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diffusion MRI findings from
the Midlife in the U.S. study
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Introduction: A greater sense of purpose in life is associated with several health

benefits relevant for active aging, but the mechanisms remain unclear. We

evaluated if purpose in life was associated with indices of brain health.

Methods: We examined data from the Midlife in the United States (MIDUS)

Neuroscience Project. Diffusion weighted magnetic resonance imaging data

(n=138; mean age 65.2 years, age range 48-95; 80 females; 37 black,

indigenous, and people of color) were used to estimate microstructural indices

of brain health such as axonal density, and axonal orientation. The seven-item

purpose in life scale was used. Permutation analysis of linear models was used to

examine associations between purpose in life scores and the diffusion metrics in

white matter and in the bilateral hippocampus, adjusting for age, sex, education,

and race.

Results and discussion: Greater sense of purpose in life was associated with

brain microstructural features consistent with better brain health. Positive

associations were found in both white matter and the right hippocampus,

where multiple convergent associations were detected. The hippocampus is a

brain structure involved in learning and memory that is vulnerable to stress but

retains the capacity to grow and adapt through old age. Our findings suggest

pathways through which an enhanced sense of purpose in life may contribute to

better brain health and promote healthy aging. Since purpose in life is known to

decline with age, interventions and policy changes that facilitate a greater sense

of purpose may extend and improve the brain health of individuals and thus

improve public health.
KEYWORDS
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1 Introduction

The World Health Organization defines active aging as “the

process of optimizing opportunities for health, participation and

security in order to enhance quality of life as people age” (1) and

focuses on functional ability for healthy aging as a combination of

an individual’s intrinsic capacity and interactions with relevant

environmental characteristics (2). The goal of active aging is the

promotion and maintenance of positive functional outcomes and

experiences such as physical, mental, and social health and

wellbeing throughout the aging process (3). However, individuals

start their lives with differences in genetic predispositions and

continue to be exposed to a wide range of non-genetic drivers of

health and disease throughout their lifespan (4). Active or healthy

aging therefore involves slowing down the biological aging process,

even in the presence of social and environmental challenges that

may impact functional abilities (5–7).

Healthy life choices, such as being physically and cognitively

active, are widely known to improve health outcomes (8–10). In the

face of physical decline, aging successfully can mean selecting and

prioritizing goals according to their importance for optimizing

gains or compensating for losses (11, 12). One predictive variable

that could link a range of healthy behaviors, foster resilience in the

face of adversities, and impact physical and mental health is purpose

in life (13). Purpose in life is defined as feeling that one’s life has

meaning, and having goals, intentions, and a sense of direction for

one’s life (14, 15).

Mounting evidence suggests that individuals who feel a sense of

purpose in life have better health and longevity, including cognitive

function (16). Purpose has been reported as a potential buffer

against loneliness and is associated with reduced risk of subjective

cognitive decline (17), reduced risk of mild cognitive impairment

and Alzheimer’s disease (18) and delayed onset of dementia and

mortality (19). Purpose in life is also associated with better

outcomes for physical health and behavior, including reduced risk

of cardiovascular disease (20), lower systemic inflammation among

men (21), lower likelihood of suicidal ideation and attempts (22),

and lower odds of all-cause mortality (23, 24).

Potential mechanisms underlying these salubrious associations

with purpose in life are being explored (20, 25). While it is difficult

to ascribe a causal role for purpose in life in the achievement of

better cognitive outcomes, post-mortem examinations suggest that

purpose in life weakens the association between Alzheimer’s disease

pathology and cognitive decline (26). Examination of the

associations between purpose in life and brain health measures

among living individuals would enable a better understanding of the

underlying mechanisms.

Age related decline in brain health is well documented, as is

neuroplasticity in response to cognitive training (10). White matter

volume rapidly declines from the fifties onwards (27), cortical gray

matter volume peaks in childhood and gradually declines through

the rest of the life, whereas subcortical gray matter volume peaks

during adolescence (27). One brain region that is particularly

important in the study of brain health in aging is the

hippocampus, due to its role in learning and memory and life-

long plasticity (28). The hippocampus is one of the few brain
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regions where neurogenesis continues throughout adulthood (29).

This subcortical structure is known to be sensitive to stress and

inflammation and is one of the earliest to show age-related changes

that track cognitive decline (30). The hippocampus is vulnerable to

several neurodegenerative conditions and is one of the earliest

brain regions affected by Alzheimer’s disease (31–33). More

encouragingly, due to its highly plastic nature, this region is also

sensitive to lifestyle interventions that can buffer against age-related

changes in structure and function (30). Volumetric changes in brain

structures reflect late-stage, accumulated changes in cellular

microstructure which manifest earlier (34). Therefore, the early

changes in cellular microstructure serve as valuable targets for

monitoring and intervention.

Advances in diffusion magnetic resonance imaging (MRI) have

enabled fine grained insight into cellular microstructure (35). This

technique uses the property that water molecules exhibit random

displacements in all directions (i.e., isotropic diffusion) at room

temperature. The direction of movement of water molecules in

brain tissue can be tracked using diffusion MRI and quantified using

diffusion tensor imaging (DTI) (35). Water molecules show

different degrees of hindered and restricted diffusion based on

tissue type, which may be used to derive quantitative metrics to

infer features of the tissue microstructure. For example,

cerebrospinal fluid is present in the ventricles with very little

tissue complexity; thus, high values of mean diffusivity (MD,

diffusivity in all directions) would be expected. However, in a

white matter bundle consisting of neuronal fibers, low radial

diffusivity (diffusivity perpendicular to the fibers) is expected as

water cannot freely diffuse through the myelin sheaths around the

axons of neurons. Additionally, in white matter bundles, high values

of fractional anisotropy (FA, diffusivity preferentially directed along

fibers) are expected, such that water is diffusing more freely

parallel to the axons but not in other directions. By examining

the deviation of diffusion from a normal displacement distribution,

complementary metrics can be derived using diffusion kurtosis

imaging (DKI) (36), allowing estimation of metrics such as mean

kurtosis and radial kurtosis. These kurtosis metrics are often

negatively correlated with the corresponding diffusivity metrics;

for example, mean kurtosis in white matter increases with decreases

in mean diffusivity (37). Multiple studies have examined the validity

of using diffusion MRI as a non-invasive way of tracking brain

microstructural changes (38). For example, histological assessment

in rabbits done along with DTI and histological assessment in

human post-mortem brains done in tandem with DKI suggest that

these statistical models are sensitive to tissue microstructural

differences (39, 40) but they are not very specific to cellular

microstructure (38).

Several advanced biophysical models, such as neurite

orientation dispersion and density imaging (NODDI) and white

matter tract integrity (WMTI), have been developed to better

describe cellular microstructure (41, 42). These approaches model

the underlying tissue microstructure to provide biologically relevant

and interpretable metrics (43). For example, the NODDI model

provides the neurite density index which estimates the density of

axons and dendrites (collectively called neurites) and has been

shown to track the integrity of axons (34). The WMTI model
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provides a similar metric termed axonal water fraction that captures

the density of axons (44). Validation studies have been carried out

using electron microscopy and histology for these biophysical

models (45, 46).

Taken together, diffusion MRI metrics have been shown to be

sensitive to brain microstructural changes across the lifespan, from

early brain development (47) to aging and neurodegenerative

conditions (37, 48). For example, diffusion MRI metrics have

been shown to be sensitive to glial activation, edema, axonal

swelling, and changes in axonal myelination (49). Using the

complementary information provided by both the statistical

models (DTI and DKI) and the biophysical models (WMTI and

NODDI), we aimed to comprehensively characterize brain

microstructural features associated with purpose in life, identify

the most sensitive measures, and identify brain regions with

converging findings that might most robustly reflect associations

with purpose in life. We tested the hypothesis that higher self-

reported feelings of purpose in life would be associated with whole

brain white matter and hippocampal microstructural metrics

consistent with better brain health.
2 Materials and methods

2.1 Study overview

This study is based on analysis of data from the third wave of

the Midlife in the United States (MIDUS) study. The MIDUS study

is a longitudinal national study in the United States that began in

1994 initially recruiting adults aged between 25-74 years of age and

has been following them up every ten years. MIDUS seeks to

understand the sociodemographic , psychosocia l , and

neurobiological determinants of health and illness among aging

adults with the goal of advancing knowledge of resilience in the face

of challenge and adversity. A unique feature of MIDUS is the focus

on studying the middle segment of life and tracking individuals as

they move on into old age. MIDUS data are comprehensive, with

over 25000 assessed variables, and are publicly available for use by

scientists around the world (https://midus.wisc.edu/).

During the third follow-up of the main MIDUS sample

(MIDUS3; 2017-2022), multi-shell diffusion imaging data

were acquired for the first time by the MIDUS Neuroscience

Project. The present work analyzes data from those participants

who underwent multi-shell diffusion weighted (DWI) MRI. All

MIDUS projects were granted approval from relevant institutional

review boards. All participants were briefed about study procedures

and screened to ensure MRI compatibility, and all provided

informed consent prior to data collection.
2.2 Study participants and characteristics

Participants (n = 138) were between the ages of 48-95 (mean

65.2, median 64, SD = 9.35) years. There were 80 females and 37

black, indigenous and people of color (BIPOC) in the sample. There
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were 59 participants with a college degree, 44 with some college

education, and 35 with high school or less education.
2.3 Purpose in life assessment

Purpose in life was assessed using a seven-item questionnaire

adapted from Ryff’s Psychological Well-being scale (14). This scale

has seven-items such as “I live life one day at a time and don’t really

think about the future”, “I enjoy making plans for the future and

working to make them a reality”. Participants rated their responses

to each item using a seven-point Likert scale ranging from strongly

disagree to strongly agree. Negatively worded items are reverse

scored so that when the sum of the items is used as a score, higher

values indicate greater levels of purpose. The scale has been

validated in multiple national samples (15, 50). Participants

reported levels of purpose in life between 22-49 with a median

score of 40.
2.4 Diffusion MRI data acquisition

A multi-shell spin-echo, echo-planar imaging sequence was

used to collect DWI data using a Nova 32 channel head coil and

a 3 Tesla GE 750 scanner. Three shells of different encoding

strengths (b-values of 500, 800 and 2000 s/mm2) were acquired

with 9, 18 and 36 directions, respectively. There were six reference

scans without any diffusion encoding (b=0 s/mm2). Other

parameters included: repetition time (TR) = 7000 ms; echo time

(TE) = 91 ms; field of view (FOV) = 256 mm; 75 slices and 2x2x2

mm3 voxel resolution.
2.5 Pre-processing and estimation of brain
microstructure metrics

The DESIGNER pipeline was used to pre-process the data (51).

The diffusion kurtosis tensor was estimated, along with the diffusion

tensor, at each voxel using weighted least-squares optimization (52).

Image maps with voxel wise estimates of the DKI metrics and DTI

metrics were then generated. From the estimates of the kurtosis

tensor, the followingWMTI model (42) parameters were computed:

axonal water fraction, intra-axonal diffusivity and extra-axonal

diffusivities along the axon and perpendicular to the axon.

Spatially adaptive smoothing was applied to the DKI and WMTI

measures following the approach used by the tissue-specific

smoothing-compensated method (T-SPOON (53)) to address the

spatial variation in the model estimation quality. Specifically, a

brain mask was created using a threshold based on mean kurtosis

(MK < 0.3). Then each DKI and WMTI metric was smoothed

concurrently with the brain mask and divided by the smoothed

mask to arrive at unbiased smoothed estimates. The DWI data were

also used to fit the multi-tissue NODDI model (54) to derive voxel

wise estimates of corresponding metrics namely neurite density

index, orientation dispersion index and cerebrospinal fluid fraction.
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A study specific population template was created (55) using the

individual subject FA and MD maps to estimate the template, and

subsequently the full set of parameter maps were warped to this

template space. Each set of model-specific parameter maps were

grouped and merged for statistical analyses.
2.6 Statistical analyses and visualization

Permutation analyses of linear models (PALM) (56) were carried

out to examine the association between purpose in life and

microstructure metrics while adjusting for sociodemographic

covariates (age, sex, race, and education). The analyses were

restricted to two regions of interest using the following approach:

The FA skeleton mask provided with FSL software (57) was moved to

the population template space and used as a white matter mask. The

bilateral hippocampal regions from the Harvard-Oxford subcortical

atlas (58) were binarized and moved to the population template space

to form the hippocampal mask as a region of interest due to its

vulnerability to stress and neurodegeneration. Analyses were run

using analytical tail acceleration and 500 permutations. Joint

inference was carried out separately for DTI, DKI, WMTI and

NODDI metrics using non-parametric combination and inference

about each metric was simultaneously obtained. Our goal with these

analyses was to examine brain health with diffusion metrics that

provide both complementary and overlapping information.

Therefore, we did not correct for multiple comparisons across all the

diffusion metrics. Threshold-free cluster enhancement (TFCE) and

family-wise error (FWE) correction across all voxels of interest were

used to control for false positives for each of the diffusion

metrics individually.

Voxels showing significant relationships were defined with a

threshold of p < 0.05, corrected for multiple comparisons and

corresponding statistical brain maps were generated. To visualize

significant relationships of the microstructure metrics with the

variables of interest, mean values across significant voxels were

extracted for each participant as summarized versions of the

outcome variables. Corresponding linear models were run and

partial residuals were plotted for significant relationships. As the

models utilize data extracted from voxels that were found significant

after statistical testing,model coefficientspresented in the result section

are purely for descriptive purposes. Influential outliers were defined as

those exceeding a threshold of 5% of the F-distribution of Cook’s

distance and were removed. Twomodels had one outlier each, and the

results were consistent with and without outlier removal.

Visualizations were carried out using R statistical software (v4.3.0).
3 Results

3.1 Associations between purpose in life
and whole brain white
matter microstructure

Greater purpose was associated with higher radial kurtosis

(b = 0.00388, p < 0.001) and lower intra-axonal diffusivity (b =
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-0.00383, p < 0.001) in the whole brain white matter mask while

adjusting for age, sex, education, and race (Figures 1A, B, E, F). The

relationships with radial kurtosis were widespread across white

matter tracts, such as the anterior thalamic radiation, corticospinal

tract, cingulum, forceps minor, inferior fronto-occipital fasciculus,

uncinate fasciculus, superior longitudinal fasciculus, especially but

not exclusively in the right hemisphere. The relationships with

intra-axonal diffusivity were also present along these tracts but were

more circumscribed. There was a subset of overlapping voxels, such

as in the anterior thalamic radiation, that were significant for both

these metrics, but the associations were predominantly in different

voxels. None of the other microstructure metrics showed significant

associations with purpose in life. These findings suggest a buffering

effect of purpose in life against corresponding age-related changes

in radial kurtosis and intra-axonal diffusivity (Figures 1C, D, G, H)

visualized after adjusting for purpose in life, sex, education,

and race.
3.2 Associations between purpose in life
and hippocampal microstructure

Consistent with findings in the whole brain white matter mask,

greater purpose was associated with higher radial kurtosis (b = 0.00267,

p < 0.001) and lower intra-axonal diffusivity (b = -0.00271, p = 0.019)

in the right hippocampus while adjusting for age, sex, education, and

race (Figures 2A, B, E, F). The directionality of these relationships with

purpose in life opposed the directionality of corresponding

relationships of age with radial kurtosis and intra-axonal diffusivity

in the bilateral hippocampus (Figures 2C, D, G, H), visualized after

adjusting for purpose in life, sex, education, and race. Greater purpose

was also associated with higher mean kurtosis (b = 0.00179, p < 0.001)

whereas older age was associated with lower mean kurtosis

(Supplementary Figure 1A-D).

Additionally, diffusion metrics that are sensitive to changes in

axonal health showed converging relationships with purpose in life

and age in the hippocampus. Greater purpose was associated with

higher neurite density index (b = 0.00122, p = 0.021) and higher

axonal water fraction (b = 0.00062, p < 0.001) in the right

hippocampus (Figures 3A, B, E, F), adjusting for age, sex,

education, and race. In contrast, higher age was associated with

lower neurite density and lower axonal water fraction in the

bilateral hippocampus (Figures 3C, D, G, H), visualized after

adjusting for purpose in life, sex, education, and race.
4 Discussion

The present study tested the hypothesis that higher levels of

self-reported feelings of purpose in life would be associated with

better brain health as indicated by whole brain white matter and

hippocampal microstructural metrics. We found preliminary

support for the hypothesis in whole brain white matter and more

broadly in the hippocampus. Greater purpose in life was associated

with higher radial kurtosis and lower intra-axonal diffusivity in both

white matter and the right hippocampus. Additionally, greater
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purpose was associated with higher mean kurtosis, neurite density

and axonal water fraction in the right hippocampus. These findings

were adjusted for age, sex, education, and race, suggesting that

purpose in life explained some of the variance in brain health
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independent of these variables that are known to be associated with

brain health among aging individuals. Age is a powerful predictor

for adverse microstructural differences and in our work, age showed

expected relationships with the various diffusion metrics, whereas
A B

C D

E F

G H

FIGURE 1

Relationships of white matter microstructure metrics with purpose in life and age. Scatter plots visualizing voxel wise relationships in whole brain
white matter mask between (A) radial kurtosis and purpose in life, and (E) intra-axonal diffusivity and purpose in life. Each data point represents the
mean of all significant voxels for one individual, adjusted for age, sex, education, and race. As an aid to understanding the buffering effect of
purpose, corresponding scatter plots between (C) radial kurtosis and age, and (G) intra-axonal diffusivity and age are visualized, adjusted for purpose
in life, sex, education, and race. For each of the above metrics, representative brain slices (B, D, F, H) of the population template show voxels with
significant relationships (at p < 0.05, family wise error corrected) with the color bars indicating p-values. Brain images are shown in radiological
convention (left hemisphere is shown on the right side in coronal and axial views).
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FIGURE 2

Relationships of hippocampal microstructure metrics with purpose in life and age. Scatter plots visualizing voxel wise relationships in bilateral
hippocampal mask between (A) radial kurtosis and purpose in life, and (E) intra-axonal diffusivity and purpose in life race after removing influential
outliers, if any. Each data point represents the mean of all significant voxels for one individual, adjusted for age, sex, education, and race. There was
one influential outlier for the model with intra-axonal diffusivity. Results were consistent with and without the outlier, but the relationship became
weaker after outlier removal. As an aid to understanding the buffering effect of purpose, corresponding scatter plots between (C) radial kurtosis and
age, and (G) intra-axonal diffusivity and age are visualized, adjusted for purpose in life, sex, education, and race. For each of the above metrics,
representative brain slices (B, D, F, H) of the population template show voxels with significant relationships (at p < 0.05, family wise error corrected)
with the color bars indicating p-values. Significant relationships with purpose in life were localized to the right hippocampus whereas relationships
with age were found in both hemispheres. Brain images are shown in radiological convention (left hemisphere is shown on the right side in coronal
and axial views).
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FIGURE 3

Additional relationships of hippocampal microstructure metrics with purpose in life and age. Scatter plots visualizing voxel wise relationships in
bilateral hippocampal mask between (A) neurite density index and purpose in life, and (E) axonal water fraction and purpose in life after removing
influential outliers, if any. Each data point represents the mean of all significant voxels for one individual, adjusted for age, sex, education, and race.
There was one influential outlier for the model with neurite density index. Results were consistent with and without the outlier, but the relationship
became weaker after outlier removal. As an aid to understanding the buffering effect of purpose, corresponding scatter plots between (C) neurite
density index and age, and (G) axonal water fraction and age are visualized, adjusted for purpose in life, sex, education, and race. For each of the
above metrics, representative brain slices (B, D, F, H) of the population template show voxels with significant relationships (at p < 0.05, family wise
error corrected) with the color bars indicating p-values. Consistent with the other findings, significant relationships with purpose in life were
localized to the right hippocampus whereas relationships with age were found in both hemispheres. Brain images are shown in radiological
convention (left hemisphere is shown on the right side in coronal and axial views).
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purpose in life showed opposing relationships consistent with our

hypothesis of its role as a resilience factor for brain health.

Radial and mean kurtosis values are known to be negatively

correlated with age in both white and gray matter in midlife (59).

Among older adults, radial and mean kurtosis values were found to

be lower in mild cognitive impairment and Alzheimer’s disease, as

compared to controls, in both white matter regions and in the

hippocampus (37, 60). We replicated these findings of negative

relationships of radial and mean kurtosis with age, confirming that

these metrics are sensitive to age associated decline in brain health.

Thus, the higher values of mean and radial kurtosis found in

association with greater purpose are suggestive of better brain health.

Intra-axonal diffusivity is a marker of axonal injury, and is

decreased with axonal beading (focal enlargements separated by

constrictions) in response to ischemic stroke (44, 61). However, this

metric was not found to be effective in differentiating between

controls and patients with Alzheimer’s disease, suggesting that

disease progression along the Alzheimer’s disease continuum is

less dependent on intra-axonal environment (44). In our sample,

age was positively associated with higher intra-axonal diffusivity in

both white matter and the hippocampus, indicating age-related

changes in the intra-axonal environment. Because purpose was

negatively associated with this metric after adjusting for age and

other covariates, greater purpose may buffer against age-related

changes in the intra-axonal environment.

Although the association between purpose in life with radial

kurtosis and intra-axonal diffusivity were widespread in whole brain

white matter, there were few regions with a strong overlap. This is

not unexpected, as radial kurtosis is sensitive to microstructural

differences but is not based on a biophysical model, unlike the intra-

axonal diffusivity which, is more specific and biologically

interpretable. One of the reasons for employing multiple diffusion

metrics in our study was to identify measures that are more

sensitive to our question of interest and to examine overlap and

complementarity. Further research is needed to replicate and to

investigate the effects of purpose on these microstructural indices.

The association of purpose in life with several diffusion metrics

showed consistent and converging results suggestive of better

microstructural integrity in the right hippocampus. Axonal water

fraction is a marker of axonal integrity from the WMTI model (45).

Lower axonal water fraction may suggest reduction in axons in

response to cortical atrophy (44, 62). Neurite density index is a

closely related axonal marker from NODDI that shows similarity

with myelin maps (63). In our sample, even after adjusting for

covariates, these metrics exhibited a positive association with

purpose in life. This suggests that participants with greater levels

of purpose may have better-preserved myelinated axons.

The consistent laterality in findings of associations of purpose in

life with the right hippocampus is intriguing. Hemispheric

differences in neuronal morphology and density between the

hippocampi may underlie differences in memory function and

subserve vulnerability to disease (64). Interestingly, in a spatial

navigation paradigm, activation of the right hippocampus was

predictive of other-centric spatial representation, whereas

activation of the left hippocampus predicted the use of a self-

centric representation (65). Additional findings linking the right
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hippocampus with spatial processing whereas the left with verbal

and autobiographical processing (66, 67) suggest the left and right

hippocampi may play different functional roles or at least be

involved to different degrees in some cognitive functions. Our

finding of higher levels of purpose in life being associated with

better microstructural metrics in the right hippocampus need to be

investigated further to better understand this lateralized finding and

its implication for cognitive functioning.

While diffusion tensor and kurtosis metrics are quite sensitive to

changes in microstructure, they are difficult to interpret in terms of

changes in the underlying biology (35, 45). Variations of the

standard model of microstructure such as NODDI and WMTI

partial out each voxel into multiple compartments and provide

more interpretable information (68). For example, although DTI

and NODDI metrics both showed age related declines in the

hippocampus, the NODDI model measures showed stronger

relationships and explained more of the age-related variance (69).

Each of these approaches make assumptions that need to be

considered. For example, NODDI is known to overestimate the

neurite density index, and cerebrospinal fluid fraction in white

matter (70). Since kurtosis metrics and related estimates are

susceptible to noise artifacts and confounds, we used adaptive

smoothing to overcome the black hole related shrinkage bias that

occurs when smoothing DKI and WMTI metrics. Newer improved

models are being developed to try and address limitations (71, 72).

The converging findings from these different DWI models present

intriguing evidence of their applicability in the hippocampus and

similar regions that needs to be tested further.

What might be the mechanisms underlying the positive

relationship of purpose in life with the various indices of

microstructural health? A review of the literature suggested that

greater feelings of purpose might mitigate health risks by

enhancement of other psychological and social resources that

buffer against stress, by indirect effects by modification of health-

related behaviors, and potentially by direct influence on biological

pathways (20). For example, in the Rush Memory and Aging

Project, lower levels of purpose in life have been associated with

greater loneliness, more anxiety-related harm avoidance, older age

and more depressive symptoms, whereas higher levels of purpose in

life are associated with greater perceived social support, more social

activities, more years of education, higher income, more intact

cognition in late-life, and more middle-age cognitive activities (25).

Collectively, these associations suggest modifiable targets for

intervention to enhance feelings of purpose in life, which may in

turn enhance brain health.

Purpose in life has been defined as “a central, self-organizing life

aim that organizes and stimulates goals, manages behaviors, and

provides a sense of meaning” (13). Other theorists have defined

purpose as “a stable and generalized intention to accomplish

something that is at once meaningful to the self and of consequence

to the world beyond the self” (73). In the present work, we define

purpose as a feeling that one’s life has meaning, and having goals,

intentions, and a sense of direction for one’s life (14, 15). This sense of

leading a meaningful and worthwhile life is associated with better

lifestyle choices such as exercise and diet, sleep quality, better mental

health and physical fitness, stronger personal and social relationships,
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prosocial activities such as volunteering and even greater financial

outcomes (74). Several of these behaviors are related to better brain

health (75, 76), suggesting that feelings of purpose in life might

encourage healthier lifestyle choices that buffer against stress and

promote resilience to adversity. More directly, purposeful activity

may facilitate experience dependent changes in brain circuitry related

to efficient decision making, alter reactivity to emotional stressors and

more broadly, enable healthier self-regulation (77). Although our

analyses examining associations with a self-report measure and

cross-sectional data do not permit strong claims about the

mechanisms, the diffusion MRI models offer insights into the

probable neurobiological pathways through which purpose may be

exerting salubrious effects. Our findings point toward alterations in

axonal health and myelination, although a limitation with our current

findings is that the most robust effect was found in the hippocampus,

where these metrics are less straightforward to interpret. Replication of

our findings with larger samples is warranted. The next wave of follow-

up MIDUS data collection is already underway, providing future

opportunities for longitudinally tracking the relationship between

purpose in life, cognition, and diffusion metrics of brain health.

In general, purpose in life develops until mid-life and

subsequently declines with age (14, 78), although the benefits of

preserved purpose in life in old age remain relevant (79). There is

also evidence that individual trajectories in the sense of purpose stay

resilient to the onset of health adversities (80). It is noteworthy that

adversities such as cognitive dysfunction and dementia in late life

are preceded by a long period of pre-symptomatic accumulation of

pathologies (81). Given the evidence that purpose in life may delay

progression to dementia and mortality by several years (19), the

time gap between initial detection of brain pathologies and onset of

symptoms represents a last window of opportunity for the

application of effective interventions that can make a profound

impact on personal and public health. Effective interventions to

facilitate greater purpose in life are therefore very important

throughout the life span.

Indeed, there is evidence that purpose can be developed across

the life-course. The 4-H program and development of frameworks

such as the pedagogy of care using processes such as exploration,

engagement, reflection, articulation, and actualization may support

development of purpose among youth (82, 83). Interventions to

clarify values and develop purpose in life are now freely available

(77) and, more broadly, interventions for psychological well-being

are available at scale with refinements being considered to provide

meaningful effects (84). The recent call to consider prosociality, or

positive other-regarding behaviors and beliefs, as a public health

priority (85) would benefit from interventions that facilitate

clarification of values and foster development of purpose at the

individual and societal level (86).

In summary, we found evidence that greater sense of purpose in

life is associated with indices of brain microstructure suggestive of

better brain health, even when accounting for age, sex, race, and

education. These associations were strongest in the right

hippocampus, a brain structure that is both vulnerable to stress

but is highly plastic. Our findings suggest that greater sense of
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purpose in life may support better brain health and add to the

accumulating evidence recognizing a need for interventions to

augment and maintain the sense of purpose for healthy and

active aging, including brain health.
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