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Introduction: Attentional enhancement has often been identified as the central

cognitive mechanism underlying the benefits of mindfulness meditation.

However, the extent to which this enhancement is observable in the neural

processes underlying long-term meditation is unclear. This current study aimed

to examine differences in attentional performance between meditators and

controls (non-meditators) using a visual oddball task with concurrent

electroencephalography (EEG) recordings.

Methods: Thirty-four participants were recruited, including 16meditators and 18

healthy controls, who were non-meditators. The participants completed a visual

oddball task, using visual stimuli, and EEG recording.

Results: Self-reports revealed that meditators had higher mindful attention

scores than did the control group. The behavioral results showed that the

meditators demonstrated faster reaction times than the non-meditators did.

Neural findings indicated a higher P2 amplitude in the meditators than in the

controls. Themeditators demonstrated a significantly higher P3 in the target trials

than in the distractor trials, which was not observed in the controls. Additionally,

the time-frequency analysis demonstrated that the delta and theta powers in the

meditators were significantly higher than those in the controls.

Conclusions: The study suggests the meditators exhibited greater attentional

performance than the controls did, as revealed by EEG and behavioral measures.

This study extends previous research on the effects of mindfulness meditation on

attention and adds to our understanding of the effects of long-term

mindfulness meditation.
KEYWORDS

mindfulness, meditation, attention, electroencephalography, P2, P3, delta, theta
Abbreviations: EEG, electroencephalography; ERP, event-related potentials; RT, reaction time; MBSR,

mindfulness-based stress reduction; MAAS, mindful attention awareness scale; ANOVA, analysis of variance.
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1 Introduction

Mindfulness meditation is a conscious, non-judgmental method

of paying attention to the present state of affairs, state of

consciousness, or mental process (1) and has been suggested as a

tool to ameliorate various problems, including depression, anxiety,

stress, insomnia, and addiction (1, 2). Attentional control is

generally characterized as a central cognitive mechanism

underlying the benefits of contemporary mindfulness meditation

(3, 4). Although the ultimate aim of mindfulness interventions is

not specifically to train attention, nurturing the skill of controlling

attention is a fundamental aspect of developing and enhancing

mindfulness (4, 5). Even individuals with no prior experience of

meditation can improve their attentional functions with only a few

minutes of mindfulness meditation practice or structured

mindfulness training (6–10).

Long-term meditation can cause changes, including state

changes that are dependent on meditation practice and trait

changes that are independent of it. State change refers to the

altered sensory, cognitive, and self-referential awareness that can

arise during meditation practice, whereas trait change refers to

lasting change in these dimensions that persist in the meditator

irrespective of whether they are actively engaged in meditation or

not (11). Many studies on the effects of meditation have focused on

short-term changes in attentional neural plasticity by examining

changes in the attentional features during or immediately before

and after meditation (12–14). One study demonstrated that the

impact of meditation on the attentional neural activity of

experienced meditators was greater than that of non-meditators

(14). However, it remains unclear whether the neuroplastic effects

of long-term meditation practice can be observed in meditators

during cognitive processing. Recent studies have shown that

experienced mindfulness meditators exhibit superior performance

on attention-related cognitive tasks, such as Go/No-go and global-

to-local tasks, and heightened event-related potentials (ERPs),

compared with non-meditators (15–17). However, one study

found that meditators did not exhibit superior performance on

oddball tasks (18), compared with non-meditators.

P2 and P3 are two attention-related markers observed in

experienced meditators. P2 is primarily associated with early

sensory processing during cognitive processes, particularly

eliminating redundant information, reducing the allocation of

attentional resources, and maintaining information processing

efficiency (19). A study by Lutz, Slagter (20) found that

meditators who practiced retreat meditation for 3 months showed

an increase in P2 when attending to target tones during a dichotic

listening task, whereas low-practice novice groups did not exhibit

the same increase. P3 is commonly used as a cognitive indicator in

healthy and clinical populations (21) and in meditation studies (17,

18, 22, 23). P3 reflects attentional engagement, memory updating,

and information processing mechanisms and is often found in a

variation of the visual or auditory oddball paradigm (24). Studies on

experienced meditators have shown that P3 amplitudes increase in

response to target stimuli (14, 25) and decrease in response to

distracting stimuli (26). Additionally, after an 8-week focused

attention meditation training, a basic meditation practice that
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cultivates attentional control and monitoring skills, participants

exhibited an increase in P3 and a shorter reaction time (RT) during

the three-stimulus oddball task than participants who received an 8-

week relaxation training did (27). Although previous studies have

suggested that P2 and P3 may be neural markers of attentional

resource allocation during meditation and can be altered through

meditation practice (14, 20, 25, 26), Payne, Baell (18) found no

differences in P2 or P3 during an oddball task between meditators

and non-meditators. This lack of difference may be due to the

heterogeneity of meditation practices of the study participants. To

explore this, this study attempted to observe P2 and P3 during non-

meditative states, which can provide insights into the sustainable

benefits of meditation on the attentional processes.

Theta (q) and delta (d) are two electroencephalography (EEG)

oscillatory responses, which are altered by meditation (28, 29).

Frontal midline q activity is linked with concentrated attention

engagement (30). Systematic reviews of EEG studies on meditation

have consistently reported higher frontal midline q activity during

mindfulness meditation, and increases in q activity have been linked
with greater expertise in meditative practices (11, 22). Long-term

meditators (14,240 h of meditation) robustly shifted states with

enhanced q power during meditation (compared with rest), whereas

short-term meditators (1,095 h meditation) and non-meditators

had not significantly changed (compared with rest), suggesting their

restricted ability to shift between states (31). Therefore, some

studies have recognized increasing q power as a primary

characteristic of meditation (29, 32). A recent study analyzing 10-

min resting and 30-min meditative states in long-term meditators

(> 5 years of meditation experience) found that the meditators

shifted from rest to meditation with a gradual decrease in d-band
energy and a gradual increase in high-frequency band energy (28).

Therefore, the decrease in low-frequency bands may also be one of

the signs of entering a meditative state, implying that meditation

may be a state of alertness (28). A distinguishing feature of many

mindfulness-based interventions is integrating mindfulness into

daily life. For example, mindfulness-based stress reduction

(MBSR) emphasizes informal exercises that help practitioners

incorporate mindfulness into their daily routines. This raises a

fascinating research question: Can the meditative state be

maintained during cognitive tasks outside of formal meditation

practice, resulting in higher q power and lower d power and

ultimately leading to superior cognitive performance in

meditators compared with non-meditators?

Summarily, this study aimed to investigate whether idiosyncratic

changes are present in attention-related neurophysiological markers

(For example, P2 and P3) and meditation-related state markers (For

example, q and d) in experienced mindfulness meditators in the

absence of induced mindfulness states. To achieve this, the

participants were required to perform an active visual oddball task,

which is a paradigm for measuring attention-related neural activity

(33). Furthermore, this study measured mindful attention, which is a

central component of mindfulness meditation related to attention

and awareness (34, 35), which assists individuals in recognizing and

interrupting episodes of mental drift and self-focused thoughts (36,

37). We hypothesized that meditators would exhibit higher levels of

mindful attention, better behavioral responses, and enhanced
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attention-related neural markers, compared with non-meditators.

Specifically, we predicted that, compared with those with no

experience of meditation, meditators would (1) report higher

mindful attention scores; (2) show shorter RT and higher accuracy

rate; (3) present higher power in P2, P3, and q, and lower power in d
when presented with target stimuli.
2 Materials and methods

2.1 Participants

Thirty-four participants were recruited via online advertising,

including 16 meditators (M ± SDage=44.13 ± 7.81; 13 females) and 18

healthy controls, which were non-meditators (M ± SDage =40.61 ±

8.54; 12 females) (Table 1). The mediators were practitioners or

advanced students of MBSR, which is one of the most widely

recognized structured mindfulness-based interventions. Participants

enrolled in the meditator group met the following inclusion criteria:

(1) age of 18–65 years; (2) previous participation in an 8-week MBSR

program; (3) at least 1 year of meditation experience; and (4) having

practiced meditation for a minimum of 3 h per week over the last 3

months. This criterion is similar to considering an experienced

meditator, as in previous studies (18, 20). Exclusion criteria

included (1) a lifetime history of psychotic disorder, intellectual

disability, organic medical disorders, bipolar disorder,

posttraumatic stress disorder, or obsessive-compulsive disorder;

(2) current alcohol or substance abuse or dependence;

(3) significant suicidal ideation or behaviors; and (4) main
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practicing types of meditation different from those in the MBSR.

The participants had a mean of 3.38 years of mindfulness meditation

experience (1–9 years). Participants in the control group were

included only if they had no experience with any form of

meditation and had similar demographic information to the

meditators. The participants were compensated with money

(approximately 14 dollars) for their participation. All procedures

performed in this study followed the ethical standards of the

Declaration of Helsinki and were approved by the Institutional

Review Board (IRB) of Southwest University of China (IRB

code: H23115).
2.2 Products and materials

The participants completed the task in a quiet room designed

for EEG experiments. After providing informed consent,

participants completed demographic information collection and

self-report measurements of mindful attention. They then

completed a behavioral task and EEG recordings.

Mindful Attention. The study used the Chinese version of the

mindful attention awareness scale (MAAS) (38), which was

originally developed by Brown and Ryan (35). The 15-item

questionnaire was scored on a 6-point scale from 1 (almost

always) to 6 (almost never), with higher scores indicating higher

levels of mindful attention. The MAAS showed good reliability in

this study (a = 0.92).
2.3 Behavioral task process and analysis

Participants completed a visual oddball task which used target,

distractor, and standard visual stimuli (Figure 1A). They were

instructed to respond to the target stimuli by pressing the “Enter”

key on the keyboard, disregarding the other stimuli. The total task

comprised three blocks with 120 trials per block, and the ratio of the

target (a word “m”), distractor (a word “n”), and standard stimuli (a

word “w”) was 1:1:8. A break was provided between blocks, where

participants could choose whether to take a break or for how long.

The task commenced after the participants understood the process;

there was no practice block. It took approximately 30 min to

complete the entire procedure, including the task. This was

followed by a self-paced inter-trial interval. The experiment was

programmed using E-Prime 2.0 (Psychology Software Tools,

Pittsburgh, PA, United States), and the stimuli were presented on

a Dell monitor (1,024 × 768 pixels), with each stimulus covering a

visual angle of approximately 2.0° horizontal × 1.5° vertical.

Independent-sample t-tests were used to examine the accuracy

rate and RTs. The accuracy rate denoted the ratio of correct responses

(comprising responses indicating the correct recognition of target

stimulus and non-responses to distractors and standard stimuli) to

the total number of experimental trials, multiplied by 100%, whereas

the response time was the average RT of the participants who

correctly responded. All analyses were conducted using SPSS

version 25.0 (IBM Corp., Armonk, NY). P-values were computed

for deviations in all analyses based on the Greenhouse–Geisser
TABLE 1 The descriptive statistics, questionnaires, and behavioral data
of the participants.

Meditators (N) Controls (N) c2

Gender 0.93

Female 13 12

Male 3 6

Education
degree

0.04

Bachelor’s
degree

1 1

Master’s degree 12 14

Doctorate
degree

3 3

Meditators (M
± SD)

Controls (M
± SD)

t

Age(years) 45.25 ± 7.52 40.61 ± 8.54 1.67

MAAS 57.69 ± 7.95 39.56 ± 8.18 6.54***

Reaction
time(ms)

491.90 ± 45.25 569.77 ± 80.52 -3.42**

Accuracy(%) 99.03 ± 0.03 99.84 ± 0.004 -1.24
M ± SD =Mean ± standard deviation. ***p<0.001; **p<0.01.
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method. Post-hoc t-tests were conducted, and the Bonferroni

correction was applied for multiple pairwise comparisons.
2.4 EEG recording and analysis

Sixty-four-channel EEG was recorded while the participants

performed the task (NeuSen. W64, Neuracle, Changzhou, China).

Data were analyzed offline using MATLAB (The Mathworks,

Natick, MA, 2019b) and preprocessed using EEGLAB (Delorme

and Makeig, 2004). Data were epoched from -200 to 800 ms

surrounding the stimulus onset for each trial. Trials containing

electrooculogram artifacts (ocular movements and blinks),

amplifier clipping, bursts of electromyographic activity, or peak-

to-peak deflections exceeding ±80 µV were excluded from averaging

before independent component analysis. This study focused on

group differences in the responses to two types of rare stimuli: target

and distractor. To analyze these differences, target and distractor

data were obtained by subtracting standard stimulus data from the

original ERP data for the targets and distractors. The analysis and

results using the original data for the three stimuli, are is provided in

the Supplementary Material.

Based on the topographic distribution of mean ERP activity, the

mean ERP components and their respective time windows were

identified as follows: P2 (245–365 ms) and P3 (435–585 ms). The

following electrode sites were selected: Fz, FCz, Cz, and Pz.

Furthermore, two (group: meditators and controls) × two

(condition: target and distractor) × four (electrode site: Fz, FCz,

Cz, and Pz) repeated-measure analyses of variance (ANOVAs) was

conducted on the mean amplitudes of P2 and P3.
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d (2–4 Hz, 350–550 ms) and q (4–8 Hz, 350–550 ms) brain

activity was chosen for time-frequency analysis (the details methods

of time-frequency see Supplementary Material). Two (group:

meditators and controls) × two (condition: target and distractor) ×

four (electrode site: Fz, FCz, Cz, and Pz) repeated-measure ANOVAs

were conducted on the values of d and q. All analyses were conducted
via SPSS 25.0. Based on the Greenhouse–Geisser method, p-values

were computed for deviation in all analyses. Simple effect analyses

were performed for multiple pairwise comparisons.
2.5 Power analysis

A power analysis was performed to determine whether the

sample size was adequate. With the sample size for analysis (N =34),

a = 0.05 (two-sided), and a desired power of 80%, the smallest

detectable between-group effect size calculated with G*Power

3.1.9.2 (39) would have been d = 0.32 for this study, which is

compatible with the magnitude of the effects observed in previous

related studies. In the study by Verhaeghen (5), the meta-analytic

effect estimate of the comparison of the attention performance of

long-term meditators and meditation-naive participants was

Hedges’ g = 0.32.
3 Results

3.1 Demographic, self-reported and
behavioral results

Meditators (M=45.25, SD=7.52) and controls (M=40.61,

SD=8.54) did not differ significantly in age, t (1, 32) =1.67,

p=0.104. The chi-square test revealed no significant differences in

gender (c2 = 0.93, p=0.34), and education levels (c2 = 0.04, p=0.98).

There was no significant difference between gender on self-reported

and behavioral variables (see Supplementary Table S1).

The meditators reported significantly higher MAAS scores than

the controls did (meditators: M=57.69, SD = 7.95; controls: M=

39.56, SD= 8.18, t(32) = 6.54, p < 0.001, Cohen’s =2.25). The results

of the regression analyses showed that the longer individuals had

been practicing mindfulness, the higher their MAAS (b=3.26,
p<0.001) were likely to be.

No significant difference was observed between the groups in

terms of accuracy (meditators: M=99.03%, SD = 0.01, controls: M=

99.84%, SD= 0.004, t(1, 32) =-1.24, p = 0.24). A significant difference

was observed in RT, with the meditators responding more quickly,

compared with the controls (meditators: M=491.90, SD = 45.25,

controls: M= 569.77, SD= 80.52, t (1, 32) = -3.42, p = 0.002,

Cohen’s =-1.17; Figure 1B).
3.2 ERP findings

The grand average ERPs for P2 and P3 at Fz and the topography

plots are shown in Figure 2A. The d and q powers at Fz are shown

in Figure 2B.
A

B

FIGURE 1

(A) One trials from the visual oddball task; (B) The results on RT
from the oddball task. **p<0.01.
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3.2.1 P2
The results for P2 showed a significant main effect of group

(F (1,32)=12.11, p=0.001, ƞ2 = 0.921). The mean P2 amplitudes in the

meditator group (M=1.63, SD=0.29) were significantly higher than

those in the control group (M=0.24, SD=0.27). The results also showed

an interaction between the group and electrode site (F(1,32)=4.277,

p=0.047, h2 = 0.518). The simple effect analysis showed that the P2

of meditators was significantly higher than that of the controls at

Fz (F [1, 32]=10.75, p=0.003, h2 = 0.89), FCz (F [1, 32]=12.89, p=0.001,

h2 = 0.94), and Cz (F [1, 32]=14.70, p<0.001, h2 = 0.96).

3.2.2 P3
No significant group difference was observed in the results for

P3 amplitudes (F(1,32)=1.05, p=0.31, ƞ2 = 0.17); however, the

follow-up simple effects analysis between group and condition

found that the meditators had higher P3 amplitudes (M=4.54,

SD=1.14) under target trials than under the distractor trials

(M=2.48, SD=1.07; F (1,32)=14.24, p<0.001, ƞ2 = 0.96), which

was not observed in the controls.

3.2.3 d
The results on d showed a significant main effect of group

(F (1, 32)=6.86, p=0.013, h2 = 0.72), and the meditators (M=0.33,
Frontiers in Psychiatry 05
SD=0.06) had a significantly higher d power than the controls did

(M=0.10, SD=0.06). The results also showed an interaction between

the group and electrode site (F(1, 32)=8.33, p=0.007, h2 = 0.80). The

simple effect analysis showed that d power of the meditators was

significantly higher than that of the controls at Fz (F [1, 32]=8.10,

p=0.008, h2 = 0.79), FCz (F [1, 32]=7.71, p=0.009, h2 = 0.77), and Cz

(F [1, 32]=5.60, p=0.024, h2 = 0.63). Additionally, an interaction

between group and condition showed that the meditators had

higher d power (M=0.46, SD=0.10) under target trials than under

the distractor trials (M=0.14, SD=0.10; F(1, 32)=8.54, p=0.006,

ƞ2 = 0.81), which was not observed in the controls.
3.2.4 q
The results on q showed a main effect of group (F(1, 32)=7.46,

p=0.01, h2 = 0.75), and the q power of the meditators (M=0.31,

SD=0.07) was significantly higher than that of the controls (M=0.04,

SD=0.07). The results also showed an interaction between the group

and electrode site (F (1, 32)=8.44, p=0.007, h2 = 0.80). The simple

effect analysis showed that the q power of the meditators was

significantly higher than that of the controls at Fz (F [1, 32]=9.08,

p=0.005, h2 = 0.83), FCz (F [1, 32]=9.48, p=0.004, h2 = 0.85), and Cz

(F [1, 32]=6.67, p=0.015, h2 = 0.71). Additionally, an interaction

between group and condition showed that the meditators had a
A

B

FIGURE 2

(A) Stimuli-locked, grand average waveforms of P2 and P3 at site Fz; (B) The delta and theta power at site Fz. MT, meditators’ response in target
trials; MD, meditators’ response in distractor trials; CT, controls’ response in target trials; CD, controls’ response in distractor trials.
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higher q power (M=0.40, SD=0.10) under target trials than under

distractor trials (M=0.05, SD=0.09; F (1, 32)=5.91, p=0.02,

h2 = 0.66), which was not observed in the controls.

The results of other analyses unrelated to the group are

presented in Supplementary Table S3.
4 Discussion

This study used a visual oddball task, which is considered a

measure of neural activity related to attention (33), to examine

differences between meditators and non-meditators. The examined

differences included mindful attention (as measured by the MAAS),

behavioral indices (RT and accuracy) in a cognitive task, attention-

related ERPs (P2 and P3), and neurophysiological indices related to

the meditative state (d and q), all of which were assessed in the

absence of induced mindfulness. Meditators reported higher levels

of mindful attention, and showed faster RTs and higher P2

amplitudes, d and q power than controls did. The meditators

showed significantly higher P3 amplitudes in target trials than in

distractor trials, whereas the controls did not.

The current results confirmed previous findings by

demonstrating that meditators have better cognitive performance

than non-meditators do. Specifically, meditators had faster RTs,

compared with non-meditators. Research has shown that

meditation can improve sustained attention (7, 9). Additionally,

meditation affects selective attention allocation by enabling efficient

allocation of attentional resources, expanding attention, speeding

up the recognition of target stimuli, and improving attentional

switching (12, 15, 40, 41). These results suggest that meditation may

be a valuable tool for improving cognitive function.

This study showed larger P2 amplitudes in meditators than in

controls in all conditions. Depending on the stimuli and tasks

presented, P2 amplitudes are related to the filter mechanisms

involved in attention allocation (42). Generally, it is modulated by

attention and associated with the initiation of an executive process

when identifying unusual stimuli (20, 42). The P2 is an indicator of

attentional engagement during cognitive processing (43). In our

study, meditators showed higher P2 amplitudes and shorter RTs,

suggesting more efficient attentional functioning during stimulus

perception, although the task accuracy rate was approximately the

same for both groups (potentially due to a ceiling effect).

The P3 results indicate that the meditators showed a stronger

neural response to the target stimulus than the distractor stimulus,

whereas the controls showed no such difference. Regarding working

memory, the P3 signal may arise from the initial need to increase

target attention during stimulus detection (24); therefore, if P2 is

related to an individual’s ability to detect stimuli, P3 is more related

to stimulus recognition. Meditation was associated with higher P3

amplitudes in most tasks requiring attention to task-relevant stimuli

(14). Meditators show stronger neural responses to target stimuli,

suggesting more efficient attentional functioning, enabling better

detection of targets and distractors.
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Consistent with previous related research, the sequential

appearance of P2 and P3 reflects the meditators’ ability to quickly

identify and discard distracting stimuli. This finding may be related

to the fact that the practice of meditation fosters background

awareness (44), which is the capacity of individuals to maintain

their attention to contextual information while their primary focus

is on a given object. Individuals with higher background awareness

are more likely to perceive a sense of conflict between the goal and

context during task performance. The higher the sense of conflict,

the more likely it is for introspection to occur and make it easier to

discriminate between stimuli, resulting in mind-wandering

reduction (7). Due to their greater depth of processing,

meditators may be able to selectively attend to either local or

holistic information based on the requirements of the task than

non-meditators, who may have more limited attentional control

(15). Specifically, in this study, during the simpler oddball task,

experienced meditators, even when attending efficiently to rare

stimuli (higher P2 amplitude for both target and distractor

stimuli), were able to detect conflicts with the target and

distractor stimuli (higher P3 amplitude for the target stimuli).

Furthermore, this study’s results differ from those of Payne, Baell

(18). The meditators in this study, who were MBSR course

practitioners or advanced students, were uniform in their type of

meditation practice, particularly in their core attitudes, thus

reducing heterogeneity within the meditation group. This

reminds us of the need to explore the unique neurophysiological

mechanisms associated with different types of meditation.

The d wave is widely regarded as a characteristic of slow-wave

sleep and is typically associated with a state of deep relaxation (45).

Previous studies have shown that meditators have higher d activity

in a non-meditative resting state than controls do (28, 46, 47). d
activity has been linked with cognitive processes, predominantly

attentional processes (48). For example, Ishii, Canuet (49)

concluded that frontocentral-parietal d synchronization is

functionally involved in auditory attention by recording magnetic

responses during an auditory oddball task in 12 healthy

participants. Therefore, higher d power may indicate lower

cognitive effort and better cognitive function in cognitive tasks. q
activity plays a vital role in the physiological mechanisms

underlying cognitive control (50). Increased q activity is

associated with better cognitive control (30). Previous research

has shown that higher d- and q-band activity is associated with

response inhibition processes in attentional tasks, as evidenced by

higher inhibitory responses to distractor stimuli (51). Collectively,

the higher d and q powers indicate that meditators were potentially

in a relaxed yet cognitively robust state whilst undertaking the task.

The results on d activity were inconsistent with the hypothesis,

reflecting higher d power. This may be because the hypothesis was

based on the results of previous studies related to meditators in the

meditative state and not engaged in performing cognitive tasks.

Most mindfulness meditation needs practitioners to control

attention or direct it to non-explicit objects (4), which requires

more attentional resources, leading to lower d power in the
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meditative state compared with the resting state (28). The accuracy

results for meditators (M=99.03%) indicated that the difficulty of

the task used in this study may be lower than that of meditation.

This study had some limitations. First, no significant difference

was observed between the two groups regarding task accuracy in the

experiment. Some participants demonstrated exceptional

performance, which may indicate a ceiling effect due to the

oversimplified task. Further research could investigate the

differences in attentional performance between meditators and

controls with limited or abundant attentional resources by

varying the level of difficulty of the experiment. Second, this

study only assessed mindfulness and attention in one dimension.

Future research may consider other characteristics (such as

describing, non-reactivity, and non-judgement) or measure

mindfulness as a multidimensional construct (52), particularly

given criticisms of the MAAS (53). Third, the results of power

analysis suggested that the present study had the power to detect

effect sizes by comparing with the previous study (5). However, the

limitation of sample size in this current study was still noted, and it

is necessary to explore the effect of long-term mindfulness

meditation in a large meditator sample in future study. Finally,

this study focused on temporal information suggested by high

temporal resolution EEG data and did not address spatial

information regarding brain activity. Future studies should

investigate the temporal and spatial neural metrics in the oddball

task by collecting both EEG and functional magnetic resonance

imaging data.

Summarily, compared with meditation-naïve individuals,

experienced mindfulness meditators exhibited higher levels of

mindful attention and elevated neurophysiological activity in

attention-related markers (P2 and P3) and state-related markers

(q and d) during a non-meditative state. This study extends

previous research on the effects of mindfulness meditation on

attention and adds to our understanding of the effects of long-

term mindfulness meditation.
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