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Introduction: Attention-deficit/hyperactivity disorder (ADHD) affects a

significant proportion of the pediatric population, making early detection

crucial for effective intervention. Eye movements are controlled by brain

regions associated with neuropsychological functions, such as selective

attention, response inhibition, and working memory, and their deficits are

related to the core characteristics of ADHD. Herein, we aimed to develop a

screening model for ADHD using machine learning (ML) and eye-tracking

features from tasks that reflect neuropsychological deficits in ADHD.

Methods: Fifty-six children (mean age 8.38 ± 1.58, 45 males) diagnosed with

ADHD based on the Diagnostic and Statistical Manual of Mental Disorders, fifth

edition were recruited along with seventy-nine typically developing children

(TDC) (mean age 8.80 ± 1.82, 33 males). Eye-tracking data were collected using a

digital device during the performance of five behavioral tasks measuring selective

attention, working memory, and response inhibition (pro-saccade task, anti-

saccade task, memory-guided saccade task, change detection task, and Stroop

task). ML was employed to select relevant eye-tracking features for ADHD, and to

subsequently construct an optimal model classifying ADHD from TDC.

Results:We identified 33 eye-tracking features in the five tasks with the potential

to distinguish children with ADHD from TDC. Participants with ADHD showed

increased saccade latency and degree, and shorter fixation time in eye-tracking

tasks. A soft voting model integrating extra tree and random forest classifiers

demonstrated high accuracy (76.3%) at identifying ADHD using eye-tracking

features alone. A comparison of the model using only eye-tracking features with

models using the Advanced Test of Attention or Stroop test showed no

significant difference in the area under the curve (AUC) (p = 0.419 and

p=0.235, respectively). Combining demographic, behavioral, and clinical data
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with eye-tracking features improved accuracy, but did not significantly alter the

AUC (p=0.208).

Discussion:Our study suggests that eye-tracking features hold promise as ADHD

screening tools, even when obtained using a simple digital device. The current

findings emphasize that eye-tracking features could be reliable indicators of

impaired neurobiological functioning in individuals with ADHD. To enhance

utility as a screening tool, future research should be conducted with a larger

sample of participants with a more balanced gender ratio.
KEYWORDS

attention-deficit/hyperactivity disorder, eye-tracking technology, saccades, fixation,
biomarkers, machine learning
Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a

neurodevelopmental disorder that affects 3–10% of children (1).

Symptoms of ADHD, such as inattention, hyperactivity, and

impulsivity significantly impair social, academic, and occupational

functions, and can even persist into adulthood (2). As such, early

detection and intervention are crucial for the recovery of patients

with ADHD.

Currently, the diagnosis of ADHD relies on expert decisions

informed by reports from parents’ and/or teachers’, behavioral

observations, and clinical interviews (3). Several task-based

paradigms have been developed and are widely applied in both

clinics and research to assess attention and executive dysfunction in

individuals with ADHD. These include the Continuous Performance

Test (CPT) (4), Tests of Variables of Attention (T.O.V.A.) (5), and

neuropsychological batteries such as the Stroop test (6) and the

Wisconsin Card Sorting test (7). However, task-based measures for

diagnosing ADHD have pitfalls, including a high false positive rate,

limited test–retest reliability, and practice effects (8). In clinical settings,

physicians employ a multifaceted assessment considering additional

factors such as recent stress, anxiety, depression, and behavioral

problems that can influence attention (9). However, physician

interviews are not suitable for screening large populations of children

as they are time-consuming and expensive.

Recently, significant attention has been paid to the

characteristics of eye movement and their neurobiological roles in

ADHD (10–13). Eye movements are controlled by complex brain

regions, including the frontal eye field, dorsolateral prefrontal

cortex (DLPFC), posterior parietal cortex, basal ganglia, and

cerebellum (14, 15). There is significant overlap between the

neural networks involved in oculomotor and attention control

(16), and there is evidence to suggest that the DLPFC and

substantia nigra pars reticulata likely provide essential control

signals for saccadic suppression (17, 18). Experimental inhibition

in these areas leads to increased intrusive saccades, similar to
02
deficits seen in ADHD, suggesting an alteration in frontostriatal

circuitry affecting suppression signals crucial for saccadic control in

ADHD individuals (19). These findings indicate that eye movement

features could be potential biomarkers for cognitive processes,

including those related to attention and brain function.

Eye-tracking studies in children with ADHD have shown

considerable potential in discriminating children with ADHD

from typically developing children (TDC). In a meta-analysis,

lower performance in direction errors in the anti-saccade task

and visually guided saccade latency was identified in the ADHD

group compared to the TDC group (16). Another study

demonstrated a relationship between premature anticipatory eye

movements and the inattentive characteristics associated with

ADHD (20). In addition, the ADHD group showed greater errors

(21, 22) and a longer latency in the memory-guided saccade task, as

well as more eye movement during the fixation task (23). However,

these findings have limited generalizability because of the limited

sample size, lack of a uniform task paradigm, and heterogeneity in

the results among studies (20–22). While the findings from these

studies remain inconclusive, eye-tracking holds promise as a

potentially valuable tool for screening ADHD based on

neurobiological markers.

In the present study, we aimed to develop a model that best

distinguishes children with ADHD from TDC through the

application eye-tracking features. We used machine learning

(ML) to combine features extracted from five different eye-

tracking tasks that require attentional control, working memory,

and response inhibition, which are crucial neuropsychological

impairments in ADHD (24). Furthermore, we measured the

feasibility of the eye-tracking-features-only model and its

potential as a screening tool for ADHD. For this purpose, we

estimated the classification performance of the eye-tracking-

features-only model (stage 1), and compared it with that of the

conventional screening methods; Advanced Test of Attention

(ATA) and/or Stroop task (stage 2). Finally, we measured the

performance of a model that combined demographic, behavioral,
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and clinical information on ADHD obtained from physicians’

examinations and contrasted its performance with that of the

stage 1 model (stage 3).
Methods

Participants

We recruited children aged 6–12 years through advertisements

at four university hospitals and one elementary school in Seoul,

Korea. Participants voluntarily visited one of the hospitals and

underwent clinical and semi-structured diagnostic interviews using

the Korean version of the Kiddie-Schedule for Affective Disorders

and Schizophrenia for School-Age Children-Present and Lifetime

Version (K-SADS-PL-K) (25) by a child and adolescent psychiatrist.

Based on these interviews, a diagnosis of ADHD was determined

according to the ADHD criteria of the Diagnostic and Statistical

Manual of Mental Disorders, Fifth Edition (DSM-5). Individuals

who did not meet any DSM-5 criteria, had no history of psychiatric

disorder in first degree relatives, and were not taking any

medication that could affect the nervous system (including

psychiatric medication and anticonvulsants) were classified as

TDC. Additionally, intelligence quotient (IQ) was measured for

each participant using the Korean Wechsler Intelligence Scale for

Children-Fourth Edition and Fifth Edition.

The exclusion criteria were as follows: (1) any history of medical

or neurological disorders; (2) IQ < 70; and (3) any history of autism

spectrum disorder, psychotic, bipolar, or eating disorders.
Ethical statements

This study was approved by the Institutional Review Boards of

Seoul National University (SNU) Hospital (Approval Number

2103-197-1208), Chung-Ang University Hospital (2160-003-464),

Seoul St. Mary’s Hospital (KC21FIDI0355), and Seoul Metropolitan

Government (SMG)–SNU Boramae Medical Center (30-2021-111).

Written informed consent was obtained from all participants and

their caregivers. The study protocol was approved by the

Institutional Committee on Human Research, and conformed to

the ethical guidelines of the 1975 Declaration of Helsinki.
Clinical symptom assessment

After enrollment, the severity of ADHD symptom was

determined by one of the participants’ caregivers using the

Korean version of Dupaul’s ADHD Rating Scale IV (ADHD-RS)

(26). The Child Behavior Checklist (CBCL) (27) and the Disruptive

Behavior Disorders Rating Scale (DBDRS) (28) were obtained from

the primary caregivers of the participants to estimate the children’s

levels of internalizing and externalizing symptoms.

Participants were asked to complete questionnaires including

the Children’s Depression Inventory (CDI) (29) and the Beck

Depression Inventory (BDI) (30, 31). The Screen for Child
Frontiers in Psychiatry 03
Anxiety Related Disorders (SCARED) (32, 33), and Family

Adaptability and Cohesion Evaluation Scale IV (FACES-IV) (34)

were further applied to assess subjective distress related to

depression, anxiety, and family functioning, respectively. Finally,

the Stroop task and the Auditory/Visual Continuous Performance

Test (ATA) (35) were administered to each participant. In the

Stroop task (6), four representative T-scores (word, color, color-

word, and interference scores) were measured. Similarly, the T-

scores of omission error (OE), commission error (CE), response

time (RT), and variability in RT were computed from each visual

and auditory ATA. T-score data (four scores from the Stroop task

and eight scores from the ATA) were included as behavioral task

features in the ML analysis.
Eye-tracking experiment and
behavioral paradigms

The eye-tracking system used for the experiment comprised a

visual display, a connecting server, and a main server computer for

deep learning. The tasks were initially recorded with a camera lens

attached to the Android 10 system built into the Samsung Galaxy

Tab 7+. SeeSo SDK (built on Unity SDK 2.4.2), developed by

VisualCamp, was used to capture frontal facial images and to

calculate 2D gaze points. Digitized data were stored on each

mobile pad and subsequently transferred to the main

server computer.

During the experiment, the participants were asked to sit in an

upright position, and their chairs were height-adjusted so that the

participant’s face was at the center of the smart pad device. The

screen was placed approximately 50 cm away from the participants’

faces. Before performing the behavioral tasks, each participant was

asked to calibrate the eye-tracking system to accurately estimate

their eye movements. To become accustomed to eye rolling while

minimizing head movement, participants were subjected to five

practice stimuli before the initiation of each task.

We excluded eye-tracking data if the x- and y-coordinates did

not follow the gaze and remained stalled at a fixed coordinate, or if

the gaze was tracked, but the reference point of the x- or y-

coordinate was off-screen.

The eye tracking experiment comprised five serial tasks

(Figure 1): (1) Pro-Saccades Task (PST), (2) Anti-Saccades Task

(AST), (3) Memory-Guided Saccades Task (MGST), (4) Change

Detection Task (CDT), and (5) Stroop Task.

First, the PST was administered to participants using a

previously described protocol (12). The PST is a visually guided

saccade task comprising 30 stimuli (Supplementary Figure 1). The

participants were all given specific instructions to initially focus

their gaze on a central fixation point (FP). Subsequently, they were

required to shift their gaze from the FP location to a peripheral

target stimulus (animal face illustration), which unpredictably

appeared on either the left or right side of the smart pad device.

After an additional 1,000 ms, one of two scenarios unfolded; either

the FP vanished, and after a gap duration of 200 ms, an eccentric

target stimulus emerged; or, the target stimulus remained

illuminated for 1,000 ms.
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In the AST (Supplementary Figure 2), the presentation of the

stimuli mirrored the previously described procedure (12).

Participants were instructed to direct their gaze toward the

central FP. However, upon the appearance of the eccentric

stimulus, they were directed to shift their gaze away from the

stimulus and toward the opposite side of the vertical meridian. The

stimulus location was assigned randomly to either side. This task

comprised 48 anti-saccade trials 5 seconds apart.

The MGST was administered to assess visuospatial working

memory. The MGST procedure followed that indicated in the

original article (36, 37), with the following time adjustments

(Supplementary Figure 3). The participants were initially asked to

gaze at the FP for 1,000 ms, and the target stimulus appeared at the

peripheral region of the screen (500ms) according to randomly assign

order, then disappeared (Supplementary Figure 2). After the

disappearance of the FP (1,000ms), participants needed to use their

memory to direct their eyes toward a remembered location in the

absence of a visual stimulus. The stimulus location was randomized over
Frontiers in Psychiatry 04
trials so that the participant could not predict where the cue would

appear on any given trial. A total of 36 trials were included in theMGST.

The CDT is designed to assess visuospatial working memory

and attention capacity. The procedure for the CDT was the same as

that in the original paper, using the same time schedule

(Supplementary Figure 4) (38, 39). A total 15 pairs of images was

used, with each pair displaying minor differences in color, location

and presence/absence at the center or periphery. The first image was

displayed for 240ms, after which it was changed to another pair of

images sequentially (240ms), with a black background (80ms) in

between. Participants were asked to identify the differences between

images to examine their visual working memory. In our application,

we made a circle appear when participants touched the screen. This

way, they knew what they had chosen. If the subject answered

correctly, they moved to the next image pair; if not, they moved to

the next pair after 20 seconds.

Finally, the Stroop task was implemented to assess response

inhibition and working memory when processing incongruent
A

B

D

E

C

FIGURE 1

Overview of the five eye-tracking tasks used in the current study. The (A) Pro-Saccades Task, (B) Anti-Saccades Task, (C) Memory Guided-Saccades
Task, (D) Change Detection Task, and (E) Stroop Task.
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stimuli (40). For this, we employed the Stroop paradigm

(Supplementary Figure 5), as utilized by Vakil et al. (41). One of

the 4 color name were exhibited using “Malgun Gothic” font, black-

colored, size 144, while the colors themselves were displayed within

a rectangle. Participants were instructed to identify the color within

the rectangle by pressing the corresponding name on the lower side

of screen. The task comprised a total of 40 trials, including 50

congruent and 50 incongruent trials. After a stimulus appeared on

the screen (5,000ms), 2,000 ms of FP was followed as a signal that

the trial had changed. If the subject answered correctly, they moved

to the next trial; otherwise, a gap of after 5 seconds was included

before moving on.
Selection of eye-tracking features and
identification of the optimal model using
ML algorithms

From each task, we extracted 20 distinct eye-tracking

features (Table 1). In the current experiment, a fixation was

defined as a cluster of points where the distance between points

indicated they were spatially close to each other, and the

temporal interval was longer than 70 ms. The saccade was

defined as an eye gaze movement from one point to another.

We estimated the degree and latency of each saccade and elicited

the total degree and its average and standard deviation as

features. Additionally, the total count, total duration, mean

duration, and longest time spent on saccades and fixations

(Saccade Time Max, and Fixation Time Max) were obtained.

To estimate the extent of the participants’ attention, the total and

mean time spent looking at the screen, hit count, and total

elapsed time on the task were recorded as eye-tracking features.

Finally, the average x and y coordinate values of the participant’s

gaze were calculated from the eye-tracking data.

Feature selection is essential to reduce the influence of features

of low importance, avoid over-fitting, and to improve the
Frontiers in Psychiatry 05
generalization of the model (42). In a comparative study of

multiple ML algorithms, feature selection using RandomForest

showed the best performance among a variety of datasets (42).

Thus, we employed the RandomForest classifier from the python

‘scikit-learn’ library for feature selection across the five serial tasks.

The accuracy was measured using the 5-fold cross-validation (CV)

method, and the rank of each feature was determined based on the

feature importance metric, calculated using the ML algorithm. For

each fold of the group, 2000 iterative tree generation processes were

performed to establish a stable estimation model. Subsequently, the

backward elimination method was employed to remove features

with the lowest importance value and classification accuracy of the

model. Once the features with less importance were removed, the

feature set demonstrating the highest averaged 5-fold accuracy was

identified for each task.

Next, we tested the estimation power of the selected eye-

tracking features subset using various ML algorithms built into

the ‘scikit-learn’ library. A model with an accuracy of 0.1 or

greater than the Dummy classifier (a model that classifies all

participants as TDC), was determined as a model with superior

classification power. Soft voting is a helpful technique that uses

an average of the probabilities between the predictions of

multiple classifiers to determine the final class (43). To

enhance flexibility and generalization of our classification

model, we combined the superior models (RandomForest

classifiers and Extra Trees classifires) using soft voting

methods. Each model included in the soft voting methods was

tuned to the value which showed the highest accuracy through

hyperparameter analysis.

Finally, we examined the utility of the eye-tracking-features-

only model as a screening measure. We considered AUC

(separability) as an important metric, along with Recall

(sensitivity), to determine its potential as a screening tool. The

classification performance (Accuracy, Recall, Precision, and F1

score) of each model was determined using the eye-tracking

feature only model (Stage 1), conventional ADHD screening tools

(ATA, Stroop task, and both) (Stage 2), and optimal diagnosis using

combined demographic, behavioral, and clinical information (Stage

3). To verify the value of the eye-tracking-only model as a screening

tool, the area under the curve AUC was obtained and compared to

compare the receiver operating characteristics (ROC) of the models

at each stage.

The features included in each stage were as follows:
Stage 1: Eye-tracking features only [33 features in total].

Stage 2: Visual and auditory ATA only [8 features]; Stroop task

only [4 features]; both ATAs and Stroop task [12 features

in total].

Stage 3: Eye-tracking features [33 features], demographic

features (age, sex, IQ), behavioral task features (features

from the both ATAs [8 features] and the Stroop task [4

features]), and clinical characteristics (CBCL [13 features],

DBDRS [3 features], CDI, BDI, SCARED [6 features], and

FACES-IV [3 features]) [75 features in total].
TABLE 1 Twenty eye-tracking features extracted from each of five
sequential tasks.

Features

Saccade Degree Mean Fixation Count

Saccade Degree SD Fixation Mean

Saccade Degree Total Fixation Duration

Saccade Latency Mean Fixation Time Max

Saccade Latency SD Coordinate X Mean

Saccade Latency Total Coordinate Y Mean

Saccade Count Screen Duration Mean

Saccade Mean Screen Duration Total

Saccade Duration Hit Count

Saccade Time Max Total Elapsed Time
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Statistical tests

The demographic and clinical characteristics, ADHD symptoms,

and behavioral task performance of the ADHD and TDC groups were

compared using parametric (independent-sample t-tests) and non-

parametric (Mann-Whitney U test) tests, depending on whether the

normality assumption was met. If the p-value of the Kolmogorov-

Smirnov test and the Shapiro-Wilk test was greater than 0.05, we

determined the data was normal. For categorical variables, we used the

chi-square test. Pearson’s correlation was conducted between eye-

tracking features and scores of ADHD-RS, ATA, Stroop task.

Statistical results were analyzed using SPSS 24.0 software (IBM

Corporation, Armonk, NY, USA).

Second, ML analysis of eye tracking and relevant features was

performed using Python 3.7.11 and scikit-learn 0.23.2. For the

comparison of overall performance of models in each stage, the

AUC was measured from each model at different stages. Then, the

Wilcoxon rank sum test was performed to compare the AUCs between

the models and the model with the eye tracking feature only (Stage 1).

A test result was considered statistically significant if the p-value

was < 0.05.
Results

Participants and clinical characteristics

This multicenter study initially recruited 250 participants (108

children diagnosed with ADHD and 142 TDC). Among them, 7

subjects were excluded prior to enrollment (3 withdrawal, 4

screening failure). Further, 47 ADHD children and 61 TDC were

excluded due to errors in collecting eye-tracking data (5 Gaze off-

screen, 4 Incomplete Experiment, 99 Eye-tracking failure). Finally, 135

participants (56 subjects with ADHD and 79 TDC) completed the eye-

tracking experiments (Figure 2). From among the 135 participants, the

complete sets of clinical characteristics (IQ, CBCL, DBDRS, CDI, BDI,

SCARED, and FACES-IV) and behavioral assessments (the visual and
Frontiers in Psychiatry 06
auditory ATA and the Stroop task) were collected from 73 subjects (50

with ADHD and 23 TDC).

The ages of participants in the ADHD and TDC groups did not

differ significantly (Table 2). However, the ADHD group a higher

proportion of boys than the TDC group (p<0.001). The average

ADHD-RS total score was 25.98 ± 7.81 among the participants

diagnosed with ADHD, which is higher than the clinical cutoff value

(19 and above). Significant differences were observed in the ADHD-

RS total scores (p<0.001), inattention (p<0.001), and hyperactivity/

impulsivity domain scores (p<0.001) between the two groups.

A comparison of the behavioral task measurements revealed

that participants diagnosed with ADHD had higher OE and CE

production in the visual and auditory ATA, as well as lower verbal

fluency and inhibitory control performance in the Stroop task,

although their average IQ score did not significantly differ from that

of the control group (p = 0.770, Supplementary Table 1).

Self-administered questionnaires showed that the ADHD group

had higher levels of depressive and anxiety symptoms than the TDC

group. Primary caregivers also reported that participants diagnosed

with ADHD had more externalizing problems (includes Delinquent

and Aggressive Behaviors), internalizing problems (includes

Withdrawn, Anxious/Depressed), and total problems (includes

Social, Thought, and Attention problems) in the CBCL, and

disruptive behaviors in the DBDRS scale (Supplementary Table 1).

Correlation results of eye-tracking features and conventional

screening methods (includes scores of ADHD-RS, Stroop task, and

visual and auditory ATA), are summarized in online Supplementary

Tables 2, 3.

Classifying ADHD group from TDC using
eye-tracking features only

After recursive feature selection, 33 eye-tracking features from five

tasks were retained. The list of selected eye-tracking features and their

ranks is displayed in Table 3. Before applying the ML algorithm, we

constructed an optimal eye-tracking features model by combining all

eye-tracking features.
FIGURE 2

A flowchart showing enrollment of the study participants.
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Supplementary Table 4 summarizes the classification metrics of

each ML model in selecting the ADHD group using the optimal

eye-tracking features model. The accuracies of the two models were

greater than that of the Dummy classifier (accuracy of 0.583). The

‘RandomForest’ algorithm was found to have the highest accuracy

(0.705), followed by the ‘ExtraTrees’ classifier algorithm (0.687).

The final soft voting model combining the RandomForest and

ExtraTrees classifiers showed an accuracy of 76.3% and good AUC

(0.724), recall (0.725), precision (0.789), and F1-score (0.789)

among the 135 participants (Figure 3A).
Comparison of the performance of models
using eye-tracking features only versus
models using behavioral, demographic,
and clinical features

Multidimensional feature combination was performed using valid

data from 73 participants. The eye-tracking-features-only model

correctly classified 68.9% of diagnoses in stage 1 (Table 4).

Compared to stage 1, the model using the Stroop task features had a

better accuracy of 73.0%, but a more modest AUC of 0.621 (Figure 3B).

The accuracy of the models increased to 78.4% and 77.0% when using

the visual and auditory ATA features, and when using both ATAs and

the Stroop task features, respectively. The AUC was the highest for the

combination of both ATAs and the Stroop task features (0.769), but no

significant differences were found between the stage 2 model and the

eye-tracking-features-only model (Figure 3C, both ATAs vs. stage 1,

U= 2549, p =0.235; Stroop task vs. stage 1, U= 2684, p =0.419; both

ATAs and Stroop task vs. stage 1, U= 2524, p =0.206).

In stage 3, the classification accuracy was the highest among all

stages (86.5%), while the other ML model metrics were also

improved. However, a comparison of ROC curves demonstrated

no significant differences between the AUCs of the stage 3 and stage

1 models (Figure 3D, U= 2525, p =0.208).
Discussion

The current study revealed that a classification model using eye-

tracking features was useful in differentiating between children with
Frontiers in Psychiatry 07
ADHD and TDC. Although the age and IQ of the ADHD group

were similar to those of the TDC group, the ML model using eye-

tracking features could only successfully classify the diagnosis of the

participants with an accuracy of 76.3%. An ensemble of

demographic, behavioral, and clinical features increased the

accuracy and precision metrics of the model, resulting in the

correct classification of diagnosis. However, there was no

significant difference in the AUC among the ensemble models.

Two tree-based decision algorithms were effective at classifying

ADHD. The optimal number of features for classification varied for

each task; some showed significant differences in conventional

statistics, whereas others did not. In decision tree analysis, each

feature is assigned a weight (importance) based on its attributes for

classification at each splitting step (44). Decision tree integrates

weights from various features to improve overall performance

compared to a single classifier. Because of these characteristics,

individual classifiers tend to make errors under different

circumstances (45). Thus, some of the eye-tracking features

selected in the optimal model may not be significant in

conventional statistical analysis. In each task, the tree-based

algorithm tended to include more features in the model when the

difference in eye-tracking features between the two groups was not

distinct (i.e., PST and AST), and to classify with fewer features when

there were significant differences (i.e., MGST, CDT, and Stroop

task). This finding suggests that features in the MGST, CDT, and

the Stroop task may be sensitive indicators for classifying ADHD.

In the current study, a total of 33 features useful for ADHD

classification were chosen from five eye-tracking tasks. We

examined the role of features in each task in relation to

attentional control, working memory, and response inhibition

in ADHD.

The neural mechanisms of saccadic eye movements are closely

linked to those of attentional control (11, 46). Munoz et al. (9)

demonstrated that individuals with ADHD exhibited extended RT,

higher within-subject variability, and prolonged durations during

the PST. A recent review also showed that the mean latency of pro-

saccades in ADHD was significantly shorter, but the error rate was

higher than controls in multiple studies (10, 47). The ADHD group

also showed a reduced ability to suppress involuntary saccades

when asked to fix their gaze (9, 12, 47). Similarly, we found that

participants with ADHD showed significantly shorter fixation

durations in the PST than the TDC. The ADHD group also

tended to have longer saccade latencies and greater saccade

degrees, but no statistically significant differences were found.

These results suggest that individuals with ADHD are associated

with reduced fixation time and shorter saccade latency in the PST,

which has been implicated in poor attentional control.

The mechanisms underlying AST are thought to be associated

with top-down inhibition of saccade-generating neurons (48). The

ADHD group was found to have more errors in the task, as well as

greater RT and within-subject variability (9). They also showed

longer RT and more anti-saccade direction errors than TDCs (47,

49). Another report demonstrated that ADHD children had a lower

ability to suppress explorative saccade than controls (50). In

accordance with the aforementioned findings, this study observed

a significant increase in the longest time spent on saccades (Saccade
TABLE 2 Demographics of all study participants (n=135).

Variables
ADHD
(n=56)

TDC
(n=79)

P value

Age, years † 8.38 ± 1.58 8.80 ± 1.82 .053

Gender (M:F) 45:11 33:46 <0.001

ADHD-RS total score † 26.27 ± 8.46 9.77 ± 5.71 <0.001

ADHD-RS inattention score † 14.88 ± 4.82 6.16 ± 3.87 <0.001

ADHD-RS hyperactivity/
impulsivity score †

11.39 ± 5.31 3.61 ± 2.62 <0.001
ADHD, Attention-Deficit/Hyperacitivity Disorder; TDC, Typically Developing Children;
ADHD-RS, Dupaul’s ADHD rating Scale, Korean version.
†Mann-Whitney U test was applied because of violations of the normality assumption.
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TABLE 3 Comparison of the eye-tracking features between the ADHD and TDC groups, selected from recursive feature elimination.

Task sequence
Feature

Feature
Importance

ADHD
(n=56)

TDC
(n=79)

p-value

Pro-saccade task Fixation Duration† 0.038 64.57 ± 19.70 71.79 ± 16.90 0.030

Saccade Degree Mean 0.025 39.13 ± 7.23 37.33 ± 8.20 0.189

Saccade
Latency Mean†

0.021
1.21 ± 0.75 1.08 ± 0.36 0.932

Saccade Mean† 0.021 8.98 ± 3.04 8.95 ± 2.82 0.830

Saccade Degree SD† 0.022 29.10 ± 8.24 29.41 ± 7.78 0.630

Saccade Degree Total† 0.021 7808.41 ± 3444.85 7217.25 ± 3230.01 0.233

Fixation Time Max† 0.020 26.81 ± 4.87 27.97 ± 4.08 0.213

Anti-saccade task Saccade Degree Mean 0.033 42.92 ± 5.98 40.82 ± 8.63 0.119

Saccade Duration 0.029 52.44 ± 13.73 48.18 ± 18.77 0.151

Saccade Degree Total† 0.028 20869.22 ± 7520.73 18612.54 ± 8268.31 0.061

Fixation Duration† 0.024 104.47 ± 33.88 103.06 ± 30.69 0.918

Coordinate Y Mean 0.025 20.20 ± 94.26 10.44 ± 108.63 0.588

Saccade Degree SD 0.028 35.70 ± 8.52 35.76 ± 8.43 0.967

Fixation Count 0.019 1131.79 ± 236.06 1168.73 ± 241.93 0.379

Screen
Duration Mean†

0.023
3.77 ± 4.91 3.18 ± 3.51 0.768

Saccade Latency SD† 0.020 0.85 ± 0.36 0.93 ± 0.62 0.520

Saccade Time Max 0.025 24.68 ± 6.58 22.19 ± 7.41 0.047

Saccade Latency Total† 0.020 76.85 ± 13.23 77.54 ± 17.02 0.799

Memory-guided saccade task Saccade Degree Total† 0.048 14201.95 ± 6935.07 10647.83 ± 4475.26 0.005

Saccade Degree Mean† 0.033 40.88 ± 6.05 37.48 ± 8.45 0.032

Saccade Time Max† 0.035 17.91 ± 6.64 14.96 ± 5.47 0.007

Fixation Time Max† 0.036 32.41 ± 7.17 35.54 ± 4.78 0.020

Fixation Mean† 0.039 28.71 ± 8.09 32.27 ± 6.36 0.013

Saccade Latency Total 0.033 51.14 ± 12.20 55.75 ± 10.84 0.022

Saccade Duration† 0.029 42.41 ± 17.58 35.11 ± 14.18 0.011

Coordinate X Mean† 0.023 1.78 ± 88.28 -13.09 ± 90.57 0.198

Change detection task Saccade Degree SD 0.057 24.67 ± 4.76 27.47 ± 6.61 0.008

Total Elapsed Time† 0.038 5658.91 ± 1333.01 5172.72 ± 1088.88 0.051

Saccade Degree Mean 0.024 34.38 ± 7.12 34.06 ± 7.25 0.805

Saccade Time Max† 0.025 12.36 ± 5.08 13.27 ± 5.03 0.219

Stroop task Saccade Degree Mean† 0.052 33.67 ± 6.43 30.54 ± 6.35 0.003

Screen
Duration Mean†

0.037
0.42 ± 0.32 0.33 ± 0.34 0.019

Saccade Latency Total† 0.043 2.66 ± 0.75 2.33 ± 0.65 0.012
F
rontiers in Psychiatry
 08
Features are sorted by importance rank in the recursive feature elimination process.
Feature importance was calculated by an averaged importance from the classification analysis using an optimal model that includes all 33 eye-tracking features.
ADHD, Attention-Deficit/Hyperactivity Disorder; TDC, Typically Developing Children.
†Mann-Whitney U test was applied because of violations of the normality assumption.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1337595
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Yoo et al. 10.3389/fpsyt.2024.1337595
Time Max) during the AST in the ADHD group compared to the

TDC group. In addition, ADHD children showed a larger change in

the Y-axis coordinate as well as an increase in saccade degree total

and saccade degree mean compared to controls. This result

indicates that the ADHD group had difficulty inhibiting the
Frontiers in Psychiatry 09
saccade responses, as evidenced by their failure to interrupt the

provocative saccade of visual stimuli.

The MGST (36, 37) and the CDT (38, 39) were both designed to

reveal deficits in visuospatial working memory among participants

with ADHD. In individuals with ADHD, the decreased accuracy,
A B

DC

FIGURE 3

Receiver Operating Characteristic (ROC) curves for the models of ADHD by Ensemble stage. (A) An ROC curve for eye-tracking-features-only model
in a large sample (135 subjects). (B) An ROC curve for Stage 1: Eye-tracking features only (73 subjects). (C) ROC curves for Stage 2: Behavioral task
features (Features from the Visual and Auditory ATA, the Stroop task, and both ATAs and Stroop task). (D) An ROC curve for Stage 3: Ensemble of
eye-tracking features, behavioral task feature (Features from the Stroop, and the visual ATA), demographics (age, gender, IQ), and clinical
characteristics (CBCL, DBDRS, CDI, BDI, SCARED and FACES-IV).
TABLE 4 Classification performance of the ensemble model of the multi-dimensional feature.

Model Accuracy Recall Precision F1-score AUC
Comparison with

Stage 1
(p-value)

Stage 1

Eye-tracking feature only 0.689 0.961 0.700 0.810 0.662 –

Stage 2

Stroop task 0.730 0.980 0.725 0.833 0.621 0.419

Visual and auditory ATA 0.784 0.961 0.778 0.860 0.717 0.235

Both ATAs and Stroop task 0.770 0.941 0.774 0.850 0.769 0.206

Stage 3

Ensemble of eye-tracking, demographic,
behavioral, clinical features

0.865 0.980 0.847 0.909 0.838 0.208
AUC, Area under the curve; ATA, Advanced test of attention.
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higher level of anticipatory errors, and prolonged latencies in MGS

have been reported (22, 51). Hence, it has been reported that the

ADHD group did not show a significant difference in performance

time compared to controls (38), but were less accurate in the CDT. This

may occur due to impairments in response inhibition, and/or deficits in

visuospatial working memory (16). In parallel with these findings, we

observed that the ADHD group had a wider range of gaze movements,

relatively shorter fixation times, and more saccadic eye movements

during the MGST. In the CDT, individuals with ADHD showed large

variation in Saccade Degree (Saccade Degree SD) which is consistent

with recent literature (52, 53).

Finally, in the Stroop task, the ADHD group showed a

significant increase in saccade degree and latency compared with

the TDC group. Previous studies have shown that features of

ADHD include more frequent gaze switches between the target

and distractor, a higher overall time spent on the target and

distractor, and a higher number of fixations on the target (41).

Our experiments could not measure the gaze switch itself; however,

repeated saccade movement and hesitation before choosing the

correct answer in the ADHD group may be associated with a greater

saccade degree and saccade latency in need of decision making

whether a stimulus is congruent or not. Although we did not

identify any significant differences in accuracy in the Stroop task,

working memory and response inhibition presumably influenced

the time taken to make a decision in the Stroop interference (40).

The primary strength of this study is that we were able to

distinguish the ADHD and TDC groups using only eye-tracking

features. Compared to conventional screening methods, such as the

ATA or Stroop task, the eye-tracking-features-only model was slightly

less accurate, but performed equally well on recall metrics, and did not

show a significant difference in AUC. The ensemble of eye tracking,

demographic, behavioral, and clinical data showed the best accuracy

among all models, but there was no significant difference in the AUC

compared with the stage 1 model. Another important point is that a

simple smart pad device can be used to obtain eye-tracking data. Smart

pad devices are commonly used in many households, and it is expected

that the use of currently developed eye-tracking algorithms can be

easily applied to reduce the temporal and spatial constraints associated

with screening for ADHD.

Nevertheless, this study has several limitations which should be

considered. Firstly, the sample size was small in the group that

completed the behavioral tasks and provided clinical data. This

limit would lead to trade-off between model complexity and

accuracy and may have caused overfitting problems in the ML

analysis. However, we used a tree-based algorithm to overcome this

overfitting by setting the node depth to reduce overfitting, and

subsequently found that the eye-tracking features alone could

significantly classify ADHD. Second, in terms of sex, there were

significantly more boys than girls in the ADHD group, but not in

the TDC group. In the future, it may be necessary to conduct a sex-

matched study to overcome this effect. Finally, the accuracy of eye-

tracking metrics could have been affected by the children’s head

movements. In this study, we attempted to improve this accuracy by

excluding a large amount of inaccurate data, but we also believe that

higher-quality eye-tracking data can be obtained using a virtual

reality (VR) head-mounted eye-tracking system.
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In conclusion, our optimal model successfully classified ADHD

by combining different eye-tracking features extracted from

behavioral tasks that reflect the core problems of ADHD, such as

difficulty in selective attention, working memory, and response

inhibition. Additionally, the present study is expected to be highly

applicable to ADHD screening as it measures eye-tracking features

using a simple digital device. Future research will need to improve

the measurement methods, such as using a VR headset, and further

elaborate on model accuracy by including more participants and

matching demographic and clinical characteristics.
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