postmortem brain samples. This highlights the potential for these

neurochemical markers to inform both the diagnosis and treatment

of depressive disorders.

There is limited research on the neuropathological mechanisms

underlying various clinical signs of depression (e.g., catatonia,

psychosis, negative symptoms).

PET imaging has been pivotal in studying the pharmacodynamics

of antidepressants, with the potential to reveal a clinical threshold for

serotonin transporter occupancy necessary for the effectiveness of

common antidepressants. PET can also reveal neurotransmitter effects

that, in fact, are not the primary target of the treatment. It has been

instrumental in uncovering the effects of medications like duloxetine,

venlafaxine, and milnacipran on neurotransmitter transporters and

highlighting the relation between the dose of tramadol and serotonin

transporter occupancy. Similarly, PET has been used to monitor

metabolic and receptor-level changes in response to antidepressants.

It has shown metabolic changes in brain regions due to SSRI

treatment and has associated clinical improvements due to SSRI

with rises in 5-HT2A receptor numbers in the frontal cortex.

Similarly, 5-HT1B is affected in depression and possibly influenced

by treatments as different as CBT, ECT, and ketamine. The utility of

PET in understanding the efficacy of treatments like olanzapine and

fluoxetine combination therapy and in discerning the effects of

ketamine infusion on 5-HT1B receptor binding is underscored. PET

has provided evidence regarding the safety and effectiveness of DBS in

depression and elucidated its impact on neural metabolism and

connectivity. While the exact mechanism of ECT remains to be

fully understood, reduction in dopamine transporter binding in the

striatum has been proposed as a contributing factor to its

antidepressant effects. Besides, PET imaging has shed light on the

neural changes associated with alternative therapies and

psychotherapies, such as sleep limitation therapy and CBT. PET has
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highlighted the changes in glucose metabolism after sleep limitation

therapy, reduction in neuroinflammation post-CBT, and the role of

serotonin and its 5-HT1B receptor in the physiological response

psychotherapy. PET imaging may be a crucial tool in the ongoing

quest to elucidate the complex biological mechanisms of depression

and its treatment, offering valuable insights that have the potential to

guide more effective, personalized interventions for this disorder. So

far, the research findings have not yet resulted in significant changes

in clinical practice, for example, in regular diagnosis and work-up

of depression.
Future considerations

There are many instances of conflicting results obtained in

depression despite a similar PET imaging approach applied in

different studies. This may require identification of the underlying

heterogeneity and possibly standardization of quantification technique

in large sample size studies. Additional studies targeting patient

subpopulations across both mental and physical health domains need

to be carried out. Similarly, more basic science research is necessary to

further elucidate the genetic basis of depression and the neurobiological

mechanisms of catatonia, bipolar disorder, and associated psychosis.

For instance, continued research into various neurotransmitters (e.g.,

dopamine, glutamate, serotonin, norepinephrine) and their associated

receptors and transporters would lend insight into the heterogeneous

manifestations of depression and allow for the development of more

targeted treatment strategies. Additionally, more research is required to

determine the biological underpinnings of the treatment response to

psychotherapies, ECT, DBS, and other alternative therapies. As such,

given the increasing role of molecular imaging in drug development

and precision medicine initiatives, PET can contribute significantly to

more timely screening, diagnosis, andmanagement of depression in the

near future.
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