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A theory of the neural
mechanisms underlying
negative cognitive bias in
major depression
Yuyue Jiang*

University of California, Santa Barbara, Santa Barbara, CA, United States
The widely acknowledged cognitive theory of depression, developed by Aaron

Beck, focused on biased information processing that emphasizes the negative

aspects of affective and conceptual information. Current attempts to discover

the neurological mechanism underlying such cognitive and affective bias have

successfully identified various brain regions associated with severally biased

functions such as emotion, attention, rumination, and inhibition control.

However, the neurobiological mechanisms of how individuals in depression

develop this selective processing toward negative is still under question. This

paper introduces a neurological framework centered around the frontal-limbic

circuit, specifically analyzing and synthesizing the activity and functional

connectivity within the amygdala, hippocampus, and medial prefrontal cortex.

Firstly, a possible explanation of how the positive feedback loop contributes to

the persistent hyperactivity of the amygdala in depression at an automatic level is

established. Building upon this, two hypotheses are presented: hypothesis 1

revolves around the bidirectional amygdalohippocampal projection facilitating

the amplification of negative emotions and memories while concurrently

contributing to the impediment of the retrieval of opposing information in the

hippocampus attractor network. Hypothesis 2 highlights the involvement of the

ventromedial prefrontal cortex in the establishment of a negative cognitive

framework through the generalization of conceptual and emotional

information in conjunction with the amygdala and hippocampus. The primary

objective of this study is to improve and complement existing pathological

models of depression, pushing the frontiers of current understanding in

neuroscience of affective disorders, and eventually contributing to successful

recovery from the debilitating affective disorders.
KEYWORDS

major depressive disorder, cognitive bias, limbic system and emotion, frontal-limbic
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1 Introduction

Globally, more than 280 million people of all ages suffer from

depression (1). The economic burden of major depressive disorder

(MDD) among US adults mounted to $US326 billion in 2018 (year

2020 values); the share attributable to workplace costs increased

from 48 to 61% (2). Therefore, addressing depression is an urgent

matter that requires collective efforts from both society and the

government. Although the etiology of depression has received

extensive attention and scientific input in recent years, its

pathogenesis remains unclear. This is mainly due to the

complicated nature of the etiology of depression involving

mechanisms of various aspects such as environmental, genetic,

cognitive, and neurological influences (3).

The cognitive theory of depression, first postulated by Aaron

Beck, posits that the vulnerability to depression stems from

negatively biased errors in thinking (4), which may include an

individual’s thoughts, inferences, attitudes, and interpretations, and

the way in which they attend to and recall information. (5). At the

same time, several common depressogenic thinking errors are

presented (6, 7), among which most involve a pattern of

emphasis on the negativity focusing on the self, the environment,

or the future. Some errors included are catastrophizing (making

pessimistic predictions about the future without substantial

evidence), labeling (self-classification in a negative light following

an adverse event), mental filtering (concentration on negative

information while dismissing positive information), and

overgeneralization (assuming that one negative event signifies a

trend of more unfortunate occurrences) (8). These cognitive errors

tend to affect automatic thoughts and biases in attention,

interpretation, and memory (9), and their diminishing

consequences on the information processing system are widely

observed in patients with depression.

In fact, there’s growing evidence that Depression is

characterized by an emphasis on negative information in

information processing (5) and implicated in its etiology and

treatment (10, 11). Clinically, Cognitive biases in depression have

been studied in the context of abnormalities in attention,

interpretation, and memory processes, especially for negative

information, as well as cognitive control impairments (12).

Studies involving individuals experiencing various stages of

depression, including dysphoric states, clinical depression, and

those in remission from depression, have consistently

demonstrated a distinct inclination toward directing attention to

negative information. This bias is notably more pronounced when

compared to nondepressed samples (13). Furthermore, clinical

observations have provided empirical support for the idea that

individuals with depression, as well as those with a history of

depressive episodes, face difficulties in effectively ignoring and

disengaging from emotionally negative stimuli that are evidently

unrelated to the task at hand (14). These findings support the

pervasive impact of cognitive biases on individuals with depression.

The role of memory bias in depression has also been documented.

Depression is closely linked to explicit memory biases, where

individuals experiencing depression tend to exhibit a propensity

to recall more over-general and negative memories while recalling
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fewer specific and positive memories when compared to

nondepressed individuals (15, 16).

Numerous neuroscience studies have provided substantial

evidence of brain damage and neuroplastic changes in depression,

shedding light on their potential contributions to observed

cognitive errors. Dysfunctions in neural circuits involving the

prefrontal cortex, thalamus, temporal cortex, striatum, and limbic

system have been implicated in the symptomatology of depression

(17, 18). Disner and his colleagues, as well as Beck himself, have

provided a comprehensive review of the cognitive deficits and their

corresponding brain regions in depression. The cognitive bias,

including Biased attention, Biased processing of emotional

stimuli, Biased thoughts and rumination, and Biased memory

processes, has been found to involve the brain areas of

ventrolateral prefrontal cortex (VLPFC), dorsolateral prefrontal

cortex (DLPFC), the amygdala, the hippocampus, medial

prefrontal cortex (MPFC), the rostral anterior cingulate cortex

(ACC) activity (19). One noteworthy finding is the volumetric

reduction observed in the hippocampus among patients with

depression (20). Additionally, Ghosal et al. (21) have pinpointed

GABAergic deficits and circuit dysfunction in the prefrontal cortex

as characteristic of this mood disorder. Moreover, an imbalance in

activity within specific regions of the prefrontal cortex has been

observed, characterized by hyperactivity in the ventromedial

prefrontal cortex (vmPFC) and hypoactivity in the dorsolateral

prefrontal cortex (dlPFC) (22). These altered neurocircuits have the

potential to influence the information processing of individuals

with depression, leading to heightened negative recollection,

quicker responses to sad language, and a more pessimistic

interpretation of ambiguous phrases or situations (23).

Nevertheless, while researchers have successfully described

neural mechanisms and their association with depression, they

fall short of elucidating why these mechanisms specifically

contribute to a bias favoring negative processing (19). Despite the

extensive body of research on the neuromechanics of depression,

brain damage, and the cognitive symptoms and deficits in

depression, particularly concerning information processing

patterns related to negative cognition, there is a dearth of studies

that comprehensively bridge these two levels and propose how

neuro mechanisms contribute to cognitive deficits. This absence of

comprehensive integration leaves a gap in understanding how these

mechanisms ultimately lead to information processing patterns that

prioritize negative perceptions.

In response to this gap, this paper introduces a neural model

that underlying the cognitive bias favoring negative information in

depression, predominantly involves interactions within

corticolimbic systems (see Figure 1). The interaction of the

amygdala, hippocampus, and PFC is studied in terms of their

activity level and functional connectivity. We propose that the

excessive activity of the amygdala, potentially driven by

associative learning from negative stimuli, results in an automatic

cognitive bias toward negative information and impairs the capacity

to experience positive emotions. Simultaneously, the hippocampus

reinforces the recollection of mood-congruent memories and

hinders the extraction of positive memories through emotional

activation generated in the amygdala. While the amygdala initiates
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the stress response through the hypothalamic-pituitary-adrenal

(HPA) axis, it further complicates this relationship, adversely

affecting the pyramidal neurons in the hippocampus, as chronic

stress alters its structure and exacerbates depressive symptoms. The

ventromedial prefrontal cortex (vmPFC) assesses the emotional

stimulus through stimuli-response learning thus potentially

resulting in an exaggeration of negative emotions. Conversely,

when the vmPFC interacts with the hippocampus in inference-

based memory retrieval, it encourages the creation of an extensive

memory framework centered on negativity. This recall and

reinterpret could affect the emotional valance of stored memories,

emphasizing their negative emotional aspects. This can lead

individuals to develop a cognitive bias favoring a negative

perspective of the external world. Over time, this process may

lead to exaggerated negative thoughts and biases in their perception

of the environment and subjective experiences, ultimately

culminating in a pervasive negative cognitive bias.
2 Positive feedback regulation of
amygdalar activation allows excessive
negative emotional responses

Research has shown that individuals’ bias to interpret

ambiguous stimuli negatively tends to operate at an automatic

level (see comments by 9 and 24). The amygdala is thought to be

involved in and primarily responsible for emotional processing,

especially those caused by and associated with fear and threat (25).

Data from studies examining the human amygdala indicate that a

substantial proportion of its neurons exhibit heightened responses

to unpleasant stimuli, in contrast to a relatively limited response to
Frontiers in Psychiatry 03
pleasant stimuli (26). This suggests that the amygdala plays a pivotal

role in shaping the facets of negative emotion.

The basolateral amygdaloid complex (BLA), a subsection of the

amygdala, has been found to receive input from various sensory

modes in sensory processing areas of the cortex (27–29). Various

sensory inputs, encompassing visual, auditory, and tactile

information originating from external stimuli or internal thoughts

and memories, are integrated within the amygdala (30).

Subsequently, this information is directed toward the central

nucleus of the amygdala (CEA), enabling the amygdala to swiftly

and automatically assess how to respond, often preceding conscious

awareness. Based on this automatic assessment, the amygdala

activates different pathways for emotional responses (31). The

CEA has been described to serve as the amygdala’s interface with

fear-response systems (32). Hyperactivity in the amygdala is a

major pathological factor in depression (33, 34), which may

contribute to the emotional processing that comprises the

cognitive bias favoring negative information. It also plays a role

in the overactivation of fear and anxiety-related circuits, impairing

the ability of other cortex regions to inhibit the fear responses

induced by the amygdala (35). Considering this as a positive

feedback loop: a hyperactive amygdala tends to exert greater

inhibition on the inhibitory functions of other brain regions,

particularly the cortex and hippocampus. This reciprocal loss of

inhibition contributes to heightened amygdalar activation. The

amygdala persists in an excited state, lacking an effective

mechanism for termination. Consequently, individuals with

depression may find it challenging to experience positive

emotions or inhibit negative emotional responses when due to

these neural dynamics.

Heightened amygdala activity in individuals with depression may

lead to increased associative learning in response to negative stimuli

that would strengthen the association between these stimuli and

negative emotions (36). Many hypotheses suggest that this associative

learning in the amygdala is facilitated through the mechanism of

Long-Term Potentiation (LTP) (37–39). Within the amygdala, this

potentiation primarily occurs at synapses responsible for transmitting

information related to threatening stimuli. Through LTP, the

amygdala establishes a robust link between sensory cues associated

with a threat and the ensuing emotional and physiological responses,

such as fear and stress. Furthermore, drawing from Pavlov’s

principles of learning, it is worth noting that LTP can be induced

in initially “weak” synaptic pathways if the activity in these pathways

is paired with activity in a pre-existing “strong” pathway (32). In

terms of cognitive bias, this suggests that when individuals encounter

unfamiliar stimuli that elicit negative emotions, the associative

learning-induced plasticity may trigger the strengthening of

previously enhanced pathways, promoting learned association with

negative emotions in the new stimuli. This process can consequently

result in generalized negative emotions in response to ambiguous

stimuli. The prolonged hyperactivity of the amygdala in depression is

sustained due to the absence of external inhibition from other brain

regions, coupled with internal long-term potentiation (LTP)

promotion. The hyperactivity of the amygdala forms a robust basis

for the subsequent hypotheses in this paper.
FIGURE 1

An overview of cognitive dysfunction in depression and its
corresponding brain regions. The abnormal functional connectivity
of the amygdala, hippocampus, and ventral medial prefrontal cortex
(vmPFC) illustrates the mutual influence between emotions,
memory, and higher-level generalization, contributing to a negative
processing system in depression and a significant driver of negative
cognitive bias. Additionally, the integration of vmPFC and dorsal
medial prefrontal cortex (dmPFC) extends this information,
introducing biases not only toward the external world but also
toward oneself. This biased thinking intensifies the reception of
negative information, establishing a closed loop.
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3 Hypothesis 1: bidirectional
amygdalohippocampal projection
activate negative emotion-
memory Loop

In brain imaging of patients with depression, both the amygdala

(40–43) hyperactivity and hippocampal dysfunction (44–46) was

discovered and confirmed by a large number of studies. The

anatomical structure of the hippocampus comprises three main

components, including the Dentate Gyrus, the subdivision CA1-

CA4, And the striatum which is responsible for the output of

hippocampal information (47). In processing information, the

hippocampus draws mainly from the entorhinal cortex, mossy

fibers originating from the dentate gyrus (DG) provide sparse and

powerful excitatory connections to CA3 PCs (48). These

connections are proposed to assist in the encoding of new

patterns of activity (representing new memories) in CA3 through

pattern separation (49). The CA3 region of the hippocampus has

been ascribed a pivotal role both in forming associations during

encoding and in reconstructing a memory representation based on

partial cues during retrieval (50). This is thought to require plastic

changes in the strength of specific synaptic contacts (51).

The negative emotion from the amygdala can extend its

influence through interaction with various regions of the brain.

This extensive connectivity of the amygdala to other brain regions

impacts many cognitive functions (52). Notably, the activation of

the amygdala, particularly the basolateral amygdala (BLA), has been

shown to exert a modulating effect on plasticity in the hippocampus

(53), especially involving the consolidation of memories of

emotionally arousing experiences (54, 55). On the neuronal level,

BLA achieves this by the establishment of monosynaptic and

glutamatergic circuits to the ventral CA1 in the hippocampus

(56). Research has found that such projections, given high

contingency, would be able to Trigger heterosynaptic LTP at

Hippocampus-To-Accumbens Synapses, which allows increased

reinforcement of emotionally charged episodic memory (57). In

addition, the stimulation of the basolateral amygdala (BLA) has

been observed to induce long-term potentiation (LTP) in the

dentate gyrus (DG) (58), which can lead to memory enhancement

due to emotional enhancement (59). In depressed individuals,

however, as discussed earlier regarding the excessive activity of

the amygdala in depression and its emphasis on negative

information, it can be predicted that the amygdala will be able to

send contingent negative emotion-related projections into the

hippocampus. This LTP induced by such projections in the

hippocampus may be a factor in the biased memory for negative

stimuli observed in depression.

On the other hand, impaired activity in the DG/CA3, as well as

in the lateral CA1, was found to be associated with depressive

symptoms, even at a subclinical level (60). In the context of

depression, the connection between the amygdala and the

paraventricular hypothalamus, whether through direct or indirect

pathways, triggers the release of adrenocorticotropic hormone

(ACTH) from the pituitary gland (61). ACTH subsequently

circulates to the adrenal glands situated atop the kidneys,
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prompting the adrenal cortex to release glucocorticoids (CORT).

CORT’s impact on the hippocampus is multifaceted. In mildly

stressful situations, low or moderate levels of circulating CORT

enhance explicit memory formation by acting on the hippocampus,

a phenomenon referred to as the hippocampal negative feedback

loop (62). However, elevated levels of circulating CORT, typically

associated with chronic stress, can disrupt the physiological

functioning of the hippocampus, resulting in the dysregulation of

its glucocorticoid system (63). This surge in glucocorticoids can

harm the glucocorticoid receptors (GR) within the hippocampus

and have downstream effects on NMDA receptors (64), ultimately

leading to the dysregulation of the hypothalamic-pituitary-adrenal

(HPA) axis (65). This dysregulation is often associated with early-

stage reversible dendritic remodeling in pyramidal granule neurons

within the CA1 and CA3 regions, along with parallel reversible

changes in synaptic terminal structures. Simultaneously, the loss of

pyramidal neuronal dendrites in both the CA3 and CA1 regions has

been observed in patients with major depressive disorder

(MDD) (63).

The hippocampus region CA1-CA4 has been described to have

to property of an attractor network (66). This “attraction” of

network activity to a stored pattern provides a useful form of

associative memory (67). This property is mainly due to The

extensive excitatory interconnections between CA3 pyramidal

cells, in which associative memories are stored and recalled

through pattern completion (68, 69). pyramidal dendrites enable

the occurrence of distinct activity patterns (multistability) that have

been associated with different items stored in memory (70) Any of

these patterns can be activated by a partial input since the recurrent

connections amplify and thereby complete the initial activation

pattern (71). Due to the crucial role pyramidal cells play in

establishing and maintaining connections within the hippocampal

attractor network, their loss is likely to disrupt the hippocampus’s

ability to simultaneously activate distinct patterns of activity within

the attractor network. This disruption could then result in a

reduction in the associativity and comprehensiveness of

memories, leading to memory fragmentation and difficulties in

fully retrieving and integrating memories. Furthermore, the

impairment of the brain’s capacity to recognize patterns and

associations can hinder the ability to relate different pieces of

information and experiences, ultimately diminishing cognitive

flexibility. In essence, this disruption in the hippocampal network

can result in difficulties in memory processing, memory integration,

and cognitive adaptability.

Yet it’s crucial to recognize that the reduction in pyramidal cells

may not follow a linear pattern. In a 21-day induced depression

experiment on an animal model, dynamic alterations in CA1-3

pyramidal cells were observed. Specifically, on day 14 (metaphase),

certain depression-like behaviors manifested, concomitant with the

inhibition of basal synaptic transmission and an enhancement of

Long-Term Potentiation (LTP) at CA3-CA1 synapses. However,

when assessed on day 21, a different pattern emerged. LTP

induction was impaired, and the basal synaptic transmission at

hippocampal CA3-CA1 synapses was diminished. This was

accompanied by a reduction in dendritic spines among CA1 and

CA3 pyramidal neurons. Furthermore, there was a simultaneous
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decrease in the levels of brain-derived neurotrophic factor (BDNF)

within the hippocampus (72).

Based on these findings, it is plausible to suggest that during the

early stages of depression, the hippocampus undergoes an initial

phase of heightened connectivity among pyramidal cells (see

Figure 2B). In this phase, memories associated with negative

emotions become consistently activated in the hippocampus,

primarily driven by the substantial influx of negative emotional

input from the amygdala, which strengthens the neural connections

between sensory information related to threats and the ensuing

emotional and physiological responses. Consequently, the

hippocampus adapts to this heightened arousal of negative

emotions by establishing additional synaptic connections, thus

providing an explanation for the observed enhancement of Long-

Term Potentiation (LTP) at CA3-CA1 synapses. During this early

stage, the hippocampus appears to be in the process of learning to

adapt to the dominance of negative emotions in memory activation.

It achieves this adaptation by increasing the synaptic weight

associated with negative memory arousal through LTP

mechanisms. On the cognitive level, this aligns with the concept

of mood-congruent memory, wherein memories with a negative

emotional charge are more frequently recalled in a negative

emotional context (73). This heightened recall of negative

memories can lead to the long-term reinforcement of negative

emotion-related memories and, therefore, contribute to the initial

development of a cognitive bias schema in depression (74).

Simultaneously, the continuous stimulation of the amygdala

causes ongoing damage to the hippocampus during its

hyperactivity phase by overactivating the HPA axis (75). This

persistent stimulation ultimately results in a decline in pyramidal

neurons due to a deficiency in neurotrophic factors over the long

term (76). As we previously discussed, the decline in pyramidal

neurons not only leads to difficulties in forming new memories but

also severely impairs hippocampal connectivity, significantly

compromising overall hippocampal function (see Figure 2C).

Due to the increased synaptic weight of previous negative

memory arousal, coupled with the difficulty in establishing new

synaptic connections due to the decline of pyramidal neurons, the

increasing arousal of negative emotions in the hippocampus, as well

as the difficulty in non-negative emotion arousal. Through the

direct projection, the amygdala will induce LTP primarily

associated with negative emotional content. Such effect from the

amygdala may prevent the possibility of other positive/neutral

memories entering the negative emotion-memory cycle, whereas a

person may have difficulty forming positive memories and related

memory cues due to difficulty retrieving memories associated with

positive emotions (77). This in turn creates a closed loop of storage

and retrieval for repressing positive emotions. These two effects,

combined, may cause individuals to fall into negative emotion-

memory cycles more frequently. Negative emotions reinforce

negative emotional memories while suppressing memories and

experiences of positive emotions. This leads to more negative

emotions, creating a vicious cycle.

Reversely, Projections from the hippocampal formation to the

amygdala have been shown to have a potential influence on

contextual learning in amygdala. (78, 79). Ventral CA1 (vCA1)
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representations through monosynaptic projections to the

amygdala. The contextual information is then integrated with

aversive signals in the amygdala for fear memory formation.

Strengthening of the hippocampal–amygdala pathway as a

consequence of learning can facilitate the activation of the

amygdala, resulting in conditioned fear responses to the threat-

predictive context during the recall of contextual fear memory6 he

projection from the ventral hippocampus to the prefrontal cortex

and then to the amygdaloid basal nuclei has been found to be active

during fear renewal. Simultaneously, the disconnection of the

ventral hippocampus from the basal nuclei impairs fear memory

renewal (78).

In our hypothesis, the hippocampus, by providing various

contextual cues to the amygdala (through activation of different

sensory cortices), can activate the reexperience or replay of events

(80). Considering the enhanced processing of negative information

mentioned earlier, the hippocampus can provide the amygdala with

numerous cues related to negative memories. Due to this

interaction, the amygdala provides affective stimuli to the

hippocampus to assist in the encoding and retrieval of negatively

charged memories. During retrieval, the hippocampus activates

synapses established in the past, once again stimulating the

amygdala to respond to negative emotions. This response may

potentially activate the HPA axis, damaging the dendritic network

of the hippocampus and making the retrieval of other neutral or

positively charged memories more challenging. In this way, the

cyclic interaction between the hippocampus and the amygdala

continuously rehearses and enhances the same negative

information, memories, and emotions, making it difficult for

individuals to escape this cognitive trap of negativity (see Figure 2

for a summary).
4 Hypothesis 2: vmPFC generalizes
information from amygdala and
hippocampus in higher-level
negativity cognitive processing

While the automatic level of information processing plays a

crucial role in depression, it’s important to recognize that cortical

control of these automatic processing systems can also exert a

significant influence (81, 82). This cortical management serves to

monitor and adjust the output of heuristic processing, including the

default mode (83, 84).

In the context of depression, a common symptom involves a

deficiency in cortical control over the limbic system, particularly in

emotional regulation. Such deficiencies may stem from the

omission or improper weighting of pertinent information and the

interference of irrelevant information, leading to decision-making

errors or biases (85, 86), and are primarily served by the prefrontal

cortex (87).

Hyperactivity of the ventromedial prefrontal cortex (vmPFC)

has been consistently observed in patients with depression (22, 88–

90). The precise function of the vmPFC has been the subject of
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ongoing debate, with two main hypotheses currently accepted. The

first hypothesis suggests that the vmPFC plays a role in emotion

regulation by inhibiting the activity of the amygdala (91, 92). The

second hypothesis proposes that the vmPFC is involved in

generalizing emotional responses and guiding decision-making

processes (93). Interestingly, there is evidence supporting both

seemingly conflicting hypotheses. In this paper, we favor the

second hypothesis for several compelling reasons. First and

foremost, a significant body of fMRI studies has consistently

reported hyperactivity in both the ventromedial prefrontal cortex

(vmPFC) and the amygdala among patients with depression. If the

vmPFC were primarily responsible for inhibiting amygdala

function, these concurrent hyperactivities would present a

paradoxical scenario. Second, the existing evidence supporting the

inhibitory role of the vmPFC on amygdala activity predominantly

stems from studies involving healthy individuals (94, 95). Notably,

no studies have successfully demonstrated this inhibitory effect of

the vmPFC on amygdala activity in patients with depression. This

suggests the possibility that in the brains of individuals with

depression, the vmPFC may lack the capacity for effective

inhibition. Taken together, these reasons lead us to favor the

hypothesis that the vmPFC’s primary function in depression lies

in the generalization of emotional responses and the guidance of

decision-making processes, rather than in inhibitory control over

the amygdala.

Considerable data from various studies point to the

ventromedial prefrontal cortex (vmPFC) playing a role in

encoding information related to reinforcement outcomes (96–98).

Functional imaging data further reveal that resting activity in the

vmPFC is correlated with the subjective experience of negative affect

(99). This implies that the vmPFC may have a significant role in

generating emotional responses. One possible explanation for the
Frontiers in Psychiatry 06
vmPFC’s involvement in generating emotional responses lies in its

dense connections to the basolateral and central nuclei of the

amygdala, as well as to visceromotor structures such as the

hypothalamus and periaqueductal gray (100, 101). Additionally,

studies have shown that damage to the vmPFC reduces the expected

strengthening activity of the basolateral amygdala, providing

further support for this hypothesis (102).

VmPFC plays a pivotal role in guiding higher-order

reinforcement learning by integrating and interpreting emotional

information, which subsequently informs decision-making

processes (98, 103, 104). vmPFC appears to receive reinforcement

expectation information in stimulus–reinforcement-based learning

and thus may be responsible for encoding reinforcement outcome

information (96, 98, 105). Indeed, some studies even suggest that

the vmPFC serves as a representation of value information. In a

state-based model, the vmPFC is postulated to be involved in the

initial encoding and establishment of an abstract-state space,

essentially serving as a benchmark for value judgment. Standard

reinforcement learning (RL) mechanisms are then employed to

learn and adapt the values associated with these abstract states

within the model (106, 107). Consequently, the vmPFC is likely to

contribute to the enhanced and biased representation of the world

following the integration of emotional information from the

hyperactive amygdala. This heightened amygdala activation can

lead to biased cognitive judgments of the individual regarding the

external environment, leveraging extensive associative learning of

negative emotions and enhancement processes in the amygdala.

Meanwhile, the role of the ventromedial prefrontal cortex

(vmPFC) in memory generalization should not be overlooked. In

the context of episodic memory, it has been demonstrated that

generalized memory representations can arise from the integration

of information across multiple events, a process mediated by
B

C

A

FIGURE 2

(A) The overall bidirectional interaction of Amygdala and Hippocampus. The hyperactivity of the amygdala prevents suppression in itself from the
cortex and hippocampus. Through projections, the amygdala induces long-term potentiation (LTP) in the hippocampus’s Dentate gyrus (DG), CA1,
and CA3. Concurrently, it adversely affects the hippocampus, particularly pyramidal neurons, by excessively activating the hypothalamic-pituitary-
adrenal (HPA) axis. The DG utilizes a pattern association code to encode memories, transmitting this code to CA3, thereby facilitating memory
consolidation. Ultimately, the hippocampus provides contextual cues to the amygdala, fostering contextual learning and exacerbating the amygdala’s
hyperactivity. (B) The hippocampus attractor network in the early stage of depression. Due to the hyperactive amygdala enhancing the LTP in both
DG and CA1/3 regions, the pyramidal neurons would increase in arborization and form more connections. According to the mood-congruent
memory theory, the synapse that’s enhanced/formed would be closely related to negatively charged emotions that are pervasive in the amygdala.
(C) The hippocampus attractor network in the long-term depression. The pyramidal neurons dendrites under the impairing effects from hyper-
activated amygdala projections. Such loss of dendrites would lead to the dysfunction of memory retrieval, especially the hardship of memories
involving happy or positively charged emotions since unlike the negatively-charged memories, they aren’t enhanced in the first place. (Created with
BioRender.com).
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interactions between the vmPFC and the hippocampus (108). This

process of memory generalization holds significance as it may

underpin the formation of certain cognitive judgments.

Importantly, the interplay between the hippocampus and vmPFC

may have significant implications for the valence of the stored

memory, particularly in the context of concept learning and

generalization. This role of the vmPFC aligns with findings from

studies on episodic memory, demonstrating that the vmPFC supports

the integration of current experiences with prior knowledge (109,

110). This promotes the retention of pattern-consistent information

(111) and facilitates new relational inferences across overlapping

events (109, 112). Therefore, the way the memory is retrieved may

bias the nature of concept representations formed during learning

and accessed during generalization (108).

Consequently, an individual with hyperactive ventromedial

prefrontal cortex (vmPFC), amygdala, and hippocampus may

perceive the external environment as fearful, dangerous, and

unwelcoming. This perception arises through a sequence of

processes. First, the amygdala is more prone to stimulation,

responding with heightened negative arousal. Subsequently, the

vmPFC integrates and further assesses this emotional response,

potentially leading to an overgeneralization of the negative emotional

reaction. On one hand, the hippocampus is more inclined to process

memories associated with negative emotions, primarily due to the

amygdala’s influence. On the other hand, it is likely that when the

vmPFC interacts with the hippocampus, it fosters the creation of

generalized memory representations predominantly centered around

negative emotions. Consequently, individuals may develop a cognitive

bias that leans toward the external world being characterized by

negativity. Through this retrieval and processing of memory,

individuals may redefine the emotional valence of their memories,

accentuating their negative emotion-related attributes. Over time, this

can lead to exaggerated negative thoughts and biased perception of the

environment and subjective experience fostering a pervasive negative

cognitive bias, leading individuals to perceive the external environment

as fearful and terrifying.

Simultaneously, the interplay between the hippocampus,

vmPFC, and dmPFC likely contributes to the development of

negative self-orientation in individuals with depression, a concept

introduced by Beck in 1976. Both the vmPFC and dmPFC are

interconnected brain regions known to play roles in self-awareness

and self-reflection (113). Previous lesion studies have associated

damage to the vmPFC with a loss of self-insight (114). Furthermore,

such damage has been linked to a marked reduction in certain types

of negative affect, particularly emotions like shame, guilt,

embarrassment, and regret (115). Notably, these emotions all

involve an element of self-awareness or self-reflection.

The dmPFC is active during tasks that require individuals to

contemplate themselves, their characteristics, and their preferences

(116, 117). This self-referential processing is fundamental for

fostering self-awareness and self-reflection. While the vmPFC

contributes to the emotional awareness of self, the dmPFC

processes self-relevant information (118). The collaboration

between these regions aids individuals in making sense of their

emotional reactions within the context of their beliefs, values, and

past experiences.
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In individuals with depression, there is evidence of hyperactivity

in both the ventromedial prefrontal cortex (vmPFC) and

dorsomedial prefrontal cortex (dmPFC) (119). This heightened

activity contributes to the engagement of self-related information-

processing mechanisms. Building upon the earlier analysis of the

model, it can be anticipated that the self-related information

processed in this state will predominantly manifest as negative.

The emergence and activation of this negative self-evaluation have a

profound impact on the individual’s self-perception. For instance,

in Beck’s cognitive model of depression, a negative self-view

constitutes a significant component of cognitive impairment in

depression. It consistently influences the patient’s negative

perspective not only of themselves but also of the external

environment and their future. (see Figure 3 for a summary).
5 Discussion

This paper offers a plausible account for why individuals with

Major Depressive Disorder (MDD) often display a tendency to

respond to and interpret ambiguous stimuli negatively, which is

coined as cognitive bias toward negative (see Figure 3 for an

overview). Two key hypotheses are presented aimed at explaining

the role of various brain structures in shaping cognitive biases

toward negative information and emotions in depression. Our first

proposal emphasizes the significant role of the amygdala in emotion

regulation and highlights how associative learning from negative

stimuli in the amygdala can lead to an automatic cognitive bias
FIGURE 3

Hypothesis 2 and Theory Overview. Expanding on hypothesis 1
regarding the amygdala and hippocampus interaction, the ventral
medial prefrontal cortex (vmPFC) plays a crucial role in generalizing
emotional and memory/knowledge information into a broader
context. The vmPFC achieves this by evaluating the world through a
potential reinforcement learning mechanism. It engages in emotion
and concept generalization, constructing a cognitive framework or
schema focused on negativity due to its amplification of negative
emotions and memories. Additionally, it performs higher-order
learning of amygdala information, enhancing amygdala sensitivity.
Finally, the information from vmPFC and dorsal medial PFC
(dmPFC), which responds to self-referential information and
schema, is integrated, expanding the negative cognitive framework
into the realm of self-concept.
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favoring negative information. We have put forth a hypothesis

suggesting that the hippocampal attractor network exhibits a bias

toward memories associated with negative emotions, influenced by

the dual impact of amygdala activation. To further substantiate this

hypothesis, it is imperative to gather neuroanatomical evidence that

elucidates the functional connectivity between the amygdala and the

hippocampus. Additionally, research should focus on

understanding the potential shrinkage of pyramidal dendrites in

this context, as it may be linked to a diminished capability for

parallel processing and the concurrent activation of distinct

memories. These investigations would provide essential insights

into the mechanisms underpinning cognitive biases toward negative

information and emotions. The second hypothesis posits that the

ventromedial prefrontal cortex (vmPFC) shapes an extensive

cognitive framework with a negative bias through concept

generalization, primarily in interaction with the amygdala

and hippocampus.

Numerous depression models that focus on specific brain

regions have been proposed (for summary, see Table 1). The

Amygdala Hyperactivity Hypothesis suggests that amygdala

overactivity in depression may lead to mood dysfunction and

heightened sensit iv ity to negative st imuli (120–123).

Simultaneously, the Prefrontal Cortex Dysfunction Hypothesis
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highlights that prefrontal cortex dysfunction in depression can

result in challenges regulating negative emotions, perceiving

reward and punishment, cognitive control, and decision-making

in general (128–130). The Hippocampal Volume Reduction

Hypothesis, supported by extensive research, posits that reduced

hippocampal volume observed in depression could impact accurate

memory recall (124–127). More recent theories, such as the Default

Mode Network Dysregulation Hypothesis, emphasize the DMN’s

association with self-referential thinking and mind-wandering (131,

132). Despite successful attempts to comprehensively explain

cognitive biases in depression, a more global and functionally

oriented approach to elucidate the selective formation of

negativity bias remains elusive (see 19). This paper critically

integrates the content of the aforementioned theoretical models,

identifying dysfunctions in the amygdala, hippocampus, and PFC,

and providing an in-depth explanation of their bidirectional

relationship with negative cognitive bias. More importantly, it

seeks to connect how unbalanced or dysfunctional functional

links between various brain regions manifest in the formation of

depressive negativity bias in thinking or behavioral patterns. By

combining multi-layered analyses from structure to function to

behavior, the paper aims to explain the development of negative

cognitive schemas in depression.
TABLE 1 Summary of current hypotheses and theories of depression.

Hypothesis Key Points Brain Regions Depression
Explained

Supporting
Studies

Limitations

Amygdala
Hyperactivity
Hypothesis

Larger right medial subnuclei volumes in
MDD, increased right volume ratios.
Amygdala linked to emotional states,
stress, and HPA axis activation

Amygdala Mood dysfunction,
heightened sensitivity to
negative stimuli

120–123 Consider solely single
brain region cannot
account for comlex
and multifaceted
symptoms
in depression

Hippocampus
Hypothesis

Reduced hippocampal volume in
depression, complex relationship with
various factors

Hippocampus,
entorhinal cortex

Impaired memory
retrieval and
memory inhibition

124–127 Consider solely single
brain region cannot
account for comlex
and multifaceted
symptoms
in depression

Prefrontal
Cortex
Dysfunction
Hypothesis

Dysfunction in prefrontal cortex in
depression, affecting emotion regulation,
decision-making;Deficits in inhibition
affecting emotion regulation, hindering
recovery from negative affect

ventral medial prefrontal
cortex, dorsalateral
prefrontal cortex,
ventralateral
prefrontal cortex

Difficulties in regulating
negative emotions,
perceiving reward and
punishment, cognitive
control, decision-making

128–130 explain only the
cognitve aspecrs of
depression symptoms;
cannot account for
affective aspects

Default Mode
Network
Dysregulation
Hypothesis

Dysregulation in the Default Mode
Network, associated with self-
referential thinking

DMN(medial prefrontal
cortex, posterior cingulate
cortex, and the inferior
parietal lobule)

Association with self-
referential thinking,
mind-wandering

131, 132 No global explanation
for negativity
bias formation

Emotional
Material
Processing
Bias Hypothesis

Biased processing of emotional material,
difficulties disengaging from
negative material

Limbic system, Dorsolateral
prefrontal cortex,
Ventromedial prefrontal
cortex, Anterior cingulate
cortex, Medial
frontal cortex

Biased processing of
emotional material,
difficulties disengaging
from negative material

19 Few studies on
emotion-regulation
strategies in depression

Current theory
(this paper)

Bidirectional relationships between
amygdala, hippocampus, and PFC
contribute to cognitive bias.

Amygdala, hippocampus,
ventromedial PFC (vmPFC)

Cognitive bias toward
negative information
and emotions

N/A Assumes
interconnected role of
multiple regions, may
require
empirical validation.
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Notably, the two hypotheses proposed can stand alone since

they are functionally independent. Hypothesis one posits

bidirectional projections between the hippocampus and amygdala,

which operate independently of any involvement of the vmPFC.

Hypothesis two proposes that the vmPFC retrieves information

from both the hippocampus and amygdala to facilitate emotional

and conceptual generalization. Although the validation of

hypothesis one may enhance this process by providing consistent

emotional and memory input, facilitating the vmPFC’making value

judgments and evaluating the external environment, it is not

necessary for hypothesis 2 to be true. Even if the projections

between the amygdala and hippocampus do not specifically

reinforce or synchronize negative emotions and memory, the

vmPFC can stil l generalize emotional responses from

the amygdala and extract memory representations from the

hippocampus for conceptual generalization. These processes are

distinct from the proposed functional/neurological connections

between the hippocampus and amygdala in hypothesis 1. To

validate the proposed hypotheses, further studies should explore

the relationship between the vmPFC and the amygdala to ascertain

whether generalization of learning and emotions occurs.

Additionally, it is crucial to investigate whether the roles of the

vmPFC and the hippocampus in concept generalization directly

impact the cognitive processes of individuals with depression,

potentially resulting in distinct definitions of negativity compared

to individuals without this condition. These studies would

significantly contribute to our understanding of how brain

structures interact to create cognitive biases in depression. On the

other hand, if our assumptions are not empirically validated or are

even proven false, it opens up a new perspective on cognitive biases

in depression. As this paper primarily explores the connections

between the cortisol-limbic system, counterevidence might

demonstrate that cognitive functional issues in depression do not

lie in these more foundational emotional and emotion control

cortices. Instead, they may involve higher-order cortical

processing beyond our current understanding.

The limitation of this model lies in its exclusive focus on certain

brain areas and the omission of other regions responsible for

information processing and control, such as the Anterior Cingulate

Cortex (ACC), Nucleus Accumbens, Middle Temporal Gyrus, and

others (19, 130). While there is no direct evidence suggesting their

involvement in negativity bias, future research should explore and

investigate the potential direct or indirect contributions of these brain

regions to the processing of negativity bias. This exploration would

contribute to a more comprehensive understanding of the neural

mechanisms underlying negativity bias. Furthermore, it’s crucial to

acknowledge that no universally accepted explanation for depression

currently exists (133). This paper takes an approach to analyze

neuropathology related to depression within the context of cognitive

theory, but it may not offer a comprehensive account of the full

psychopathology of depression. Since physiological differences vary

among depressed patients, the proposed model may not be applicable

to all individuals suffering from depression. It’s important to recognize

the diversity of depressive experiences and consider multiple

perspectives in the ongoing study of depression. The intricate

interplays between neurobiological and cognitive factors provide a
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framework for understanding depression symptoms and cognitive

biases, shedding light on the significant interactions among the

amygdala, the hippocampus, vmPFC, and depression. Future

research should focus on examining the exact nature of cognitive

bias in depression and its relation to other cognitive processes. Studies

should examine whether this cognitive bias involving the dysregulation

of brain areas in the frontal-limbic system is primarily related to the

maintenance of depressive episodes or increased risk for first onset and

recurrence of episodes. One possible explanation for the episodic/

recurrent nature of depression, given the content of this theory, is the

increased vulnerability of depression coupled with the onset of an acute

stress-predicting event. In the mid to late stages of depression, the

attractor network may become impaired due to the sparsity of

dendrites in pyramidal neurons, laying the groundwork for

depression recurrence. Simultaneously, because the ventral medial

prefrontal cortex (vmPFC) continuously adjusts its judgments of the

world and values based on the hippocampus and amygdala (while the

dorsal medial prefrontal cortex (dmPFC) adjusts cognitive perceptions

of oneself), unless intervened, an individual’s perception of external and

internal stimuli tends to become more negative. Therefore, each

depressive episode increases the risk of later depression. This

explains the Kindling effect in depression (134). Finally, investigating

the neural and genetic factors related to cognitive dysfunction in

depression can provide a more comprehensive understanding of

the disorder.
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