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Aims: Autism is a multifaceted developmental disorder of the nervous system,

that necessitates novel therapeutic approaches beyond traditional medications

and psychosomatic therapy, such as appropriate sensory integration training.

This systematic mapping review aims to synthesize existing knowledge on

enriching environmental interventions as an alternative avenue for improving

autism, guiding future research and practice.

Method: A comprehensive search using the terms ASD and Enriched

Environment was conducted across PubMed, EMBASE, ISI, Cochrane, and

OVID databases. Most of the literature included in this review was derived from

animal model experiments, with a particular focus on assessing the effect of EE

on autism-like behavior, along with related pathways and molecular

mechanisms. Following extensive group discussion and screening, a total of 19

studies were included for analysis.

Results: Enriched environmental interventions exhibited the potential to induce

both behavioral and biochemical changes, ameliorating autism-like behaviors in

animal models. These improvements were attributed to the targeting of BDNF-

related pathways, enhanced neurogenesis, and the regulation of

glial inflammation.

Conclusion: This paper underscores the positive impact of enriched

environmental interventions on autism through a review of existing literature.

The findings contribute to a deeper understanding of the underlying brain

mechanisms associated with this intervention.
KEYWORDS

enriched environment, autistic spectrum disorder (ASD), neurogenesis, synaptic
plasticity, hippocampus, valproic acid (VPA)
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1 Introduction

Autistic spectrum disorder (ASD) is a neurodevelopmental

disorder characterized by deficits in social communication.

repetitive behaviors, and narrow interests (1). In the United

States, approximately 2.3 percent of 8-year-olds and 2.2 percent

of adults are affected by autism, with these prevalence rates

increasing globally (2). Despite significant advances in autism-

related research in recent years, providing a more comprehensive

understanding of the disorder, effective treatment for autism

remains elusive.

Enriched environments have emerged as a novel therapeutic

approach garnering attention for improving outcomes in

individuals with autism. An enriched environment refers to a

physical and social setting that fosters brain development by

providing sensory and cognitive stimulation (3). The concept of

an enriched environment (EE) has been applied across various

fields, including animal research and human cognitive

development. Presently, studies reveal significant protocol

variations in EE, including the presence of running wheels,

number of cagemates, duration of enrichment, and the age of

animals at the onset and conclusion of interventions (4). These

specific setting differences complicate comparisons. However, the

basic experimental set-up remains the same: animals, typically rats

or mice, housed in larger groups within larger cages, often equipped

with additional toys, nesting material, and hiding tubes (5). Despite

the emphasis on comparison between groups in enrichment

environment studies, individual differences are often overlooked.

Numerous studies consistently demonstrate the beneficial

impact of EE on behavioral improvements in autism. Moreover,

researchers have proposed innovative perspectives at the micro-

mechanism level. Environmental enrichment can influence the Nrf/

BDNF pathway, promoting neuronal growth, recombination, and

recovery, thereby reducing anxiety and enhancing motor abilities

(6). The hippocampus, an important region for learning and

memory, has been a focal point, with scientists proposing

interventions aiming at altering cell excitability and improving

synaptic structure and morphology (7–9). Another avenue

involves the regulation of neuroinflammation and neuron

regeneration syndromes (8–14).

To comprehensively assess the effects of EE on autism, a meta

and systematic review was conducted. A subsection of this review

focused on the literature exploring the role of environmental

enrichment in autism phenotypes, with a primary emphasis on

neuroinflammation-related signaling pathways and microglia

activity implicated in autism improvement (15). This inquiry

aimed to provide insights for future clinical practice and research.
Abbreviations: EE, Enriched environment; ASD, Autistic spectrum disorder;

HPC, Hippocampus; VPA, valproic acid; PND, postnatal day; BDNF, Brain-

Derived Neurotrophic Factor; SE, standard environment; UE, unpredictably

enriching environment; PE, predictably enriching environment; RW, running

wheel; CNV, copy number variants; STD, standard group; ENR, enriched group;

OFT, open field test; EPM, elevated-plus maze; FC, fear conditioning; NOR, new

object recognition; NSF, novelty-suppressed feeding test; SPT, saccharin-

preference test.
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In the future, experiments will be carried out to further explore the

role of EE in improving the brain microenvironment and

preventing clinical diseases.
2 Methods

2.1 Inclusion and exclusion criteria

2.1.1 Inclusion criteria
There is no limitation on research types. Only articles focusing

exclusively on animal studies with autism as the disease phenotype

are included, and they must be published in either Chinese or

English. The intervention measures in these studies must involve

environmental enrichment. The outcome indicators should report

improvements in loneliness symptoms, including changes in both

behavioral and molecular biological indicators.

(1) There is no limitation on research types; (2) Language

learning is limited to Chinese and English; (3) Focusing only on

animal studies, the disease phenotype is autism; (4) The

intervention measures are environmental enrichment; (5)

Outcome indicators should report the improvement of loneliness

symptoms, including changes in behavioral and molecular

biological indicators.
2.1.2 Exclusion criteria
Excluded are studies that involve combinations of autism with

other diseases, studies with missing data or duplicate reports, and

articles of theoretical discussions, clinical trials, conference

abstracts, reviews, meta-analyses, and other similar types.

(1) Studies involving combinations of autism with other

diseases; (2) Studies with missing data or duplicate reports; (3)

Theoretical discussions, clinical trials, conference abstracts, reviews,

meta-analyses, and other similar article types.
2.2 Protocol and registration
A search was conducted on the International Prospective

Register of Systematic Reviews (PROSPERO) system under the

heading “Autistic Disorder and Environmental Enrichment”. No

similar studies were found to be published or registered. While the

National Institute for Health Research (NIHR) primarily focuses on

outcomes in human health, social care, welfare, public health, and

education, this systematic review closely examines results from

animal studies. Registration is not currently supported.
2.3 Database search
A systematic literature search was performed in electronic

databases, including MEDLINE (via PubMed), EMBASE, and ISI

Web of Science. Searches were conducted in July 2022, and

restricted to animal studies only. Two sets of words were used in

the searches: (1) population (ASD animal models) and (2)

intervention (enriched environment). Database search strategies

are available in Supplementary Material 1.
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2.4 Information extraction
Two evaluators independently screened the literature, extracted

data, and cross-checked it. In case of discrepancies, a third party was

consulted for judgment. The final decision was made after a group

discussion. Data extraction included title, year, study type, modeling

method, intervention time and method, behavioral type, and

outcome index.
3 Results

3.1 Literature search and screening

A total of 150 papers were identified, and after the first

screening, 91 papers were included. Following the second

screening, 19 papers were finally included. The literature

screening process and results are illustrated in Figure 1.
3.2 Basic characteristics and intervention
protocols of selected studies

Table 1 presents the behavioral phenotypic changes induced by

the enriched environment, along with information on the

intervention period, environment type, and behavioral experiments.

To facilitate comparison and avoid interference from modeling

approaches, experiments of the same model are listed together. A

subset of articles conducted tests on microscopic indicators, such as

synaptic morphology, protein expression, and hormone levels. The

results of these experiments are separately presented in Table 2,

offering a perspective for subsequent exploration.

Given the specificity of the environmental enrichment

intervention, with no uniform criteria for environmental

conditions like intervention period, cage facilities, food type, and

number of conspecifics, unfortunately, we were unable to produce a
Frontiers in Psychiatry 03
directional mean effect size estimate with 95% confidence intervals

for intervention moderators. Although interventions cannot be

quantified uniformly for comparison, the results in Table 1

demonstrate the effectiveness of interventions on autistic

symptoms. To explore the mechanisms behind the behavioral

effects in depth, the literature provided thus far is sufficient. We

will expand the literature by referring to the molecular biology

indicators suggested in Table 2. We will also attempt to explain, as

comprehensively as possible, the mechanisms behind EE and its

impact on disease from the perspective of synaptic plasticity,

neurogenesis, and molecular pathways.
3.3 Effects and underlying mechanisms of
EE on ASD

3.3.1 Effects of EE on social-deficit or ASD-
like behaviors

Valproic acid (VPA), a non-genetic factor, plays a crucial role in

mental disorders and mood conditions. Exposure to VPA

significantly increases the risk of autism spectrum disorder (ASD)

and is commonly used to develop a non-genetic ASD pathological

model (12, 17, 33). Accumulating evidence suggests that exposure

to an enriched environment (EE) ameliorates VPA-induced ASD

pathological behaviors or symptoms (fear, anxiety, social

withdrawal , and sensory abnormal i t ies) by inducing

neuroanatomical and behavioural changes (3, 10), including

enhanced dendritic arborization, gliogenesis, neurogenesis, and

improved learning (7, 12). In VPA-treated rats (12, 34, 35) and

mice (7, 12), environmental enrichment significantly attenuated

altered performance deficits (12), inhibited anxiety-like behavior,

increased the number of social behaviors and social explorations,

and improved social deficits and cognitive impairment, but showed

no effect on hyperlocomotion (7, 12, 33). Further findings indicate

that predictable environmental enrichment prevents the
FIGURE 1

Flow chart of literature screening.
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TABLE 1 Basic characteristics of included documents.

Literature
Pattern
making

Intervening
measure

Intervention
weeks

Behavioral experiment Outcome measurement PMID

(16)

Exposure to VPA
during pregnancy

SE/EE 16 OFT/EPM
↓The levels of anxiety and
depression
Gender affects the degree of change

33107086

(17) SE/UE/PE 16 EPM/social test/Y-maze/FC
PE: complete reversal of autism
UE: no difference change

26089770

(18) SE/EE 3 Three-chamber social test ↑ Social skills

(19) SE/EE 4.3
Social interaction/texture
discrimination/acoustic startle
reflex tests

↓ Autism-like cognitive disorders
Gender determines the degree
of impact

35738908

(20) SE/EE 1
ALB symptoms (social
interaction and
repetitive movements)

↑ Cognition, mood and anxiety levels 26089770

(21)
SE/EE/
cluster needling

3 OFT/Three-chamber social test ↓ Anxiety and social disorders

(7) SE/EE 4
OFT/EPM/NOR/Three-chamber
social test

↑ Recognition of memory deficits,
anxiety, and social disorders

28655565

(12) SE/EE 3.4
NOR/von Frey test/EPM、Social
interaction, etc.,

↑ Cognitive competence ↓ Autism-
like behaviors and anxiety

15920505

(22)

Mecp2
gene mutation

SE/EE 2
OFT/elevated beam test/EPM/
footprint ink test

↑ Motor ability and delayed clasp
development
↓ Exploration of the open arm

20634955

(23) SH/EE 2
Rota-rod/Observe general
motor activity

↑ Motor coordination in
heterozygous females, but not males

18557922

(24) SH/EE/RW 7 EPM/NSF/SPT
↑ Emotional stability compared to
physical exercise alone

26019053

(25) SE/EE 1 OFT/Rotor-rod/FC
↑ Motor activity deficits
There is no significant change in
situational or cue-fear conditioning

18687363

(26) SE/EE 3 Rota-rod/Morris/OFT
↑ Spatial memory
↓ cognitive deficits and
anxiety phenotypes

20172507

(27)
FMR1
gene knockout

ENR/STD 12
mother-infant interaction/T-
maze/Situation freezing. etc

↓ ADHD in adulthood
↓ Heterosexual dependence
↓ Freezing behavior

25348604

(28) SE/EE 8 OFT
↓ Internal exploration defects
↑ object habituation

16076950

(29)
Oprm1
gene knockout

ENR/STD 4
USV/EPM/Social acceptance/
Partner preference

↑ Social skills
↑ Social recognition in females

27274875

(30)
Shank3
gene knockout

SE/UE 1.6 zero maze/stereotype. etc

No benefit, such as no improvement
in self-grooming or orifice
exploration
↑ Anxiety-like behavior

30317697

(31) BTBR model SE/EE 4.3
Grooming behavior/Repeated
object exploration

↓ The carding time but keep the
order unchanged

23813950

(32)
CNV-based
model
(Dp(11)17/+)

SE/EE Unspecified OFT/EPM/Rota-rod/FC

↓ Aggression and intensified
repetitive exploration behavior
↓ Anxiety
↑ Balance to a lesser extent

22492990
F
rontiers in Psych
iatry
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development of hyper-emotionality in the VPA-exposed group (17)

and improves motor impairments (12), whereas unpredictable EE

does not yield similar effects (17). Additionally, in the offspring of

mice or Rattus norvegicus models exposed to VPA, environmental

enrichment can improve autistic-like behavior symptoms through

increased social interaction and repetitive movement (20, 36).

Furthermore, continuous EE is reported to attenuate social

behavior and cognitive function disturbances in the VPA-induced

autistic-like model in a sex-dependent manner, at least in terms of

behavioral performance (35, 37).

Over the past years, numerous genetic factors have been

identified and confirmed to increase the risk of ASD (38, 39), and

research on representative genes (Mecp2 and Shank3) mutant

might elucidate more homogeneous subgroups within the

spectrum (38, 40, 41). Mecp2 and Shank3 mutant model mice

exhibit severe behavioural and neuropathological deficits associated

with autistic spectrum developmental disorders (40, 42); restoring

Mecp2 or Shank3 expression rescues Autism-like behaviors and

social interaction deficits (40, 42). Interestingly, non-invasive and

non-pharmacological EE intervention contributes to the

improvement of neurological alterations caused by the Mecp2 or

Shank3- transgenic models, preventing the development of motor

discoordination and anxiety-related abnormalities (26, 43–45). On

one hand, EE attenuates some neurological alterations, improving

locomotor activity (46), increasing voluntary physical activity (26,

47), reducing motor coordination deficits (26, 33, 44, 48), and

preventing the development of anxiety-related abnormalities (26,

47, 49, 50) and contextual fear conditioning in the several Mecp2

autistic models (39, 44). On the other hand, early environmental

enrichment ameliorates behavioral abnormalities, increases

anxiety‐like behavior in Shank3 De4–22 mice, and improves

motor performance specifically in wild‐type mice (30, 51). Thus,

different environmental factors provide significant benefits for the

phenotypes resulting from RTT (Mecp2 or Shank3) related

pathophysiologies (38–40).
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Furthermore, based on the BTBR+Itpr3tf/J (BTBR) or fragile X

mental retardation1 (FMR1) complex mutant, the genetically

engineered animal has emerged as a well-validated model of

autism, particularly in studies related to social deficits and

repetitive behaviors (52–54). In both the BTBR-related genetic

model (31, 37, 54, 55) and FMR1-knockout (FMR1-KO) mice

(27, 28, 56), EE intervention significantly influences the quantity

and quality of repetitive behaviors (27, 28, 31, 37, 54–56).

Additionally, EE attenuates some neurological alterations in FXS

mice, prevents the development of cognitive and anxiety-related

abnormalities, and improves repetitive stereotyped behaviors (27,

28, 56). Interestingly, environmental stimulation may affect FMRP

levels by activating glutamatergic signaling and FMRP-independent

pathways in WT mice (28). Moreover, EE administration improves

systemic metabolism, enhances learning and memory functions,

inhibits behavioral phenotypes of anxiety, and lowers-order

repetitive behaviors (27, 28, 55). However, it shows no effect on

the overall quality of behaviors in the BTBR model, indicating that

the improvements appear to occur in a dependent and sexual

dimorphic manner (31, 37, 54, 55). Overall, the current data

provides ample evidence supporting the effectiveness of EE

intervention for neurodevelopmental mental disorders associated

with specific genes (Mecp2, Shank3, and BTBR) linked to ASD

syndrome. This strategy, at least, demonstrates notable plastic

modulations of autism symptoms or associated neuro-alternations

but appears to have limited influence on the alternation of these

vital genes themselves.

3.3.2 Improvement of EE on synaptic plasticity
EE can facilitate enhanced sensory perception, cognitive

functions, and motor stimulation, thereby exerting beneficial

effects on the regulation of neurobehavioral processes and

psychotic behavior (3, 8, 10). The underlying mechanisms of EE

on social deficits or ASD may involve the improvement of neuronal

functions, neurogenesis, and synaptic plasticity (8, 57, 58). The
TABLE 2 Information on morphology and analysis of biological indicators.

Literature Pattern making
Intervening
measure

Intervention
weeks

Molecular biological index PMID

(16)

Exposure to VPA
during pregnancy

SE/EE 16
↑ Microglia complexity
↑ Morphology and activity

33107086

(17) SE/UE/PE 16
↑ Glutamic acid signaling protein content in somatosensory
cortex, hippocampus and amygdala
↑ Corticosterone levels in plasma, amygdala, and hippocampus

26089770

(18) SE/EE 3 ↓ Loss of cerebellar Purkinje cells

(19) SE/EE 4.3 ↑ Spontaneous firing of neurons in the barrel cortex 35738908

(21)
SE/EE/
cluster needling

3
↑ Surviving frontal neurons
↑ IL-10 and ↓ IL-18 in frontal lobe

(7) SE/EE 4
↑ Synaptic density in CA1
↑ BDNF-mRNA/PSD-95/Shank2/3

28655565

(22)
Mecp2 gene mutation

SE/EE 2 ↑ Syp, PSD95 and SGK-1 20634955

(23) SH/EE 2 ↑ BDNF expression in cortex, hippocampus, and cerebellum 18557922
fron
↓: To reduce; ↑: To increase.
tiersin.org

https://doi.org/10.3389/fpsyt.2024.1328240
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Li et al. 10.3389/fpsyt.2024.1328240
main molecular pathways of EE contribute to structural changes in

the brain and enhance synaptic plasticity (14). This is primarily

implicated in learning, memory, and mood regulation in different

hippocampal regions (such as CA1, CA3, and dentate gyrus), cortex

(mPFC), or other regions.

Exposure of rodents to EE significantly improves performance in

hippocampus-dependent learning and memory functions, regulates

the balance of CA1 cellular excitability and synaptic plasticity (8, 58),

and increases synaptic transmission in the dentate gyrus (DG) of the

hippocampus (Hadi 58), particularly with short-term and/or periodic

exposure to EE (8, 58). EE can improve hippocampal neurogenesis in

the DG, decrease cellular apoptosis, myelination defects, microglial

activation, and glutamatergic synaptic function in CA1 (8, 58, 59).

Additionally, EE is found to induce brain plasticity via the spleen-

brain connection network, where CD8+ T cell repartition of effector/

central memory CD8+ T cells differs (58). Furthermore, animal

research reveals that EE can regulate excitatory and, to a lesser

extent, inhibitory synaptic density in the cerebellum and cortex,

reverse cortical LTD deficits, and augment cortical neuroanatomical

changes (BDNF) (26).

In addition to improving synaptic function, the beneficial effects

of EE are closely associated with enhanced synaptic structure

balance in basal dendritic length and spine density across various

regions, including the cortex, hippocampus, striatum, and amygdala

(7, 9, 60). On one hand, EE has demonstrated an ability to improve

synaptogenesis and complex arbor formation, contributing to

enhanced dendritic spines (7, 9, 61). On the other hand, EE

significantly reverses decreased dendritic spine density, the

number of mushroom spines, and disruptions in synapse

remodeling (9, 13, 62–64). It also enriches the size distributions

of presynaptic and postsynaptic spines and head sizes in

hippocampal and cortex regions (62, 64). Additionally, EE can

reduce abnormal ventricular volume (65), and enhance the

expression of several synaptic marker genes critical to synaptic

transmission and plasticity (44, 46). This seemingly demonstrates a

brain region-specific effectiveness of physical EE, including an

increase in hippocampus-dependent cognitive functions,

improvement in Mpfc-associated anxiety, and a reduction in

social interaction defects (11, 59, 66). Hence, EE improvements in

synaptic plasticity are beneficial to early postnatal development and

prevention of ASD phenotypes.

3.3.3 Regulation of EE on vital
molecular pathways

In addition to the prominent modulations of synaptic function,

EE may play vital roles in managing autistic symptoms and

pathology development through significant regulation of multiple

targe-region proteins and signaling pathways that enhance

neurological improvement in the brain. These pathways mainly

involve neurogenesis and BDNF-related molecular pathways and

pathological genes of ASD syndromes (8–11, 13, 14).

On one hand, EE treatment significantly increases BDNF levels

in the cerebellum (48) and hippocampal regions (47) in Mecp2-

related models. It improves the expression of synaptic proteins such

as synaptophysin, syntaxin-1a, and synaptotagmin (22, 64), rescues

the impaired BDNF-TrkB signaling in the prefrontal cortex and
Frontiers in Psychiatry 06
hippocampal regions in Fmr1 KO mice (56), and balances serum

corticosterone via the hypothalamic–pituitary–adrenal (HPA) axis

(47). EE can increase the gene expression of BDNF and its receptors

in several brain areas, contributing to neural development and

behaviors through the Ntrk2-TrkB and BDNF/TrkB-PLCg1-
CaMKII pathways (44, 46, 48, 55, 56, 67). Additionally, the

transcriptional regulation of MeCP2 seems to target BDNF, exon

4, and Crh pathways (47), thus improving brain metabolic

conditions and behavioral health (55). Thus, MeCP2 may be one

of the main target genes involved in brain development, synaptic

plasticity, and BDNF/TrkB pathways.

On the other hand, EE can mitigate the loss of dendritic spines in

the CA1 region, elevate the levels of postsynaptic density protein

(PSD)-95 (26, 68), and SH3, and multiple ankyrin repeat domain 2 in

the hippocampus (26). It also enhances the expression of several

synaptic marker genes in autistic model animals (44, 46). Physical EE

promotes neurogenesis in the DG (50), aids in the maturation and

survival of new neurons (69), and influences microRNA expression,

with upregulated miR-124 and miR-132 (Figure 2) (9, 50).

3.3.4 Regulation of EE on microglia
and inflammation

As a neurodevelopmental disorder, autism is associated with an

abnormal increase in the number of microglia in several brain

regions (70). Some studies have reported that the occurrence of

autism is related to the pruning and stability of synapses (71, 72).

Furthermore, others have demonstrated that microglia play a

crucial role in the development of synapses by migrating to

inflammatory sites and phagocytizing dead cells or their

fragments (73, 74). These studies suggest that microglia

contribute to autism-like behavior through synaptic pruning.

EE can ameliorate cognitive deficits and anxiety or depression-

like symptoms by modulating microglial reactivity and functions in

the brain (9, 15, 21, 36). It can reverse abnormal microglia numbers

and volume in the DG (36) and enhance glial reactivities (15).

Moreover, it inhibits the pro-inflammatory factor IL-18 and

increases the level of the anti-inflammatory factor IL-10 (21).

In various animal models, EE has been shown to alter a range of

inflammatory mechanisms, exerting anti-inflammatory or

inhibitory effects on microglial “activation” (75). Some studies

have indicated that EE can reduce inflammation and oxidative

stress in the brain (76). For example, EE can decrease hippocampal

IL-1b and serum monocyte chemoattractant protein-1, ultimately

improving cognitive performance in aging rats (77). While

microglia, as immune cells of the central nervous system, are

closely related to EE, the special effects and mechanisms of EE on

neuroinflammation and microglia-related functions are far from

being explored and should be the focus of future studies.

The overall results reveal that EE exhibits significant regulation of

molecular expression in different receptors in various brain regions,

with receptor-dependent and sexual dimorphic manners (17, 37, 55).

For instance, EE notably upregulates the levels of Glu2B in the S1

cortex, CaMKII in the dorsal hippocampus, and GluN2B in the

amygdaloid nucleus but decreases the levels of GluN1 in the ventral

hippocampus (17). EE affects the expression of NMDAR1s and CB1Rs

in the cerebellar cortex in BTBR model mice (55). However, it seems
frontiersin.org
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that EE demonstrates a differential regulation in the expression of

different synaptic receptors between males and females (35, 37, 55).

Continuous EE can alleviate cognitive dysfunction in autistic rats, at

least at the behavioral level, and its impact depends on gender. Females

performed better than males in discrimination tasks and acoustic

startle reflexes. In contrast, males were better than females in the three‐

chamber social interaction test (19).

In general, EE stimulation exerts beneficial effects via BDNF-

related pathways, neurogenesis, and microglia-related inflammation,

as shown in Figure 2. Thus, it can be optimized as a treatment option

with the use of nonpharmacological interventions for the treatment

of social defect disorders in ASD.
Frontiers in Psychiatry 07
4 Discussion

EE interventions aim to provide individuals with a stimulating

and engaging environment, fostering enhancement in their

physical, cognitive, and social abilities. This approach has

demonstrated benefits for individuals with various mental

illnesses, including depression, schizophrenia, and bipolar

disorder. For example, in a randomized trial investigating EE in

schizophrenia, patients exposed to EE exhibited improved cognitive

performance and milder symptoms (78, 79).

In the field of neuroscience, EE is increasingly recognized for its

potential to enhance synaptic plasticity. Exposure to EE induces an
FIGURE 2

Molecular mechanisms associated with environmental enrichment to improve autism-like behaviors. Enriched environments have positive effects on
autism spectrum disorders through complex molecular mechanisms. A pivotal element in this mechanism is Brain-Derived Neurotrophic Factor
(BDNF), a neurotrophin essential for neuronal function. Stimulation from enriched environments boosts BDNF expression, promoting neurogenesis—
the formation of new neurons crucial for cognitive processes. Moreover, these environments influence microglia, the brain’s immune cells, thereby
inhibiting inflammation and creating a neuroprotective environment. The interplay among BDNF-related pathways, neurogenesis, and modulation of
microglia contributes to the observed improvements in behavior.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1328240
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Li et al. 10.3389/fpsyt.2024.1328240
upregulation in BDNF expression and TrkB activation, thereby

promoting the formation and maintenance of new synaptic

connections (6). Additionally, EE enhances synaptic plasticity by

increasing the formation of new neurons in the hippocampus (12).

Advanced imaging techniques such as magnetic resonance imaging

(MRI) or positron emission tomography (PET) scans demonstrate

that EEs enhance protein recombination and activate brain glucose

metabolism, thereby contributing to brain remodeling (80).

These studies collectively illustrate that exposure to EE results in

increased activity in brain regions associated with learning and

memory, leading to improved cognitive and behavioral

performance (26). Compared with previous studies, our work

delves deeper into the mechanisms underlying various behavioral

phenotypic variations induced by enriched environments, exploring

gene phenotypes, molecular signaling pathways, synaptic plasticity,

and microglia-associated inflammation. Our ongoing research aims

to unveil molecular and loop-level insights. Through this systematic

review, we hope to provide a clear direction for autism-

related research.

In animal model research, enriched sensorimotor environments

enable rodents to overcome a spectrum of neurological challenges,

including those induced in animal models of autism. Some scholars

posit that environmental enrichment could serve as an effective

method for treating a wide range of symptoms in human autism

patients. In a randomized controlled trial, children with autism

were divided into a sensorimotor enrichment group and a standard

care control group, with long-term observation conducted for 6

months. The findings revealed significant improvement in children

with autism in the sensorimotor enrichment group compared to the

control group (81, 82). Moreover, personalized treatment guidance

on the Internet has led to substantial improvements in the condition

of children with autism who adhere to their parents’ arrangements

(83). These studies suggest that environmental enrichment appears

effective in improving certain symptoms of autism.

However, further research is needed to comprehensively

understand the mechanisms underlying these effects and

determine the most effective ways to implement EE interventions

in individuals with autism and other neurodevelopmental disorders.
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