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Introduction: We examined changes in large-scale functional connectivity and

temporal dynamics and their underlying mechanisms in schizophrenia (ScZ)

through measurements of resting-state functional magnetic resonance

imaging (rs-fMRI) data and computational modelling.

Methods: The rs-fMRI measurements from patients with chronic ScZ (n=38) and

matched healthy controls (n=43), were obtained through the public

schizConnect repository. Computational models were constructed based on

diffusion-weighted MRI scans and fit to the experimental rs-fMRI data.

Results: We found decreased large-scale functional connectivity across sensory

and association areas and for all functional subnetworks for the ScZ group.

Additionally global synchrony was reduced in patients while metastability was

unaltered. Perturbations of the computational model revealed that decreased

global coupling and increased background noise levels both explained the

experimentally found deficits better than local changes to the GABAergic or

glutamatergic system.

Discussion: The current study suggests that large-scale alterations in ScZ are

more likely the result of global rather than local network changes.
KEYWORDS

schizophrenia, resting-state fMRI, computational model, large-scale networks,

functional connectivity, temporal dynamics
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1 Introduction

ScZ is a severe mental disorder with a high burden of disease

[Lopez and Murray (1); Charlson et al. (2)]. However, the

underlying mechanisms remain elusive. While no single brain

area accounting for the heterogeneous symptom profiles has been

identified, the notion that ScZ can be understood in terms of a

general dysconnectivity has emerged [Friston et al. (3); Friston (4),

Bullmore et al. (5); Pettersson-Yeo et al. (6)].

Experimental evidence for the dysconnection hypothesis comes

from neuroimaging studies. Analyses of resting-state fMRI

connectivity have shown widespread changes of functional

connectivity. However, there is still a debate whether correlations

of neural activity between regions are decreased [Liang et al. (7);

Bluhm et al. (8)] or increased in ScZ [Zhou et al. (9)]. There is also

growing evidence for possible longitudinal changes of functional

connectivity over the course of the disorder. Anticevic et al. (10)

demonstrated that prefrontal cortical connectivity is increased in

early-course ScZ while the opposite pattern was observed in chronic

ScZ patients. Going beyond pairwise correlations between brain

regions, graph theoretic measurements have identified reductions in

integration, hierarchy, clustering, efficiency and small-worldness

[Bassett et al. (11); Liu et al. (12); Bullmore and Sporns (13); Lynall

et al. (14)].

Yet, the origin of functional dysconnectivity patterns in ScZ is

still unclear. One hypothesis is that cellular and synaptic changes

associated with ScZ disrupt local processing and thus impact on

large-scale connectivity. Indeed changes at the microcircuit level

have been identified in ScZ. Excitatory and inhibitory

neurotransmission is disturbed, for example a reduced excitatory

drive onto GABAergic inhibitory neurons [Chung et al. (15, 16) and

a decreased inhibitory output (Hashimoto et al. (17); Morris et al.

(18); Moyer et al. (19)]. Changes to the glutamatergic system, such

as increased recurrent excitation, have been suggested to lead to

deficits in large-scale connectivity with a gradient along the cortical

hierarchy [Yang et al. (20)].

Computational models of large-scale brain circuits can be used

to investigate dynamical circuit mechanisms linking local ScZ-

associated alterations to global changes in the functional

organisation of the brain. Leveraging such computational models,

studies have shown that decreases in global inter-regional

connectivity strengths can lead to wide-spread functional

disruptions [Cabral et al. (21)], increased global signal variance

[Yang et al. (22)] and altered topological characteristics of

functional brain networks (Cabral et al. (23, 24) resembling ScZ.

However, except for Yang et al. (22), these studies only investigated

a global scaling of the inter-regional connectivity. Yang et al. (22)

manipulated local and global neuronal coupling and demonstrated

that both could increase signal variance as seen in ScZ but did not

explore their potentially differential effects on large-scale functional

connectivity. Thus, so far the effect of ScZ-associated local changes

to glutamatergic and GABAergic neurotransmission and the effect

of increased background noise on large-scale functional

connectivity has not been explored.

To address this question, we quantified functional connectivity

differences in a data set of healthy controls and chronic ScZ
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patients. We then implemented local microcircuit and global

network parameter changes in a computational model of large-

scale cortical dynamics and compare the resulting connectivity

changes to the experimental data. Furthermore, we also explored

the temporal dynamics of the resting-state brain and characterised

potential deficits in large-scale synchrony and metastability in ScZ

patients and compared them to the different computational models,

thus identifying mechanistic links underlying these changes.
2 Materials and methods

2.1 Patient Sample

The study sample was collected through the Center for

Biomedical Research Excellence (COBRE) led by Dr. Vince

Calhoun (more information here: http://fcon1000.projects.nitrc.org/

indi/retro/cobre.html) and obtained from the SchizConnect database

(http://schizconnect.org). This sample has previously been used by

our group to explore structural deficits in patients with ScZ

[Dimulescu et al. (25)]. From the sample of 43 patients and 43

healthy control participants, we excluded 5 patients due to missing

resting-state functional MRI (rs-fMRI) data or artefacts/excessive

motion identified during the pre-processing. We thus analyzed a final

sample of 43 healthy control subjects and 38 patients with

schizophrenia, which we will refer to as the COBRE sample. All

patients were receiving antipsychotic medication (see Table 1).

Symptom severity in patients was assessed using the Positive and

Negative Syndrome Scale (PANSS) [Kay et al. (26)]. Written

informed consent was obtained from all participants, and the study

was reviewed and approved by the Institutional Review Board of the

University of New Mexico.
TABLE 1 Demographics and clinical characteristics.

HC ScZ Statistics,
p value

Group size 43 38 –

Age (y) 36.70
(11.04)

38.97(13.67) t=0.82, p=0.41

Gender 11F/32M 10F/28M c2 = 0.02, p=0.88

PANSS positive – 14.92(5.04) –

PANSS negative – 14.81(5.31) –

PANSS general – 29.49(8.37) –

PANSS total – 59.22(78) –

CPZ-
equivalent dosage

– 396.26
(330.91)

–

Illness duration (y) – 17.19(12.61) –
Data are shown as mean(standard deviation).
Age differences between groups were compared using an independent samples t-test and
differences in gender distribution using a chi-square test. Antipsychotic medication is reported
as chlorpromazine (CPZ)-equivalent dosage.
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2.2 Anatomical data

Data collection for the COBRE sample was performed using a

Siemens Magnetom Trio 3T MR scanner. Structural images (high

resolution T1-weighted) were acquired using a five-echo MPRAGE

sequence with the following parameters: repetition time (TR) =

2530ms; echo time (TE) = 1.64, 3.5, 5.36, 7.22, 9.08ms; inversion

time (TI) = 1200ms; flip angle (FA) = 7°; field of view (FOV) =

256mm × 256mm; matrix = 256 × 256; slice thickness = 1mm; 192

sagittal slices. Diffusion tensor imaging (DTI) data were acquired

using a single-shot EPI sequence with TR/TE = 9000/84ms; FA =

90°; FOV =256mm × 256mm; matrix = 128 × 128; slice thickness =

2mm without gap; 72 axial slices; 30 non-collinear diffusion

gradients (b = 800s/mm2) and 5 non-diffusion-weighted images

(b = 0s/mm2) equally interspersed between the 30 gradient

directions. For more information see also Cetin et al. (27).

For model validation we additionally used a subset of 156

healthy participants from the human connectome project (HCP),

which we will refer to as the HCP sample. The diffusion-weighted

data were collected with multiband diffusion sequence (HCP

version available at http://www.cmrr.umn.edu/multiband). Three

different gradient tables are used, each with 90 diffusion weighting

directions and six b = 0 acquisitions. More information can be

found at https://www.humanconnectome.org/study/hcp-young-

adult/document/1200-subjects-data-release.
2.3 Resting-state functional MRI data

COBRE data was acquired using single-shot full k-space echo-

planar imaging (EPI) with ramp sampling correction using the

intercomissural line (AC-PC) as a reference (TR: 2 s, TE: 29 ms,

matrix size: 64x64, 32 slices, voxel size: 3x3x4 mm3). The resting-

state scans were acquired in the axial plane with with an ascending

slice order (multi slice method; interleaved). For more information

see Aine et al. (28). For the COBRE data set, we preprocessed the

rsfMRI data using the FSL FEAT toolbox [Woolrich et al. (29)]. For

each data set, we discarded the first five volumes. We analyzed the

relative mean framewise displacement as the root mean square

(RMS) of the translation parameters. We found an average RMS of

0.15(± 0.09) for the control group and an RMS of 0.20 (± 0.10) for

the patient group (t=2.0884, p=0.04). These results are in line with

previous studies indicating that ScZ patients have higher framewise

motion displacement than healthy controls [Guo et al. (30)]. We

thus corrected head motion using the FSL McFLIRT algorithm and

subsequently high-pass filtered the data with a filter cutoff of 100 s.

We linearly registered each functional image to the corresponding

anatomical image of that subject using FLIRT. We then used the

mean volume of the data to create a brain mask using BET. Using

the ICA FIX FSL toolbox [Griffanti et al. (31); Salimi-Khorshidi

et al. (32)], we conducted MELODIC ICA and removed artefactual

components (motion, non-neuronal physiological artefacts, scanner

artefacts, and other nuisance sources). Finally, we transformed the
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high-resolution mask volumes from MNI to individual subject

functional space and extracted the average BOLD time courses for

each cortical region in the AAL2 parcellation scheme using the

fslmeants command from Fslutils.

Acquisition details for the functional MRI data from the HCP

S1200 release can be found here: https://www.humanconnectome.org/

study/hcp-young-adult/document/1200-subjects-data-release. For the

HCP data set, we used the data preprocessed according to Glasser

et al. (33) and extracted the average BOLD time courses for each

cortical region as described above.
2.4 Measures of connectivity and
temporal dynamics

We used the average global brain connectivity (GBC) measure

(Cole et al. (34, 35) to assess the changes in connectivity strength. To

assess alterations in temporal dynamics we used synchrony and

metastability [Deco et al. (36)]. Because of the computational

model being restricted to cortical areas, we also restricted our

connectivity analysis to cortical areas. However, including

subcortical regions did not substantially change the findings (see

Supplementary Material).

Specifically, we define the functional connectivity matrix (FC)

as the matrix of Pearson correlations of the BOLD signal between

two brain areas over the whole time range of acquisition. From the

FC matrices we calculate the global brain connectivity (GBC) of a

single brain region i as follows (see also Cole et al. (34, 35):

GBC(i) =
1
n
(o

j
FC(i, j)),

where n is the number of regions. The average global GBC can

then be defined as the average GBC over all cortical regions i. To

calculate the average GBC for a functional subnetwork or generally

a set of regions, one simply averages over the regional GBC values

for the respective regions.

To assess the temporal dynamics of the functional networks, we

used the Kuramoto order parameter as a measure of synchrony and

its standard deviation as a measure of metastability, i.e. the variability

of the states of phase configurations over time [see for example Deco

et al. (36)]. Here the Kuramoto order parameter R(t) is defined as:

R(t) =
1
n
jo
n

k=1

eifk(t)j,

where again n is the number of regions and fk(t) is the

instantaneous phase of the BOLD signal in region k. It measures

the global level of synchronization of the BOLD signals from all

regions, where a low level close to 0 reflects an almost uniform

distribution of the signal phases, and a high value close to 1 reflects

near equality of the signal phases. To calculate R, we band-pass

filtered the signal in the narrowband 0.04-0.07Hz [see Deco et al.

(36)] and then extracted the instantaneous phases of the signals at

every time step using the Hilbert transform.
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2.5 Computational network model

We use a whole-brain network model, where the connectivity,

connection strength and delay between network nodes (i.e. brain

regions) is derived from brain imaging data (Figure 2). As a model

of single-node activity dynamics we employ a mean-field

description of a spiking neural network of an excitatory and an

inhibitory neural population, where the individual neurons are

described by the adaptive exponential integrate-and-fire model

[AdEx model; Brette and Gerstner (37)], developed in our group

[Augustin et al. (38); Cakan and Obermayer (39)]. The following

section describes the model in detail.

2.5.1 Single-Node model
A mean-field neural mass model based on a spiking network of

coupled excitatory and inhibitory populations, the so-called ALN

model [Augustin et al. (38)], was implemented. The mean-field

description offers a drastic speed-up of simulations on the order of

about 4 orders of magnitude compared to the spiking model while

still retaining its dynamical states and its biophysical parameters.

The model has been extensively validated against simulations with

the detailed spiking network and overall shows very good

agreement [Cakan and Obermayer (39)].

The mean-field reduction of the spiking neural network utilises

the Fokker-Planck approach, i.e. the fact that in the limit of an

infinite network size and under the assumption of a sparse, random

connectivity, the distribution p(V) of the membrane potentials and

the mean firing rate ra of a population a, can be described by a

Fokker-Planck equation [Brunel (40)]. However, to calculate the

potential distribution a partial differential equation has to be solved,

which is computationally costly. Therefore, the dynamics of a

population is captured by a low-dimensional linear-nonlinear

cascade model, and can be described by a set of ordinary

differential equations [Fourcaud-Trocmé et al. (41); Ostojic and

Brunel (42)]. The mathematical derivation and the underlying

assumptions have been detailed in [Augustin et al. (38)], and we

will only provide the final set of model equations in this manuscript.

A single network node in the whole-brain model is represented

by the population activity of two interconnected neural populations,

an excitatory population E and an inhibitory population I. The

dynamics of the membrane currents of a population a ∈ {E, I}, are

governed by the following equations:

ta
dma

dt
= msyn

a (t) + mext
a (t) + mou

a (t) − ma(t)

msyn
a = JaE�saE(t) + JaI�saI(t)

s 2
a (t) = o

b∈ E,If g

2J2abs
2
s,ab(t)ts,btm

(1 + rab(t))tm + ts,b
+ s 2

ext,a

In the above equations µa describes the total mean membrane

currents, msyn
a the currents from synaptic activity, mext

a the currents

from any sources of external input, mou
a the external noise input,

tmthe membrane time constant (calculated from the membrane

capacitance C and the leak conductance gL), and ts,b the synaptic
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time constant. Furthermore, s 2
a is the variance of the membrane

currents, and Jab represent the maximum synaptic current when all

synapses from population b to population a are active. The

dynamics of the synapses are described by:

d�sab
dt

= t−1s,b ((1 −�sab(t))rab(t) −�sab(t))

ds 2
sab

dt
= t−2s,b (1 −�sab(t))

2rab(t)) + (rab(t) + 2ts,b(rab(t) + 1)s2
sab (t))

where �sab represents the mean of the fraction of all active

synapses, which lies in the range [0,1], with the extreme cases

being no active synapses and no inactive synapses, respectively.

Furthermore, s 2
sab is the variance of sab.

The timescale ta =  FT(µa,  sa) of the input-dependent

adaptation, the average membrane potential �VE =  FE(µE ,  sE),

and the instantaneous population spike rate ra =  Fr(µa,  sa) are

computed every time step by means of precomputed transfer

functions. The mean rab and the variance rab of the effective

input rate from population b to population a can be described by:

rab =
cab
Jab

ts,b Kb · rb(t − dab) + dabE · Kglo
N

j=0
Cij(rb − Dij)

 !

and

rab =
c2ab
J2ab

t2s,b Kb · rb(t − dab) + dabE · Kglo
N

j=0
C2
ij(rb − Dij)

 !

given a certain delay for the spike transmission dab. Here cab
represent the amplitude of the post-synaptic current resulting from

one individual spike (for sab = 0). Furthermore, Kgl scales the global

coupling in the network, and Cij and Dij define the connection

strengths and the connection delays between regions, estimated

from the fibre count and fibre length matrices, respectively. Finally,

dabE = 1 for a = b = E and 0 otherwise restricting coupling between

regions to be exclusively from excitatory to excitatory populations.

The adaptive exponential integrate-and-fire model explicitly

accounts for the evolution of a slow adaptation currents that

represents both subthreshold and spike-triggered adaptation

currents. The subthreshold adaptation current is described by the

adaptation conductance a and the spike-triggered adaptation

current is denoted by b. In the limit of infinite population sizes,

an adiabatic approximation can be employed to describe the mean

adaptation current in terms of the mean population firing rate. The

mean adaptation current �IA can be understood as an inhibitory

membrane current whose dynamics are governed by:

d�IA
dt

= t−1A (a(�VE(t) − EA) − �IA) − brE(t) :

The individual populations a of a single region of the whole-

brain network receive an external input current with a given mean

mext
a and a standard deviation s ext

a (t). This background input

current can be thought to represent baseline input from

extracortical areas in the brain. Additionally, the regions also

receive a noise input current mou
a (t) modelled as an Ornstein-

Uhlenbeck process with a mean of 0 described by
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1352641
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Metzner et al. 10.3389/fpsyt.2024.1352641
dmou
a

dt
= −

mou
a

tou
+ soux(t) :

Here x(t) is a white noise process drawn from a normal

distribution with a mean of 0 and a variance of 1. sou determines

the fluctuation amplitude of the noise around its mean.

To determine the mean external input to the E (µEext) and I (µIext)

populations, the noise strength sou, the subthreshold adaptation

conductance a and spike-triggered adaptation increment b
parameters for the model in the control condition, we used an

evolutionary optimization procedure as described in Cakan et al.

(43). We compared the simulated BOLD FC to the empirical rsfMRI

data.We initialized the algorithmwith a random population ofNinit =

160 individuals and repeated the evolutionary block with Npop = 80

individuals for 100 generations. Initial parameter values were selected

from a uniform distribution across the following intervals for the

model parameters: µEext ∈ [0.0,4.0] mV/ms, µIext ∈ [0.0,4.0] mV/ms,

sou ∈ [0.0,0.3], a ∈ [0.0,40.0] nS, and b ∈ [0.0,40.0] pA. The global

coupling strength was set as in Figure 2 of Cakan et al. (43). All other

model parameters were set as given in Table 1 in Cakan et al. (43) and

they are summarised in Table 2.
2.5.2 BOLD model
In order to compare the model output, i.e. the neural activity of

the regions, to the BOLD signal of the rs-fMRI data, the firing rates

of the excitatory population of each region had to be converted into

model BOLD signal timecourses. Here, we used the well-established

Balloon-Windkessel model [Friston et al. (44); Deco et al. (45)], for

specific parameters see Friston et al. (46).

2.5.3 Network connectivity
Structural images were preprocessed employing a semi-

automatic pipel ine implemented in the FSL toolbox

(www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford). For the anatomical T1-

weighted images we used the brain extraction toolbox (BET) in FSL

to remove non-brain tissue and to generate the brain masks. After

manual quality checks, 80 cortical regions were defined according to

the automatic anatomical labelling (AAL2) atlas [Rolls et al. (47)].

For the diffusion-weighted images, we performed a brain extraction

as well and corrected the images for head motion and eddy current

distortions afterwards. Probabilistic fibre tracking, using the

Bayesian Estimation of Diffusion Parameters Obtained using

Sampling Techniques (BEDPOSTX) and the PROBTRACKX

algorithms implemented in FSL [Behrens et al. (48)], was then

used with 5,000 random seeds per voxel to extract individual

connectomes. Since the tractography does not yield directionality

information and the connectome matrices are non-symmetric, we

explicitly enforced symmetry by averaging the entries from region i

to region j and from region j to region i for all pairs of regions.

Furthermore, we normalised each connectome by dividing each

matrix entry by the maximum matrix entry, thus ensuring

compatibility between participants. The resulting connectome

then determines the relative coupling strength between regions in

the above described computational whole-brain model. The fibre
Frontiers in Psychiatry 05
tracking also yielded matrix fibre lengths for each participant,

which, when multiplied with the signal speed, determines the

delay of signal propagation between any two regions in the model.
2.5.4 Modelling ScZ-associated changes
We implemented four different sets of parameter changes that

are thought to represent the following four ScZ-associated

alterations: 1) local GABAergic inhibition, 2) local glutamatergic
TABLE 2 Network parameters.

Parameter Value Description

µextE

µextI

1.63 mV/ms
0.05 mV/ms

Mean external input to E
Mean external input to I

sou 0.19 Noise strength

tou 5.0 ms Noise time constant

Ke 800 Number of excitatory inputs per neuron

Ki 200 Number of inhibitory inputs per neuron

CEE,CIE 0.3 mV/ms Maximum AMPA PSC amplitude

CEI,CII 0.5 mV/ms Maximum GABA PSC amplitude

JEE 2.4 mV/ms Maximum synaptic current from E to E

JIE 2.6 mV/ms Maximum synaptic current from E to I

JEI -3.3 mV/ms Maximum synaptic current from I to E

JII -1.6 mV/ms Maximum synaptic current from I to I

ts,E 2 ms Excitatory synaptic time constant

ts,I 5 ms Inhibitory synaptic time constant

dE 4 ms Synaptic delay to excitatory neurons

dI 2 ms Synaptic delay to inhibitory neurons

C 200 pF Membrane capacitance

gL 10 nS Leak conductance

tm C/gL Membrane time constant

EL -65 mV Leak reversal potential of the AdEx model

DT 1.5 mV Threshold slope factor of the AdEx model

VT -50 mV Threshold voltage of the AdEx model

Vs -40 mV Spike voltage threshold of the AdEx model

Tnet 1.5 ms Refractory time of the AdEx model

sext 1:5 mV=
ffiffiffiffiffiffi
ms

p
  Standard deviation of external input

EA -80 mV Adaptation reversal potential

a 28.26 nS Subthreshold adaptation conductance

b 24.04 pA Spike-triggered adaptation increment

tA 200 ms Adaptation time constant

Kgl 250.0 Global coupling strength

vgl 20.0 m/s Global signal speed
Overview of the different parameter values for the whole-brain model employed here.
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excitation of inhibitory cells, 3) global interregional coupling, and 4)

global noise levels.

First, we systematically reduced GABAergic inhibition in the

model. Postmortem gene expression studies have robustly

demonstrated reduced levels of parvalbumine (PV) and

somatostatin [SST) expression in PV (Hashimoto et al. (17)] and

SST [Morris et al. (18)] interneurons together with a reduction of

GAD65 and GAD67 [Hashimoto et al. (17)], in cortical regions in

ScZ. We implemented these changes as a reduction of the inhibitory

weights JEI and JII in the ALN model of the regional dynamics. We

varied the strength of the inhibition onto the excitatory population

JEI and onto the inhibitory population JII simultaneously in the

range from 100% to 60% in steps of 5%.

Next, we systematically reduced the glutamatergic, excitatory

drive onto inhibitory neurons in our model of regional activity.

These changes reflected the reduced and more varied colocalization

of glutamatergic pre- and postsynaptic markers on PV interneurons

in dorsolateral prefrontal cortex (DLPFC) (Chung et al. (15, 16).

Specifically, we reduced the excitatory weight onto inhibitory neurons

JIE in the ALN model in a range from 100% to 60% in steps of 5%.

Global dysconnectivity might also be explained by a simple

reduction of the global connectivity strength. Therefore, to test

whether the differences we found experimentally could alternatively

be explained by an overall network decoupling, we reduced the global

coupling strength Kgl in the range from 100% to 60% in steps of 5%.

Finally, the global alterations of functional connectivity might

also be the result of an increase in background noise disrupting

functional connectivity in the network [Winterer et al. (49);

Winterer and Weinberger (50); Winterer et al . (51)].

Consequently, we increased the global background noise sou in a

range from 100% to 140% in steps to 5%, to test whether a global

increase in noise level can account for the connectivity differences

found in the experimental data.

2.5.5 Simulation details
Simulations were implemented using the neurolib Python

framework [Cakan et al. (52)]. The differential equations of the

model were solved numerically using an Euler forward scheme with

a time step of 0.1ms. For all described simulations the duration was

70s and we discarded the transient response in the first 5 s before

calculating any of the above described measures. To assess the

robustness of our results, we created 40 virtual subjects by changing

the seed for the random number generator underlying the Ornstein-

Uhlenbeck noise process. These 40 virtual subjects were then kept

fixed for all implemented changes allowing for a direct comparison

to the default, ‘healthy’ condition.
3 Results

3.1 Demographic and
clinical characteristics

The control and the patient group did not differ significantly in

terms of age and gender (see Table 1). Patients also did not show a
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change in symptomatology or type/dose of antipsychotic

medication during the three months before the assessment [for

more details see Aine et al. (28)].
3.2 Global differences in connectivity
strength and temporal dynamics between
ScZ patients and healthy controls

Global GBC was significantly reduced in patients with ScZ

(effect size g = −0.65; see Figure 1A and Table 3). Comparing both

groups a substantial shift from high GBC towards medium to low

GBC values occurs in ScZ patients (Figure 1B and Table 3).

Synchrony, as measured by the Kuramoto order parameter was

lower in the patient group (effect size g = −0.44; see Figure 1C and

Table 3). However, variability in synchrony, measured by

metastability, did not significantly differ between groups

(Figure 1D and Table 3).

Reductions of functional connectivity strengths affected all

seven subnetworks (effect sizes ranging from g = −0.57 to g =

−0.83; see Table 3), with the dorsal-attention, the somato-motor

and the v i sua l subne tworks showing the s t ronges t

effects (Figure 1F).

We further tested whether the GBC differences we found were

specific to association areas as indicated by a previous study [Yang

et al. (20)]. We grouped the default mode subnetwork, the control

subnetwork and the ventral attention subnetwork together as the

association areas and the somatomotor subnetwork, the visual

subnetwork and the dorsal attention subnetwork as the sensory

areas. We found reduced GBC for ScZ patients in both groupings,

with the sensory areas showing an even stronger effect than the

association areas (effect sizes g = −0.78 for sensory areas versus

g = −0.61 for association areas, see Figure 1E and Table 3).

Since our sample showed a significant difference in head motion

between controls and patients, we investigated whether the changes

in connectivity and dynamics were still present when applying a

very strict threshold for head motion. Specifically, we had 4 control

participants and 5 patients with a framewise displacement > 0.3. We

repeated the analysis of FC and temporal dynamics after removing

these subjects. Details of this analysis can be found in the

Supplementary Table S3. Removal of the participants did not

alter the results significantly with one exception. For the

synchrony measure the mean difference and effect size both

slightly decreased and did not reach statistical significance anymore.
3.3 Mechanisms underlying connectivity
and dynamics alterations

3.3.1 Control model
We derived a model of healthy large-scale cortical activity that

matched the behaviour of the control group data from the COBRE

study well in terms of functional connectivity (Figures 2B, D). The

correlation between simulated FC (simFC) and empirical FC

(empFC) (r = 0.33 ± 0.09; Figure 2E) was higher than the
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correlation between empirical structural (empSC) and empFC (r =

0.19 ± 0.07; Figure 2E).

To further assert that the default model captures the resting-

state functional connectivity of healthy subjects well, we also

validated the model behaviour against a set of 156 subjects from

the HCP S1200 release. Here, we also found a good fit for functional

connectivity (Figures 2C, D).

Overall, the model functional connectivity correlated well with

the empirical functional connectivity of individual HCP subjects

(r = 0.43 ± 0.08; see Figure 2E). This correlation was again

substantially higher than the correlation of structural connectivity

and empirical functional connectivity (r = 0.20 ± 0.08;

see Figure 2E).
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3.3.2 Modelling ScZ-associated alterations
We systematically performed perturbations to four key aspects of

the model that have been associated with schizophrenia: 1) local

GABAergic inhibition, 2) local glutamatergic excitation of inhibitory

cells, 3) global interregional coupling, and 4) global noise levels.

We found that changing the inhibitory weights (model

perturbation 1) did not alter the global GBC and the GBCs for

sensory and association areas significantly. Furthermore, the changes

did not alter the synchrony and the metastability (see Supplementary

Table S3). As for the local changes to the inhibitory system, changes to

the glutamatergic excitatory drive to the inhibitory population (model

perturbation 2) did not result in significant changes in GBC on all levels,

synchrony and metastability (see Supplementary Table S4).
A B

D

E F

C

FIGURE 1

Global differences in functional connectivity and temporal dynamics between healthy controls and ScZ patients. (A) Comparison of average GBC per
participant for the two groups. Individual dots represent average GBC for one participant. The difference plot on the right shows the difference
between the groups in terms of effect size. (B) Histogram of region-wise GBC values for the two groups. The histogram displays the region-wise
GBC data pooled for all participants in each group. (C) Synchrony comparison between the two groups. Each dot represents the mean Kuramoto
order parameter (a measure of synchrony) for one participant. The difference plot on the right shows the group difference in terms of effect size. (D)
Metastability comparison between the two groups. Each dot represents the metastability of one participant. The difference plot on the right shows
the group difference in terms of effect size. (E) Comparison of global brain connectivity for association areas (Asso. comprising: DMN, Cont, Sal/
VAttn) and sensory areas (Sen. comprising: Sommot, Vis, DAttn). (F) Comparison of global brain connectivity for the seven functional networks from
Yeo et al. (53): SomMot, Somato-motor subnetwork; Cont, Control subnetwork; Def, Default mode subnetwork; Sal/VAttn, Salience/Ventral attention
subnetwork; DAttn, Dorsal attention subnetwork; Lim, Limbic subnetwork; Vis, Visual subnetwork.
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A reduction of global coupling (model perturbation 3)

resulted in a strong decrease in global brain connectivity as

well as connectivity within the sensory and association systems

(Table 4). Additionally, synchrony decreased strongly and

metastability increased for larger reductions (Table 4).
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An increase in noise levels (model perturbation 4) yielded a strong

decrease in global brain connectivity as well as connectivity within the

sensory and association systems, even stronger than for the global

coupling changes (Table 5). Additionally, synchrony decreased strongly

and metastability increased for larger noise strengths (Table 5).
A

B D

E

C

FIGURE 2

Computational model (A) Modelling approach combining a model for the regional dynamics with anatomical input that defines the structural
network. (B) Average FC matrix for the COBRE sample (C) Average FC matrix for the HCP sample (D) Model FC matrix (E) comparison of the
correlation of empSC to empFC (blue) and the correlation of simFC and empFC (yellow) for the COBRE (left) and the for the HCP (right) data sets.
TABLE 3 Local and global group differences.

Mean
difference

Hedges’ 95% CI p value

g

Global cortical GBC -0.11 -0.65 [-1.11 -0.18] p=0.0056

Global cortical synchrony -0.12 -0.44 [-0.89 0.04] p=0.0488

Global cortical metastability -0.005 -0.39 [-0.81 0.07] p=0.0850

GBC Sensory areas -0.12 -0.78 [-1.26 -0.29] p=0.0004

GBC Association areas -0.09 -0.61 [-1.07 -0.14] p=0.0076

GBC Somato-motor (SomMot) -0.12 -0.74 [-1.20 -0.26] p=0.0008

GBC Control (Cont) -0.09 -0.57 [-1.03 -0.10] p=0.0110

GBC Default mode (Def) -0.09 -0.57 [-1.03 -0.11] p=0.0110

GBC Salience/Ventral attention (Sal/VAttn) -0.11 -0.69 [-1.14 -0.21] p=0.0024

GBC Dorsal attention (DAttn) -0.12 -0.83 [-1.31 -0.33] p=0.0001

GBC Limbic (Lim) -0.08 -0.59 [-1.02 -0.13] p=0.0102

GBC Visual (Vis) -0.11 -0.77 [-1.26 -0.29] p=0.0010
Overview of the global and local differences in functional connectivity and temporal dynamics between the healthy control and the ScZ patient group.
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4 Discussion

4.1 Global changes in connectivity and
temporal dynamics

Evidence for large-scale dysconnectivity in functional networks

has been accumulated over the last years in ScZ [Liang et al. (7);

Bluhm et al. (8); Bassett et al. (11); Liu et al. (12); Bullmore and

Sporns (13)]. However, it is still unclear, how these changes relate to

changes on the microscopic level. To address this gap, we analysed

resting-state fMRI data from healthy participants and patients with

chronic ScZ. We identified a global reduction in functional

connectivity that affected both sensory and association areas
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equally and that was present for all functional subnetworks

together with a moderate decrease of temporal synchrony. Using

a biophysical network model, we found that a decrease in global

coupling or an increase in global noise levels could explain the

connectivity reduction and the increase in synchrony best, whereas

local changes to the glutamatergic or GABAergic system did not

produce changes matching our experimental findings. However,

both changes also yielded an increase in metastability in our model,

which we did not find in the experimental data.

Our findings of reduced global brain connectivity are in line

with previous research. For example, Lynall et al. (14) and Bassett

et al. (54) both found significantly reduced global integration in

patients with schizophrenia. However, we did not find stronger
TABLE 5 ScZ-associated changes of noise parameters.

105% 110% 115% 120%

Avg. global GBC -0.078 [-0.98] -0.129 [-1.60] -0.199 [-2.56] -0.260 [-3.56]

Avg. GBC sen. -0.082 [-0.98] -0.139 [-1.64] -0.215 [-2.59] -0.285 [-3.64]

Avg. GBC ass. -0.078 [-0.95] -0.133 [-1.58] -0.204 [-2.51] -0.268 [-3.57]

Synchrony -0.050 [-0.67] -0.080 [-1.05] -0.121 [-1.83] -0.168 [-2.42]

Metastability 0.008 [0.26] 0.006 [0.21] 0.010 [0.37] 0.014 [0.52]

125% 130% 135% 140%

Avg. global GBC -0.313 [-4.58] -0.362 [-5.71] -0.383 [-6.07] -0.394 [-6.08]

Avg. GBC sen. -0.345 [-4.86] -0.399 [-6.01] -0.424 [-6.39] -0.433 [-6.30]

Avg. GBC ass. -0.323 [-4.56] -0.373 [-5.62] -0.396 [-6.15] -0.408 [-6.22]

Synchrony -0.202 [-2.97] -0.230 [-3.62] -0.244 [-3.95] -0.261 [-4.17]

Metastability 0.018 [0.70] 0.019 [0.75] 0.026 [1.03] 0.027 [1.02]
Comparison of average global GBC, average GBC in sensory areas, average GBC in association areas, average synchrony, and average metastability with increased noise (from 105% to 140% in
steps of 5%). Shown are the mean differences, i.e. the mean of the default condition minus the respective increased noise condition and in brackets the effect size (Hedge’s g). The mean in each
condition is calculated over the 40 virtual subjects. Significant differences, i.e. a permutation p value of< 0.001, are highlighted in bold. Permutation tests were performed using 5,000 permutations
of labels.
TABLE 4 ScZ-associated changes of global coupling.

95% 90% 85% 80%

Avg. global GBC -0.035 [-0.45] -0.089 [-1.12] -0.153 [-1.88] -0.205 [-2.49]

Avg. GBC sen. -0.039 [-0.47] -0.097 [-1.16] -0.169 [-1.99] -0.231 [-2.68]

Avg. GBC ass. -0.032 [-0.40] -0.0.089 [-1.10] -0.159 [-1.91] -0.215 [-2.49]

Synchrony -0.008 [-0.10] -0.040 [-0.53] -0.093 [-1.29] -0.155 [-2.20]

Metastability -0.001 [-0.05] 0.001 [0.03] 0.001 [0.04] 0.007 [0.26]

75% 70% 65% 60%

Avg. global GBC -0.238 [-3.16] -0.258 [-3.63] -0.265 [-3.89] -0.264 [-4.02]

Avg. GBC sen. -0.275 [-3.45] -0.302 [-3.98] -0.311 [-4.32] -0.311 [-4.45]

Avg. GBC ass. -0.250 [-3.15] -0.273 [-3.66] -0.282 [-3.94] -0.282 [-4.13]

Synchrony -0.215 [-3.01] -0.266 [-4.00] -0.298 [-4.76] -0.313 [-5.23]

Metastability 0.018 [0.70] 0.026 [1.22] 0.032 [1.32] 0.035 [1.47]
Comparison of average global GBC, average GBC in sensory areas, average GBC in association areas, average synchrony and average metastability for reduced global coupling (from 95% to 60%
in steps of 5%). Shown are the mean differences, i.e. the mean of the default condition minus the respective reduced global coupling condition and in brackets the effect size (Hedge’s g). The mean
in each condition is calculated over the 40 virtual subjects. Significant differences, i.e. a permutation p value of< 0.001, are highlighted in bold. Permutation tests were performed using 5,000
permutations of labels.
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connectivity disturbances in association areas compared to sensory

areas, as previously reported [Yang et al. (20)].

Our analysis of the temporal dynamics of the activity, i.e.

synchrony and metastability, revealed a decrease in synchrony but

no change in metastability. Our finding of unchanged metastability

is in line with previous findings of Lee et al. (55) on the same dataset

but in contrast to very recent work from Hancock et al. (56),

proposing metastability as a candidate biomarker for schizophrenia.

However, we have to note that Hancock et al. (56) introduced a new

measure of metastability with increased sensitivity to detect the

differences between healthy controls and ScZ patients. This new

measure of metastability did not rely on predefined brain

parcellations but rather flexibly defined recurring spatio-temporal

modes, so-called ‘communities’ where single brain regions may be

grouped into more than one community. As this approach was not

applicable to our computational network model we did not employ

it in our analysis. Overall, several different metastability measures

have been proposed and have been applied in different contexts in

neuroscience [Hancock et al. (57)].
4.2 Mechanistic explanations of global
changes in ScZ

Reduced global coupling and increased global noise levels are in

line with earlier modelling studies. For example, several studies,

using both simple phase oscillator models and dynamic mean-field

models, have shown that a decrease of global coupling compared to

the best model fit to human resting-state data led to a decrease in

connectivity and a more random, less integrated graph structure

(21, 23, 24). Similar to the model presented here, the operating

point is chosen close to a bifurcation point from a silent down state

to a limit-cycle which produces oscillating activity. In this regime,

both functional connectivity and temporal dynamics best match

empirical data. Therefore, the reduced coupling or the increased

global noise disturbs this specific state and thus reduces global

connectivity, synchrony and more complex network properties.

Previous work on the effects of changes to the glutamatergic and

GABAergic system has demonstrated profound alterations on the

cortical microcircuit level. For example, numerous computational

studies have shown that ScZ-associated changes on the microcircuit

level can lead to substantial reductions in gamma power in auditory

steady-state response tasks [Metzner et al. (58); Metzner and

Steuber (59); Metzner et al. (60); Vierling-Claassen et al. (61)].

Since local gamma oscillations have been hypothesized to at least

partially determine the large-scale functional connectivity and

temporal dynamics of resting-state activity Cabral et al. (62, 63),

it seems surprising that changes to either of the systems did not

produce changes in global brain connectivity in our model. One

reason for the lack of impact of the changes might be that we

applied them homogeneously. In the work presented here, we only

varied glutamatergic or GABAergic strength globally, i.e. without

any spatial heterogeneity. Therefore, it seems plausible that these

changes disturbed the local, regional nodes all in a similar fashion

and thereby did not substantially alter their interrelation, thus not

changing global brain connectivity. Indeed, several studies have
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demonstrated that heterogeneous models of cortex, which explicitly

incorporate regional differences in dynamics, match experimental

resting-state functional connectivity more accurately [Demirtas ̧
et al. (64); Kong et al. (65)]. Importantly, these regional

differences in dynamics covary with expression profiles for

markers of glutamatergic and GABAergic neurotransmission and

E-I balance [Burt et al. (66); Demirtas ̧ et al. (64)]. Therefore, a more

detailed, heterogeneous model might be able to shed more light on

the effect of E-I balance changes associated with ScZ on large-scale

functional networks.
4.3 Limitations

Patients in the sample used in this analysis were on typical and

atypical antipsychotic medication with a mean dosage of 396.26

(CPZ-equivalent dosage). Antipsychotic medication, however, is

known to affect functional connectivity. For example, risperidone

treatment has been found to lead to abnormal functional and

structural connectivity in striatal areas, prefrontal cortex, and

limbic system components Hu et al. (67, 68). Furthermore, Wang

et al. (69) found increased FC in the default mode network and

decreased FC in the salience network after antipsychotic treatment.

Therefore, we cannot rule out that the FC alterations identified in

our analysis are not a result of ScZ pathophysiology but rather an

effect of chronic treatment with antipsychotic medication.

Another limitation of the participant sample analysed here is its

moderate size. For the group comparisons of GBC a post-hoc

analysis of achieved power [performed with GPower 3.1 Faul

et al. (70, 71)] resulted in sufficient achieved power, however,

group comparisons of temporal dynamics suffered from lower

power (see Supplementary Material for more details). Therefore,

replication of our findings in larger independent samples

is warranted.

The computational model that we have employed in this study,

while generally showing a very good fit to the experimental data, is

not fully biophysically realistic. Moreover, the model used an

average connectome and was not able to provide subject-specific,

individual results for each participant. Furthermore, the anatomic

parcellation [AAL2 Rolls et al. (47)] is relatively coarse-grained with

a number of 80 cortical regions. As further validation, a replication

of the analyses provided here using different, more fine-grained

anatomic parcellations is warranted.

The ALN model that was used to simulate regional activity has

been demonstrated to approximate cortical resting-state activity

[Cakan and Obermayer (39); Cakan et al. (43)]. However, it is

restricted to the cortex. Including subcortical regions such as the

thalamus into whole-brain models is still in its infancy and rarely

goes beyond coupling a single cortical and thalamic region [e.g.

Jajcay et al. (72), but see Griffiths et al. (73)].

The ALN model also presents a simplification of the regional

circuitry as it approximates and neglects both the variability of cell

types, especially the diversity of inhibitory interneurons, and the

laminar structure of the cortex. Therefore, the inclusion of more

detailed models of regional activity, both in terms of cell type

diversity and of laminar structure and connectivity, seems likely to
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further our understanding of ScZ dysconnectivity and its

underlying mechanisms.

Lastly, the regional ALN model we used had the same

parameters regardless of the cortical region it represented, i.e. we

implemented a homogeneous model in that respect. As already

discussed above, cortical regions are known to differ in various

important aspects, whose incorporation are likely to provide

additional insight into the pathophysiology of schizophrenia.

5 Conclusion
The current study provides further evidence of large-scale

changes in connectivity and temporal dynamics in ScZ through

the analysis of resting-state fMRI. Furthermore, through

computational modelling, it provides novel evidence that these

changes might be explained solely by global reductions in

coupling or increases noise levels, although we cannot rule out

that local effects also contribute significantly. These findings

emphasize the importance of global alterations in ScZ and might

have possible implications for the development of treatments.
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