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Heart rate response to cognitive
load as a marker of depression
and increased anxiety
Evgeniia I. Alshanskaia1*†, Natalia A. Zhozhikashvili 2†,
Irina S. Polikanova3 and Olga V. Martynova3,4,5

1School of Psychology, Faculty of Social Sciences, HSE University, Moscow, Russia, 2Faculty of Social
Sciences, Laboratory for Cognitive Research, HSE University, Moscow, Russia, 3Faculty of Biology and
Biotechnology, HSE University, Moscow, Russia, 4Institute for Cognitive Neuroscience, HSE University,
Moscow, Russia, 5Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity
and Neurophysiology of the Russian Academy of Sciences, Moscow, Russia
Introduction: Understanding the interplay between cardiovascular parameters,

cognitive stress induced by increasing load, and mental well-being is vital for the

development of integrated health strategies today. By monitoring physiological

signals like electrocardiogram (ECG) and photoplethysmogram (PPG) in real time,

researchers can discover how cognitive tasks influence both cardiovascular and

mental health. Cardiac biomarkers resulting from cognitive strain act as indicators

of autonomic nervous system function, potentially reflecting conditions related to

heart and mental health, including depression and anxiety. The purpose of this

study is to investigate how cognitive load affects ECG and PPGmeasurements and

whether these can signal early cardiovascular changes during depression and

anxiety disorders.

Methods: Ninety participants aged 18 to 45 years, ranging from symptom-free

individuals to those with diverse psychological conditions, were assessed using

psychological questionnaires and anamnesis. ECG and PPG monitoring were

conducted as volunteers engaged in a cognitive 1-back task consisting of two

separate blocks, each with six progressively challenging levels. The participants’

responses were analyzed to correlate physiological and psychological data with

cognitive stressors and outcomes.

Results: The study confirmed a notable interdependence between anxiety and

depression, and cardiovascular responses. Task accuracy decreased with

increased task difficulty. A strong relationship between PPG-measured heart

rate and markers of depression and trait anxiety was observed. Increasing task

difficulty corresponded to an increase in heart rate, linked with elevated levels of

depression and trait anxiety. A strong relationship between ECG-measured heart

rate and anxiety attacks was observed. Increasing task difficulty corresponded to

an increase in heart rate, linked with elevated levels of anxiety attacks, although

this association decreased under more challenging conditions.

Discussion: The findings underscore the predictive importance of ECG and PPG

heart rate parameters in mental health assessment, particularly depression and
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anxiety under cognitive stress induced by increasing load. We discuss

mechanisms of sympathetic activation explaining these differences. Our

research outcomes have implications for clinical assessments and wearable

device algorithms for more precise, personalized mental health diagnostics.
KEYWORDS

cognitive stress, electrocardiogram, photoplethysmogram, heart rate, HRV,
depression, anxiety
1 Introduction

The escalating global health burden of cardiovascular and

mental health disorders, highlighted by the World Health

Organization (1), indicates the need for advanced preventative

strategies and interventions. Cognitive stress, also known as

mental stress (2, 3), refers to the ways in which stress factors such

as increased cognitive load affect mental processes. Cognitive stress

is a crucial factor that links physiological and psychological well-

being to mental health conditions such as depression and anxiety. It

affects cognition and emotional processing (3, 4). The complex

interplay between heart activity, stress, and cognitive function has

been examined (5, 6) establishing connections between cognitive

decline, vascular health, and mental well-being (7). Heart rate

variability (HRV) has emerged as a focal point, particularly in its

correlation with depression and anxiety (6, 8–12). Studies have

consistently shown that HRV, which reflects the autonomic nervous

system’s ability to respond to various psychological and

physiological stimuli, is closely linked with mental health

conditions and cognitive load (5, 13). Additionally, heart rate

mean (HR) as a biomarker for mental disorders has been

determined (13–15).

Application of photoplethysmography (PPG), a non-invasive

method for measuring blood volume changes in the microvascular

bed of tissue, for assessing heart rate offers a different lens through

which to view the heart’s response to stress. Recent studies highlight

the importance of peripheral vasoconstriction, governed by the

sympathetic nervous system, as an indicator of mental effort and

stress levels (16–19). There is a significant physiological connection

between PPG amplitude variations and stress responses, as well as

cognitive load (20–22). PPG is also used in the context of anxiety

and depression assessment (23). This measurement provides critical

insights into the neurophysiological mechanisms underpinning

stress, anxiety, and depression (24, 25).

Electrocardiogram (ECG) provides cardiac indicators that enhance

our understanding of stress-related physiological responses. ECG

monitors heart rate and contractility, predominantly influenced by

adrenergic receptors response (26, 27). This cardiac response

is reflected in the vascular activity, measurable through

photoplethysmography. PPG measures peripheral vascular tone,
02
primarily affected by noradrenergic receptors (28), as well as

adrenergic receptors (29, 30). These differences could provide critical

insights into the neurophysiological mechanisms underpinning stress,

anxiety, and depression (24, 25). Understanding mental health

disorders can be aided by concurrently examining cardiac and

vascular responses (31). The integration of ECG with PPG is

advancing in AI-driven personalized diagnostics and wearable

technologies (32–34).

Our study addresses the reactivity of ECG and PPG to stress by

examining physiological and cognitive responses to modulated

cognitive load in a larger sample size of participants with a range

of mental conditions. Psychological assessments were conducted for

all participants. In the pilot study, we observed a gradual increase in

the sympathetic activity of the autonomic nervous system,

correlating with respiratory and cardiovascular responses under

cognitive load (35) and linking patterns of the autonomic nervous

system (ANS) with questionnaire responses (36).We hypothesized

that ECG and PPG HRV parameters would demonstrate the most

pronounced association with traits of depression and anxiety,

predicated on the assumption that the complexity level of tasks.

This enhances our understanding of the mechanisms underlying

anxiety and depression.
2 Materials and methods

2.1 Participants

A cohort of 95 individuals, initially recruited between the ages

of 19 and 48 years (average age = 25 ± 7.8; 61 females), participated

in the study. After removing individuals below 18 or above 45 years

due to technical issues in their data recordings, 90 subjects (average

age = 25 ± 7.6; 57 females) were included in the final analysis.

Participants exhibiting traits of mental disorders were recruited

through referrals from practitioners, while individuals with normal

mental traits were invited via social networks and the faculty’s

public website. Uniform assessments, consisting of questionnaires

and medical histories, were conducted for all participants following

a standardized protocol that ensured confidentiality and

data anonymization. Participants were classified based on
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questionnaire responses, self-reported data, and preliminary

diagnoses, all evaluated by an expert using normative parameters,

facilitating a precise distinction between normative and non-

normative traits.
2.2 Questionnaires and
psychological assessment

The participants underwent a detailed anamnestic review to

report their experiences with anxiety attacks and depressive

episodes, using the following encoding systems. Anxiety attacks

were assessed using a binary scale, where ‘0’ indicated no anxiety

attacks during the individual’s lifespan and ‘1’ indicated the

presence of any anxiety attacks at any point in the past five years.

This scale was chosen due to the self-reported nature of the

information and the necessity of a two-parameter approach for

mental health professionals. Episodes of depression were evaluated

on a three-point scale. A score of ‘0’ was given if there were no

episodes of depression throughout the individual’s life. A ‘0.5’ was

assigned if episodes of depression were self-reported without the

involvement of mental health professionals. Likewise, a score of ‘1’

was used when episodes of depression were both self-reported and

confirmed by a mental health practitioner. This approach allowed

for precise differentiation between self-reported anxiety and various

levels of depression. Key psychological assessments included the

Beck Depression Inventory (BDI-II) (37–40) and the State-Trait

Anxiety Inventory, Trait Version (STAI-T) by Spielberger (41, 42),

to quantify depressive symptoms and differentiate between state

and trait anxiety. Our study analyzes self-reported questionnaire

data to comprehensively analyze traits of anxiety and depression.

We included both participants referred by mental health

practitioners and those recruited independently, assessing their

mental states using validated inventories. Employing a

triangulation approach, we aimed to differentiate symptoms in

our assessment. In subsequent text, we will mention traits of

depression (BDI), traits of anxiety (STAI), as well as self-reported
Frontiers in Psychiatry 03
depressive episodes and self-reported anxious episodes. If both

depression-related evaluations (BDI-II and self-reported episodes)

align, we will label it as ‘depression’. Similarly, if anxiety-related

evaluations (STAI-T and self-reported episodes) align, we will label

it as ‘anxiety’.
2.3 Stimuli and procedure

For inducing cognitive stress, we employed the Cognitive 1-

back Colour Matching Task (CMT) (43). This approach was

selected to balance the challenge across participants while

avoiding cultural and educational bias, making it particularly

suitable for diverse study populations. This task was tested in

preliminary studies, which confirmed its effectiveness at inducing

cognitive load without exceeding participant capabilities.

Furthermore, the level of task difficulty can be adjusted by

increasing the number of objects that participants must

remember, transitioning to a 2-back or 3-back design. In our

study, we regulated difficulty by altering the object count. This

approach ensures a controlled increment in cognitive load,

facilitating a more precise evaluation of cognitive stress induced

by memory tasks as tested in previous research (35, 44).

Participants were instructed to view images of colored balls and

compare each with the preceding one to identify color matches. Key

1 was designated for matches, and key 2 for mismatches, with a

primary emphasis on color rather than position. The task consists of

two parts, each comprising six escalating difficulty levels. Each level

includes 17 trials, totaling 102 samples per block (204 samples for 2

blocks). Among these, 49 trials required a ‘2’ response for non-

matching samples, and 41 necessitated a ‘1’ response for matching

samples. It commences with a simple task of recognizing a single-

color change in an image with balloons and progressively escalates

to identifying up to six color changes. Each image was displayed for

one second, with a 30-second rest provided after each block. Task

completion for each level took about a minute, and a block took

approximately seven minutes, contingent on participants’ response
BA

FIGURE 1

Cognitive Task Design and Feedback Structure. (A) Task Progression: Each block displays six balloon bundles, representing a gradient in difficulty
from left (simpler configurations) to right (complex configurations). (B) Feedback Component: Two paired balloon bundle sets are presented.
Adjacent feedback icons (straight-mouth for “same” and curved-mouth for “different”) provide responses post a 3-second interval. This design
assesses participants’ ability to discern and recall balloon color patterns, with immediate feedback facilitating performance tracking.
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speed. The entire experiment lasted no more than 15 minutes per

participant, with limited time for answering. Participants received

visual feedback after each trial (Figure 1). Immediate feedback was

provided after each response, indicating correctness, incorrectness,

or responses exceeding three seconds. After completing each level,

participants evaluated their performance.

We assessed how participants managed cognitive stress by

correlating their physiological responses with their accuracy in

providing correct answers. Participants’ rewards included a base

amount for participation, supplemented by a performance-based

bonus calculated according to the number of correct answers,

following the methodology employed in the pilot study (35). The

decision time (the time from the appearance of the second image

with balloons to pressing the key to answer) for each block and level

was analyzed separately. Stimuli sequence and data for the analysis

of behavioral responses were obtained using Eye-Link Experiment

Builder 2.3.1 (Mississauga, Ontario, Canada: SR Research Ltd.,

2020) synchronized with ECG and PPG recording.
2.4 Recording and signal processing

ECG and PPG data were continuously recorded to assess

autonomic nervous system reactions using a rheograph-polyanalyzer

RGPA-6/12, with a sampling rate of 250 Hz and a filtration range of

0.5–75 Hz. ECG measurements utilized sensors strategically placed on

the right and left wrists, as well as the right ankle. Simultaneously, PPG

data registration employed sensors positioned on the distal phalanx of

the middle finger on the left hand. The initial data processing was

conducted using Neurokit2 (45), specialized software designed for

such tasks. It featured a custom processing function tailored

specifically for ECG and PPG signal types, ensuring comprehensive

signal purification and subsequent peak detection.

For the ECG dataset, a fifth-order Butterworth high-pass filter

with a cutoff frequency of 0.5 Hz was applied, in combination with a

50 Hz power line filter. The QRS complexes in the ECG signal were

identified based on their gradient steepness, with R-peaks

recognized as local maxima (45, 46). When processing

Photoplethysmography (PPG) data, a third-order Butterworth

filter with a passband ranging from 0.5 to 8 Hertz was employed.

The processing methodology described in Method IV (47) was

applied to PPG signals for data purification and peak detection. This

approach, used for detecting systolic peaks in acceleration

photoplethysmograms (APG) signals, involves a three-stage

algorithm: pre-processing with bandpass filtering and squaring

the signal, feature extraction using moving averages to identify

potential systolic peaks, and classification through dynamic

thresholding for accurate peak determination. This method,

integrated into the NeuroKit2 toolkit, effectively removed

extraneous noise and artifacts from the PPG signal, ensuring

cleaner and more reliable data for analysis.

Mean cardiac parameters, including HRV time and frequency

domains, were calculated for each block level from both ECG and

PPG signals, including Heart Rate, High Frequency (HF), Low

Frequency (LF), MeanNN (the average of all normal-to-normal

intervals), Root Mean Square of Successive Differences (RMSSD),
Frontiers in Psychiatry 04
and Standard Deviation of NN intervals (SDNN), thereby providing a

comprehensive analysis of autonomic nervous system activity.

Following the initial processing with Neurokit2, an issue of over-

detection of R-peaks in the ECG dataset became apparent, suggesting

the presence of extraneous signals and peaks. The BioPsyKit toolkit,

with artifact detection capabilities (48), was utilized to filter out

extraneous peaks employing the rooted algorithm (49).
2.5 Statistical analysis

To test the hypotheses, we first computed the mean heart rate

measures and response accuracy for each individual at different task

difficulty levels. Subsequently, we employed the task difficulty level,

ranging from 1 to 6 colors, as a categorical variable in our

analysis. This approach was crucial to ensure that we did not

overlook potential non-linear relationships and interactions with

task difficulty.

2.5.1 Association of heart rate indicators with
depression and anxiety

We set out to determine which HRV indicator has the strongest

association with anxiety and depression. For each heart rate variable

and each anxiety/depression variable, we applied a linear mixed

effects model using the nlme package in R (50). The model was

specified as follows: heart rate ~ anxiety/depression * difficulty + (~1

| ID), where the dependent variable was heart rate, and the fixed

effects included the anxiety/depression score and task difficulty. We

included a random intercept for participant code (ID). The random

intercept was consistently utilized throughout this analysis to

account for individual differences in the target variable, reducing

the impact of individual variability. Model comparison was

conducted using the Akaike Information Criterion (AIC), a

metric for assessing information loss in a model (51). To ensure

fair comparisons via AIC, we standardized the target variables to a

common scale using the z-scaling method.

2.5.2 Relationship between depression, anxiety,
and heart rate response to task difficulty

The next aim was to determine how HRV is related to task

difficulty, anxiety, and depression. Subsequently, for each

depression (BDI depression, self-reported episodes of depression)

and anxiety (STAI trait anxiety, self-reported anxiety attacks)

measure, we examined the 4 models that exhibited the best

performance according to AIC. To assess the model coefficients,

we employed Wald t-statistics with a significance threshold of p

<.01. Additionally, these models were replicated with the addition of

gender as a predictor (see Supplementary Materials for results).

2.5.3 Relationship between heart rate response
to task difficulty and task-solving accuracy

Furthermore, for heart rate indicators displaying the most robust

relationships with depression and anxiety, we developed linear mixed

effects models with the following formulation: heart rate ~ accuracy *

difficulty + (~1 | ID). We evaluated the coefficients of these models

usingWald t-statistics, maintaining a significance threshold of p < 0.01.
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3 Results

3.1 Basic behavioral statistics

The Pearson correlation test revealed a significant association

between trait anxiety (STAI; mean = 44.7 ± 8.9) and trait depression

(BDI; mean = 9.3 ± 7.1; r = 0.6, p < 0.001). Two-way ANOVA tests

indicated that significant relationships between depression episodes

and anxiety attacks with STAI trait anxiety (F (2, 84) = 3.95, p = 0.02; F

(1, 84) = 11.84, p < 0.001; respectively), as well as with BDI depression

(F (2, 84) = 19.04, p < 0.001; F (1, 84) = 27.38, p < 0.001; respectively).

However, depression episodes were not significantly associated with

anxiety attacks (c² = 5.21, p = 0.07). Accuracy, measured as the

percentage of correct answers (86.7% ± 5.1%), decreased as task

difficulty increased (r = -0.75, p < 0.001). Accuracy was not related

to anxiety (r = -0.06, p = 0.56), depression (r = 0.06, p = 0.56),

depression episodes and anxiety attacks (F = 0.23, p = 0.79; F = 0.15, p

= 0.7; relatively). Descriptive statistics for response accuracy, HRV and

psychological indicators can be found in Table 1.
3.2 Heart rate variability indicators and
depression and anxiety traits

Initially, we identified the HRV indicator most strongly

associated with anxiety and depression (refer to Subsection 2.5.1 in

Methods). Models incorporating trait anxiety (STAI), trait depression

(BDI), and episodes of depression as predictors indicated that the
Frontiers in Psychiatry 05
PPG mean heart rate had the lowest information loss (AIC = 134,

AIC = 133.7, AIC = 132.3, respectively). For models involving anxiety

attacks, the ECG mean heart rate model showed the lowest

information loss (AIC = 141). AICs of all models can be found in

Table 2. Thus, the analysis revealed a statistically significant

association between mean heart rate and depression and anxiety

indicators, which was more pronounced than with other HRV

parameters. Furthermore, the examination of PPG-derived mean

heart rate data indicated significant statistical associations with

parameters such as personal anxiety, self-reported depression, and

diagnosed depression. Concurrently, ECG-measured mean heart rate

dynamics demonstrated a more pronounced association with

episodes of anxiety attacks.
3.3 Mean heart rate, task difficulty and
depression and anxiety traits

Subsequently, we explored how selected HRV indicators

correlate with task difficulty, anxiety, and depression (refer to

Subsection 2.5.2 in Methods). For the examination of trait anxiety

(STAI), trait depression (BDI), and self-reported depression

episodes, we analyzed models predicting PPG heart rate. For the

analysis of self-reported anxiety attacks, we utilized models

predicting ECG heart rate mean (as discussed in Section 3.2).

The mean heart rate demonstrated a positive association with

trait anxiety (STAI) in the challenging task levels (3, 4, 5, 6 colors of

balloons) when compared to the easiest task level (interaction
TABLE 1 Analysis results, delineating physiological and psychological variable values categorized by groups.

Self-reported depression Self-reported anxiety attacks

None Self-diagnosed Psychiatrist-
diagnosed

None Self-reported

Accuracy (%) 86.7 88 86.7 86.7 87.3

STAI-T 42.9 42.9 50.1 42.6 50.3

BDI 6.4 11.2 15.0 7.0 15.7

PPG HF 0.07 0.06 0.07 0.07 0.07

PPG LF 0.03 0.03 0.03 0.03 0.03

PPG MeanNN 780.6 736.1 773.9 782.6 738.9

PPG RMSSD 102.6 109.7 106.5 107.1 98.1

PPG SDNN 83.6 88.7 83.4 87.2 76.6

PPG Rate mean 79.2 83.8 79.5 78.9 83.3

ECG HF 0.04 0.04 0.04 0.04 0.04

ECG LF 0.03 0.03 0.03 0.03 0.03

ECG MeanNN 783 746 779 789.5 736.5

ECG RMSSD 48.3 41.1 34.7 43.7 43.8

ECG SDNN 55.0 48.6 43.8 51.4 50.2

ECG Rate mean 78.9 82.9 78.8 78.3 83.3

PPG Amplitude 0.506 0.47 0.558 0.498 0.55
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between task difficulty and trait anxiety (STAI): t = 3.09, p < 0.01; t =

2.16, p = 0.03; t = 3.13, p < 0.01; t = 2.44, p = 0.02; respectively; refer to

Figure 2). Additionally, the analyzed model unveiled a main effect

indicating a negative association between task difficulty (3 and 5

colors) and the mean heart rate when contrasted with the easiest level

(t = -2.36, p = 0.02; t = -2.66, p = 0.008; respectively). The mean heart

rate also exhibited a positive association with episodes of anxiety

attacks in the middle difficulty task level (4 colors of balloons) when

compared to the easiest task level (interaction between task difficulty

and anxiety attacks: t = 2.61, p < 0.01) (Figure 2).

Furthermore, the mean heart rate displayed a positive

association with BDI ratings of depression in the demanding task

levels (3, 4, 5, 6 colors of balloons) relative to the easiest task level

(interaction between task difficulty and trait depression: t = 3.61, p <

0.001; t = 3.21, p < 0.01; t = 3.03, p < 0.01; t = 3.36, p < 0.001;

respectively) as illustrated in Figure 2.

Additionally, the mean heart rate exhibited a positive relationship

with self-reported episodes of depression in the challenging task

conditions (2, 3, 4, 6 colors of balloons) in comparison to the easiest

condition (t = 2.45, p = 0.02; t = 3.27, p < 0.01; t = 3.44, p < 0.001; t =

2.31, p = 0.02; respectively; Figure 2). A similar effect was observed

with self-reports of a formal psychiatrist diagnosis of depression (5

colors: t = 2.02, p = 0.04; 6 colors: t = 2.08, p = 0.04).
3.4 Post-hoc analysis: heart rate, task
difficulty and task accuracy

The analysis unveiled a connection between the mean heart rate

and accuracy. Specifically, the mean ECG heart rate exhibited a

positive association with accuracy (main effect: t = 3.23, p = 0.001),

although this effect diminished in the most challenging condition
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involving 6 colors (interaction between task difficulty and accuracy:

t = -2.03, p = 0.04). Additionally, the analyzed model indicated a

main effect of a positive relationship between task difficulty (4 and 5

colors of balloons) and the mean heart rate, in comparison to the

easiest level (t = 2.25, p = 0.03; t = 2.5, p = 0.01; respectively).

Similarly, PPG heart rate displayed a positive association with

task-solving accuracy (t = 4, p < 0.001) (Figure 3). However, this

relationship significantly diminished in more challenging conditions

(interaction between task difficulty and accuracy: t = -2.34, p = 0.01 (3

colors difficulty); t = -2.85, p < 0.01 (4 colors of balloons); t = -2.64, p

< 0.01 (5 colors of balloons); t = -2.7, p < 0.01 (6 colors of balloons).

The analyzed model also revealed a main effect indicating a positive

relationship between task difficulty (3, 4, 5, 6 colors of balloons) and

PPG heart rate, when compared to the easiest level (t = 2.57, p = 0.01;

t = 3.21, p < 0.01; t = 3.07, p < 0.01; t = 3.21, p < 0.01; respectively).
4 Discussion

The key findings revealed a pronounced association between the

average heart rate, as measured through photoplethysmography (PPG),

and indicators of depression and trait anxiety, more significant than the

associations observed with heart rate variability (HRV) parameters

derived from electrocardiography (ECG). Furthermore, the data

demonstrated that mean heart rate was substantially influenced by

task complexity among individuals presenting a spectrum of mental

health conditions. This association was particularly pronounced in

relation to trait anxiety (STAI) and trait depression (BDI), as well as

self-reported depression episodes at elevated levels of task difficulty. It is

also crucial to acknowledge that filtering ECG noise can be challenging,

which may impact the limitations and results of both ECG and PPG

signal preprocessing methods.
TABLE 2 Akaike Information Criterion (AIC) of 48 models predicting heart rate parameters through anxiety/depression and task difficulty.

Depression (BDI) Anxiety (STAI-T) Depression
episodes
(self-reported)

Anxiety attacks
(self-reported)

ECG HF 1133.407 1133.581 1144.643 1134.657

ECG LF 1166.415 1165.558 1168.916 1166.676

ECG MeanNN 141.5409 138.6218 145.5449 141.3978

ECG RMSSD 1060.103 1052.215 1067.73 1061.822

ECG SDNN 1155.019 1143.481 1167.177 1161.547

ECG Rate mean 143.8256 143.3636 145.4342 140.9845

PPG HF 1107.02 1105.825 1110.521 1108.845

PPG LF 1124.783 1122.753 1116.137 1122.649

PPG MeanNN 154.8627 151.677 152.8998 156.3769

PPG RMSSD 782.9634 772.0694 784.9265 784.7503

PPG SDNN 879.5336 870.5809 884.8129 882.2574

PPG Rate mean 133.6984 133.9978 132.3324 142.9038

PPG Amplitude 578.4 575.3 579.9 576.6
The best (lowest) AIC scores for each anxiety/depression measure are shown in bold.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1355846
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Alshanskaia et al. 10.3389/fpsyt.2024.1355846
It is important to consider what the mean heart rate is measured

through the detection of R waves, while PPG-obtained mean heart

rate measurement relies on identifying the maxima of the pulse

wave. Despite both methods targeting the same physiological

indicator, they differ in their signal filtering processes. This

distinction might elucidate the observed variance in ‘sensitivity’

within our models. The results demonstrate a substantial positive

association between heart rate responses and depression, as well as

trait anxiety, markers during challenging tasks, signifying a distinct

pattern in individuals with anxiety attacks. Furthermore, post hoc

analyses suggested a diminishing positive relation between mean

heart rate and task accuracy in more complex tasks.
4.1 PPG heart rate mean and ECG heart
rate mean and depression and
anxiety traits

In examining the relationship between heart rate metrics and

mental health conditions our research contributes new data to

existing discussions. While the focus has traditionally been on
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HRV (52, 53) as a marker of the parasympathetic system’s

adaptability (54, 55), our findings reveal a stronger predictive

relationship with the mean heart rate (HR). Distinct from

prevalent methods, our study measured HR and HRV during task

performance, particularly under conditions of high workload. This

contrasts with most existing research on HRV and its relationship

to anxiety and depression, which predominantly focuses on resting

or recovery phases, omitting the context of task execution (15). Our

data suggest that HR stress response in the sympathetic system is

more sensitive to conditions of anxiety and depression during

challenging tasks than HRV indicators.

Furthermore, it was found that for anxiety and depression as

measured by questionnaires, and for self-reported depression

episodes, the strongest relation was observed with HR measured

by PPG. Thus, despite ECG being considered a more reliable

method for measuring HRV (56), and the relative scarcity of

research into PPG signals in relation to depression and anxiety,

our results suggest that PPG is an effective tool for gauging

depression and trait anxiety through HR measurement.

Concurrently, the highest connection for self-reported anxiety

episodes (anxiety attacks) was observed with HR measured by ECG.
B

C D

A

FIGURE 2

Dependency between depression/anxiety and heart rate with increasing task difficulty relative to the easiest task condition. Difference (D) -
difference in heart rate between the easiest difficulty level (1 color) and other difficulty levels. Top panels: results for depression (A) and anxiety
(B) assessed with questionnaires (BDI, STAI-T). The more severe the depression/anxiety scores, the greater the increase in heart rate during difficult
conditions. Low panels: results for self-reported depression (C) and anxiety (D) episodes in relation to healthy subjects. Self-reported depression
episodes (self-diagnosed, psychiatrist-diagnosed) enhance the effect of heart rate increase during difficult conditions. Self-reported anxiety episodes
enhance the effect of heart rate increase during the medium difficulty condition (4 colors). * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001
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The study highlighted that PPG, a marker for cardiac and blood

vessel activity reflecting peripheral vascular tone influenced by

noradrenergic receptors, is closely linked with mental health issues,

emphasizing the possible significance of noradrenaline’s role in

sympathetic activation related to the investigated states and traits.

These outcomes are aligned with previous studies (18, 24, 25, 29, 57,

58).The distinct cardiovascular receptor activities in the heart and

vessels might explain the differential sensitivity of ECG and PPG in

measuring anxiety and depression, despite the heart’s beating wave

spreading from the heart to the vessels. b1-Adrenergic receptors,

predominantly adrenergic (30, 59) in the heart, which increase heart

rate and contractility in stress responses (60), are aligned with ECG

measurements during self-reported anxiety attacks. However, PPG’s

sensitivity to changes in peripheral blood flow is influenced by a1
receptors, predominantly noradrenergic (61, 62), which are

responsible for vasoconstriction and thus their influence is a crucial

factor in PPG measurements. These sympathetic vascular changes

have a higher association in our study with anxiety and depression

symptoms as assessed by questionnaires and self-reported depression

episodes. Despite the presence of other factors in vessels, such as b2
adrenoreceptors, NO (nitric oxide), EDRF (endothelial derived

relaxing factor), and others (63, 64), and vagal sympathetic

regulation M2 in heart (65), these receptor mechanisms dominate

their study, in connection with physiological research that can

provide additional insights about ANS and CNS in response to stress.
4.2 Mean heart rate, task difficulty and
depression and anxiety traits

It was found that mean heart rate responses to 1-back working

memory task difficulty are related to levels of anxiety and
Frontiers in Psychiatry 08
depression, supporting our research hypothesis. Individuals with

high depression scores on BDI and high trait anxiety as assessed by

the STAI, as well as those with self-reported depression episodes

(both self-diagnosed and psychiatrist-diagnosed), exhibited

increased HR during challenging task levels. Additionally, the

increased mean heart rate was observed during moderately

difficult tasks in individuals with self-reported anxiety attacks.

However, results for anxiety attacks were not replicated when

gender was added to the model (refer to Supplementary Materials).

In previous studies, heart rate (HR) responses to stress,

depression, and panic attacks have been identified as key areas of

investigation (14, 66). Furthermore, it is well-established that tasks

demanding executive functioning, which were employed in our

study to induce psychological strain, correlate with heightened

cardiac indicators, corroborating findings from prior research (31,

67). Within our study, we observed distinct patterns of HR

fluctuations associated with cognitive load in individuals

experiencing anxiety and depression. It may be inferred that

heightened anxiety and depression (both clinical and non-clinical)

are linked to an intensified stress response during the execution of

difficult working memory tasks. However, contrasting views exist,

suggesting that depression is associated with a reduced HR response

in depressed individuals to stressful situations (13, 15). Therefore,

HR increases in our study might reflect not merely a reaction to

stress recovery, but an adaptive response to increasing task difficulty

(68). This perspective is supported by studies indicating heightened

nervous activity during working memory tasks, particularly among

individuals with anxiety traits (44, 69–72).

In our research Trait anxiety (STAI) and trait depression (BDI),

along with self-reported episodes of depression, appear to similarly

influence the HR response to task difficulty: an increase in HR

response is observed in both depression and trait anxiety (Figure 2).
FIGURE 3

Relationship between task-solving accuracy and mean heart hate derived from PPG data. The higher the heart rate, the greater the accuracy.
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This observation suggests that our study paradigm was more likely

to detect a common physiological effect for trait anxiety (STAI),

trait depression (BDI), and self-reported episodes of depression

without effectively distinguishing between them. In contrast, only

self-reported anxiety attacks demonstrated a notably different effect.

HR response to task difficulties was heightened in subjects with

reported anxiety attacks, but this was specifically evident at the

average level of difficulty (Figure 2). In addition, the results showed

that, unlike other psychological characteristics, only anxiety attacks

showed a better association with ECG (Section 4.2). It is possible

that anxiety attacks are associated with distinct b-adrenergic
dysregulation (73, 74) and psychophysiological mechanisms,

compared to those seen with trait anxiety (STAI), trait depression

(BDI), and self-reported episodes of depression. This could be a

relevant theme for future research. However, it should be noted that

we did not statistically compare the direct effects of depression and

anxiety, but rather how they influence cardiac responses.
4.3 Heart rate response patterns and
task accuracy

In the research, we observed a positive relationship between HR

and accuracy across various levels of task difficulty, with a more

pronounced correlation in simpler tasks. This suggests that HR may

reflect an adaptive stress response, where increased mental effort

leads to improved performance, particularly in less complex tasks.

However, this finding partly contrasts with previous studies. HR

could be indicative of high cognitive load (55), especially in stressful

conditions outside of the laboratory. Similarly, Solhjoo (13)

observed that while increased cognitive load positively correlated

with HRV, mean HR and single-item cognitive load measures

exhibited a negative correlation with clinical reasoning

performance. This highlights the potential of physiological

monitoring as a tool for identifying individuals experiencing high

cognitive load and at risk of underperforming in complex reasoning

tasks, both with and without mental issues (15). We suggest that the

heart rate monitoring could impact diverse perspectives in mental

health assessment by integrating biochemical correlations (59),

advanced algorithms, personalized Artificial Intelligence

approaches with behavioral data, and cardiac biomarkers to

provide reliable tools for mental health practitioners.
4.4 Limitations

This study, while offering insights and potential for future

research, is constrained by its sample size. The variability in

individual physiological and psychological responses can

significantly impact HR patterns, underlining the need for larger

andmore diverse participant groups in subsequent studies. While this

approach strengthened the clarity of our findings within an adult

cohort, it necessitates further research across broader age ranges to

ensure the universality and applicability of the results. Another

limitation is the reliance on self-reported data, which necessitates

more detailed research and refinement. Collaborations with experts
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and the integration of advanced technologies like artificial intelligence

and machine learning could enhance data accuracy and

interpretation. Additionally, methodological challenges in handling

the noise typical of PPG signals are noteworthy. Preprocessing these

signals, while crucial for data clarity, may inadvertently result in the

loss of nuanced physiological information. Given known gender

differences in the prevalence of anxiety and depression, our results

might reflect indirect gender effects rather than direct correlations

with anxiety and depression levels. Although we recalibrated our

models to include gender as a predictor (refer to Supplementary

Materials), confirming the significance of certain interactions

irrespective of gender, the potential confounding impact of gender

requires further investigation (75, 76).
5 Conclusion

In summary, this study explores the relationship between heart

rate metrics and mental health, specifically focusing on depression

and anxiety traits under cognitive stress. Our findings enhance the

understanding of physiological markers, emphasizing the

importance of HR in addition to HRV, and comparing

measurement techniques such as PPG and ECG. The research

outcomes underscore the superior predictive capability of heart

rate, particularly metrics derived from PPG, in association with

depression and anxiety during cognitive tasks. These findings

advance our understanding of heart rate metrics as dependable

indicators in mental health evaluations under cognitive stress. Heart

rate metrics enhance diagnostic precision, supporting precision

therapies and personalized mental health support. Crucially,

integrating these findings into clinical diagnostic guidelines and

algorithms for wearable technology and devices could significantly

improve real-time, continuous monitoring of patient well-being.
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