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Introduction: Post-traumatic stress disorder (PTSD) is a psychiatric disorder

triggered by exposure to a life-threatening or sexually violent traumatic event,

and is characterized by symptoms involving intrusive re-experiencing, persistent

avoidance of associated stimuli, emotional and cognitive disturbances, and

hyperarousal for long periods after the trauma has occurred. These debilitating

symptoms induce occupational and social impairments that contribute to a

significant clinical burden for PTSD patients, and substantial socioeconomic

costs, reaching approximately $20,000 dollars per individual with PTSD each

year in the US. Despite increased translational research focus in the field of PTSD,

the development of novel, effective pharmacotherapies for its treatment remains

an important unmet clinical need.

Observations: In this review, we summarize the evidence implicating

dysfunctional activity of the amygdala in the pathophysiology of PTSD. We

identify the transient receptor potential canonical (TRPC) ion channels as

promising drug targets given their distribution in the amygdala, and evidence

from animal studies demonstrating their role in fear response modulation. We

discuss the evidence-based pharmacotherapy and psychotherapy treatment

approaches for PTSD.

Discussion: In view of the prevalence and economic burden associated with

PTSD, further investigation is warranted into novel treatment approaches based

on our knowledge of the involvement of brain circuitry and the role of the

amygdala in PTSD, as well as the potential added value of combined

pharmacotherapy and psychotherapy to better manage PTSD symptoms.
KEYWORDS

post-traumatic stress disorder, PTSD, amygdala, pathophysiology, pharmacotherapy,
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1 Introduction

Post-traumatic stress disorder (PTSD) is a psychiatric condition

characterized by a history of exposure to a life-threatening or

sexually traumatic event leading to re-experiencing, avoidance,

negative thoughts, and hyperarousal symptoms resulting in

occupational and social function impairments (1). The

development of novel and efficacious pharmacotherapies for this

disorder represents an important unmet clinical need, as no new

drugs have been approved by the US Food and Drug

Administration (FDA) for PTSD treatment since sertraline (1999)

and paroxetine (2000) (2–4). Approximately 58% of PTSD clinical

trial participants still meet diagnostic criteria following cognitive

behavioral therapy and only 32%–66% achieve a sufficient level of

functioning (5, 6). In a meta-analysis of 66 randomized controlled

trials assessing PTSD medication efficacy, 42% of SSRI-treated

patients did not demonstrate symptom improvement, and varying

efficacy and tolerability of current medications suggests further

research is warranted (7). Despite remarkable progress in our

understanding of the neurobiology of PTSD over the past 15

years (8), further investigation of the biological correlates and

pathological mechanisms of PTSD symptoms are required to

enhance diagnosis and treatment (9). Thus, considering PTSD

prevalence and the significant economic and clinical burden

associated with the disorder at a societal and individual level,

uncovering the psychosocial and biological correlates of PTSD is

essential in assessing the current treatment landscape and

facilitating emerging therapy development.
2 Observations

2.1 PTSD

Diagnosis of PTSD is based on exposure to actual or threatened

death, serious injury, or sexual violence, according to the Diagnostic

and Statistical Manual of Mental Disorders 5th Edition (DSM-5) (1).

Traumatic exposures can vary and confer diverse levels of risk for

PTSD depending on their nature and severity (10). Individuals with

PTSD experience symptoms in 4 domains: intrusive re-

experiencing, persistent avoidance behaviors, emotional and

cognitive disturbances, and hyperarousal and reactivity, including

difficulty sleeping and concentrating (1, 4, 11). Although remission

can occur within months of onset in some cases, symptoms typically

last for many years (10).

A systematic literature review of PTSD prevalence data in the

United States from 2015 to 2019 reported that the 1-year prevalence

of PTSD among the civilian population ranged from 2.3% to 9.1%,

with a lifetime prevalence of 3.4%–26.9%, while for the military/

veteran population, rates were higher at 6.7%–50.2% and 7.7%–

17.0%, respectively (12). The large prevalence variation in military

groups was attributed to heterogeneity in study design and study

population (12). Despite increased prevalence, the military/veteran

population only accounts for a small proportion of the

PTSD population. There are double the number of men and 25
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times the number of women with PTSD in the civilian population

by comparison, highlighting that PTSD is not exclusive to veterans/

military service members (13). Women in the US tend to have

higher lifetime PTSD prevalence rates than men (8%–13% for

women, 4%–6% for men), and 2018 estimates calculated that

women accounted for 66.4% of the overall PTSD population in

the US (12, 13). The societal impact of PTSD in 2018 was calculated

to have an economic burden of $232.2 billion in the US, with costs

of ~$20,000 per individual living with PTSD (13). A quality

assessment of recent economic burden and cost-of-illness in

PTSD studies reported that cost varied according to the type and

severity of the associated trauma; sexual assault in women was

associated with a high economic burden (14). As PTSD is

underdiagnosed and undertreated (12, 13), its true economic

burden likely exceeds these estimates.

2.1.1 Neurobiology of PTSD
Although up to 84% of the general population will experience a

traumatic event (15), only a fraction develop PTSD, indicating that

PTSD susceptibility varies depending on risk and resiliency factors

including the nature and severity of the aversive event, sex, inter-

individual differences in coping styles and genetics, and the

neurodevelopmental period in which the trauma was experienced

(16–20). The specific biological and environmental factors that

determine susceptibility and resilience to PTSD pathology remain

unclear (9), necessitating better understanding of the

neurobiological processes that contribute to PTSD pathobiology.

2.1.2 The role of the amygdala
The amygdala complex is situated in the temporal lobe of the

brain and comprises several subcortical nuclei (21–23). It is has 2

main regions: the primitive centrocorticomedial complex and the

basolateral complex (BLA) (21, 23). Functions of the amygdala

include encoding fearful stimuli, allowing the brain to direct

behavioral responses upon encountering such stimuli, as well as

playing a role in fear generalization, arousal, and reward processing;

thus, it has been widely implicated in PTSD pathophysiology (21,

24, 25).

The amygdala controls both innate fear, and acquired/learned

fear, with the latter linked to escape or avoidance behaviors to

previous noxious stimuli (22) which are associated with functional

changes in the BLA (26). Considering the important role of these

amygdala nuclei in fear conditioning, it follows that morphological

and functional changes in these regions may explain the

reinforcement of memories related to traumatic events in PTSD

(27). Reports indicate that morphological and functional changes in

the amygdala are evident, resulting in disrupted control of fear

generalization, arousal, and reward processing in individuals with

PTSD (21, 24, 25, 28, 29). Specifically, decreases in amygdala nuclei

volumes have been reported to be associated with symptoms of

PTSD (21, 24, 29). Reduced grey matter volume in limbic brain

regions including the amygdala are correlated with sleep

disturbances (insomnia and nightmares) in patients with PTSD

(30), which may contribute to symptom severity (31, 32). Analysis

of links between BLA and centrocorticomedial complex volumes
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with PTSD symptom severity in 47 young survivors from the 2011

Norwegian terror attack revealed an inverse relationship between

symptom severity and amygdala nuclei volume 24–36 months post-

trauma (21), supporting associations between these factors and

PTSD. The conflicting reports of increased amygdala activity and

reduced volumetric data is consistent with previous findings in

PTSD (33), and may be partly explained by a lack of distinction

between regional changes in specific amygdala nuclei and those of

the whole amygdala (21). A recent scoping review of structural

neuroimaging studies examining hippocampus and amygdala

subregions in adults with PTSD reported that only 5 of the 21

eligible studies focused on volume changes in the amygdala,

highlighting the anatomical complexity and methodological

challenges of establishing structural changes in this brain region

(34). Functional neuroimaging, alternatively, may hold greater

promise in understanding the role of the amygdala in PTSD

pathophysiology (35). Abnormal functional connectivity between

the amygdala and other parts of the brain has been demonstrated in

PTSD, with stronger connectivity between subregions of the

amygdala, particularly the BLA, spanning to the prefrontal cortex

(PFC) compared with healthy controls (25, 28, 35). The amygdala

communicates the salience of the threat cues to the PFC, which in

turn regulates emotional and behavioral fear responses to provide

top-down emotional control (36). It is not surprising, therefore, that

such connectivity is altered in a condition associated with enhanced

fear responses. Furthermore, white matter changes in the

ventromedial PFC that negatively correlated with symptom

severity have been demonstrated in individuals with PTSD within

2 days of experiencing traffic-accident-induced trauma (37).

Further support for BLA involvement in the regulation of fear

memories and responses is provided by animal studies

demonstrating that BLA neurons trigger hippocampal

neurogenesis in fearful contexts (38), and also play an essential

role in reinstating fear response to a previously extinguished fear

memory (39); patients with PTSD often have spontaneous and

regular traumatic memory retrieval (40).

PTSD symptoms develop not only from associative learning

such as fear conditioning, where trauma-related stimuli trigger a

fear response, but also from non-associative learning processes such

as habituation or sensitization to aversive cues (27). These non-

associative processes involve incremental escalations of defensive

fear responses to aversive or harmful stimuli that can be responsible

for pain (41). Individuals with PTSD are believed to be more

sensitive to stimuli, to over-generalize fearful stimuli or events,

and are unable to extinguish learned or conditioned fear (11).

Sensitization to neutral stimuli is evident in patients with PTSD,

for example, where the traumatic experience becomes associated

with a previously neutral stimulus that has now acquired a

threatening meaning (42).

Inflammatory biomarkers including cytokines and C-reactive

protein have shown to positively correlate with anxiety symptoms

and negatively correlate to functional connectivity between the

lower amygdala and ventromedial PFC in women with anxiety

and PTSD (43). This association between functional changes in

amygdala-PFC connectivity and stressor-induced inflammation is

also evident in healthy females that demonstrated greater neural
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activity in the left amygdala in response to negative social feedback

that correlated with greater changes in IL-6 (44). Given that

elevated serum levels of pro-inflammatory cytokines are

commonly reported in individuals with PTSD (45), and that

cytokines can cross the blood-brain barrier (46, 47), it is possible

that trauma-induced inflammation may contribute to

pathophysiological changes in stress-related brain areas such as

the amygdala (48). These findings are well supported by clinical

studies, which have shown an association between inflammation

and PTSD symptoms (45). Animal studies have also shown that

heightened inflammation impairs extinction of fear memory (49,

50), and administration of the interleukin-6 (IL-6) cytokines to the

BLA prior to extinction training impairs fear extinction memory

(51), suggesting inflammation can alter amygdala fear regulation.

Central to the brain circuitry underlying fear memory

processing in disorders such as PTSD is the lateral amygdala,

which is the input for stimuli during fear conditioning in animals

(11, 22, 52, 53). Therefore, impairment of fear or extinction

responses in individuals with PTSD may be indicative of

diminished synaptic plasticity, particularly in pathways associated

with the lateral amygdala where sensory input is initially processed

(22, 52, 54, 55). This early synaptic plasticity in response to fear

stimuli in the lateral amygdala is essential in signaling the presence

of danger to other connected regions such as the PFC,

hippocampus, and hypothalamus so that defensive behavioral and

physiological stress responses can be readied for the fight/flight

reaction (27, 56). Overall, the role of the amygdala in fear responses,

and the dysfunctional activity and connectivity of this brain region

in the fear conditioning response and impaired fear extinction in

PTSD, is strongly supported (27, 36, 56).

2.1.3 Transient receptor potential canonical ion
channel subfamily C in the CNS

To date, 7 types of transient receptor potential canonical

(TRPC) ion channels have been identified (57, 58). TRPC

channels are distributed in several brain areas, particularly the

amygdala and hippocampus (22, 59), and are reported to be

moderately expressed in rodent PFCs (60). TRPC channel

activation leads to an influx of Na+ and Ca2+ ions causing both

membrane depolarization and elevation of intracellular Ca2+,

impacting significantly on cellular function and intracellular

signaling (58). The diverse structural properties and distribution

of the various TRPC channel types determine the different functions

associated with their activation, but they can be broadly described as

cellular sensors, due to their regulation of intracellular calcium (58).

As they have diverse biological roles, TRPCs are considered

potential drug targets for a broad range of disorders such as

respiratory disorders, diabetes, cancer, as well as neurological and

psychiatric diseases (61).

In the limbic regions, TRPC1, TRPC4, and TRPC5 are the most

common, primarily within hippocampal pyramidal cells and the

amygdala (62–64). TRPC4 and TRPC5 are homologous proteins

that form ion channels involved in the regulation of neuronal growth,

axon guidance, synaptic plasticity, and cellular excitability (60).

Impairments in these cellular processes contribute to important

brain functions, including working memory, hippocampal
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dysfunctions such as seizures, and fear responses (62, 64, 65). TRPC

knockout mice (TRPC5−/−) exhibited diminished fear-related

behaviors, indicating that TRPC5 plays a key role in fear responses

in mice (22). A similar study in TRPC4−/− mice demonstrated

diminished anxiety or innate fear relative to wild-type mice (59).

Interestingly, these anxiolytic-like behaviors in TRPC4−/−mice were

only present in stressful test conditions (bright versus dim lighting)

suggesting the TRPC4 effects are more readily revealed in anxiety-

provoking situations (59), a desirable effect in the treatment of PTSD.

However, no differences in learned or conditioned fear responses

were observed in these knockouts (59). A link between TRPC

subtypes and neuroinflammation is also evident from animal

studies. Transgenic mice with IL-10 deficiency in microglial cells

that express elevated levels of pro-inflammatory cytokines also

exhibited decreased TRPC4 and TRPC5 in the hippocampus, and

decreased TRPC5 in the PFC and amygdala when compared to wild-

type control (66, 67), suggesting a link between TRPC and

neuroinflammation in stress-related brain areas. Considering the

evidence implicating amygdala involvement in PTSD symptoms

(24), the location of both TRPC4 and TRPC5 in the amygdala (22,

59, 60) and their link with local neuroinflammation (66, 67), in

addition to the reduced fear and anxiety demonstrated in knockout

mice (TRPC4−/− rodents and TRPC5−/− rodents) (22, 59), it is

reasonable to hypothesize that dampening amygdala activation of the

fear response by blocking these ion channels may reduce PTSD

symptom severity.
2.2 Current treatment strategies

2.2.1 Evidence-based approach to care
Currently, both psychological and pharmacologic strategies

are employed for PTSD management (1). Recommended forms of

PTSD treatment include psychological strategies, shared decision-

making, collaborative care, and trauma-focused therapy; both

shared decision-making and collaborative care involve reviewing
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the relevant diagnosis, available treatment options, and use of

decision aids to improve clinical outcomes (1). Manualized,

trauma-focused therapies such as prolonged exposure therapy,

eye movement desensitization and restructuring, cognitive

processing therapy, and cognitive behavioral therapy have also

been shown to reduce PTSD symptoms (1). Cognitive behavioral

therapy is also effective in alleviating PTSD-associated insomnia

(68). The efficacy of psychotherapies is strongly supported by

current literature; however, access is often limited (69). Since the

COVID-19 pandemic, internet-based delivery of treatments has

increased and offers potential avenues to widen access and reduce

costs (70). Challenges identified in clinical studies examining

efficacy of these therapies include issues with engagement and

early drop-out rates (71), which may be improved by facilitating

access to technology-based delivery or with combined efficacious

pharmacotherapy (70, 72). In recent years, non-invasive brain

stimulation techniques, including repetitive transcranial magnetic

stimulation (rTMS) and transcranial direct current stimulation

(tDCS), have demonstrated benefits in PTSD treatment (73–76).

Whereas tDCS involves introducing low-intensity electric

currents through the skull, rTMS involves repeated and rapidly

changing electric currents on the surface of the skull. Both rTMS

and tDCS have been shown to modulate cortical excitability in the

brain (76, 77), and can improve PTSD symptoms, either as a

monotherapy or as a treatment enhancement strategy with

minimal side effects (73, 74, 78). However, data relating to

treatment effects in PTSD are limited, and studies to clarify the

exact mechanisms of action of tDCS and rTMS are warranted

(75, 78).

Current clinical guidelines recommend treatment with

serotonergic antidepressants; sertraline, fluoxetine, venlafaxine, or

paroxetine as monotherapy have shown the greatest benefit with

58% of SSRI-treated patients exhibiting symptom improvement across

clinical trials compared with 35% of placebo-treated participants (1,

7). For many SSRI drugs, effects in the amygdala have been

demonstrated (Table 1). However, only sertraline and paroxetine are
TABLE 1 A summary of candidate PTSD treatment effects in the amygdalaa.

Category Treatment Development status
for PTSD

Evidence from clinical studies Effects in
the amygdala

Neuropeptide Oxytocin Phase II trial in
progress (NCT04228289)

Facilitates encoding and consolidation of salient
trauma-related memories (79)
RCT found that intranasal oxytocin administration
early post trauma reduced subsequent PTSD
symptom development in recently trauma-exposed
patients with high acute PTSD symptoms (80)

↓ Left amygdala-anterior
insula connectivity in women
with PTSD (81)
↓ Left amygdala reactivity in
patients with PTSD (men +
women) (82)
↓ Centromedial amygdala
fMRI responses to fear signals
(83)
↑ Extra-amygdala
connectivity between the
centromedial amygdala and
frontoparietal regions (83)

Orexin
receptor
antagonist

Daridorexant Phase II trial in
progress (NCT05422612)

Improved sleep outcomes and daily functioning in
patients with insomnia disorder (84)

Not anticipated to affect
the amygdala

(Continued)
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currently approved by the FDA for PTSD. Other pharmacological

treatments have also been investigated for treating sleep disturbances

in PTSD and include adrenergic inhibiting agents (prazosin,

doxazosin), clonidine, tricyclic antidepressants, serotonin and alpha-
Frontiers in Psychiatry 05
adrenoceptor antagonists (trazodone, nefazodone, mirtazapine,

cyclobenzaprine), atypical antipsychotics, gamma-aminobutyric acid

modulators (gabapentin, topiramate), and cyproheptadine (115, 116).

Additionally, while combined pharmacotherapy and psychotherapy
TABLE 1 Continued

Category Treatment Development status
for PTSD

Evidence from clinical studies Effects in
the amygdala

SSRI Fluoxetineb Phase II trial in
progress (NCT05422612)

Improved PTSD symptoms (85) ↑ Anandamide in the BLA in
mice (86)
↓ Inhibitory transmission in
BLA in mice (86)
↓ c-Fos expression in BLA in
mice (87)

Vilazadoneb Phase II trial in
progress (NCT05422612)

RCT reported no effect of vilazodone (40 mg) on
PTSD symptoms and comorbid depression (88)

-

Paroxetineb FDA approved Improved PTSD symptoms (re-experiencing,
avoidance/numbing, and hyperarousal), social and
occupational impairment, and comorbid
depression (89, 90)

↓ Amygdala volume –
possible correlation (91)

Sertralineb FDA approved Improved PTSD symptoms (92–94) Reversed ↑ amygdala activity
during emotional processing
of faces in patients with
MDD (95)

SNRI Venlafaxineb Phase IV clinical trials (NCT04961190) Improved PTSD symptoms (96) -

TRPC4/5
inhibitor

BI 1358894 Phase II clinical trial (NCT05103657) - ↓ Activity in bilateral
amygdala and left anterior
insula in response to negative
emotional faces (97)

NMDA
receptor
antagonist

Ketamine Phase II/III trials (NCT00749203;
NCT02397889; NCT04560660)

Improved PTSD symptoms (98–101); no effect on
PTSD symptoms (102)

↓ Activity in amygdala during
the processing of positive and
negative emotional faces in
patients with MDD (103)

Stimulant MDMA Phase II clinical trials (NCT04030169) Attenuated Clinician-Administered PTSD Scale for
DSM-5 score and SDS scores, and improved self-
reported symptoms when given in conjunction
with psychotherapy in PTSD (104, 105)
↑ BDNF levels in the brain

↑ BDNF expression in
amygdala in mice (106)

Psychedelic Psilocybin Phase I clinical trials (NCT05562973) ↓ Anxiety and depression in patients with cancer-
related psychological distress (107)
↓ Depression in patients with MDD (108)

↓ Amygdala response to
emotional stimuli in healthy
humans (109)
↑ Amygdala response to
fearful faces in patients with
MDD (110)
↓ Top-down amygdala-visual
cortex connectivity in healthy
humans (111)

DBS Amygdala DBS Phase I trials (NCT03416894)
(NCT02091843) in progress

- ↓ CCK-4 stimulated activity
in BLA in mice (112)

CBT In clinical trials (NCT03019497) Improved PTSD symptoms (113) ↑ Amygdala activity
associated with poorer CBT
outcomes in PTSD (114)
Bilateral amygdala activation
in response to fear correlated
with course of subsequent
PTSD symptom change
aCandidate PTSD treatments with no current evidence of effects in the amygdala have not been included.
bTherapies with FDA approval for treatment of major depressive disorder. ↓ indicates a decrease, ↑ indicates an increase.
BDNF, brain-derived neurotrophic factor; BLA, basolateral amygdala; CBT, cognitive behavioral therapy; DBS, deep brain stimulation; DSM-5, Diagnostic and Statistical Manual of Mental
Disorders 5th Edition; fMRI, functional magnetic resonance imaging; MDD, major depressive disorder; MDMA, 3,4-methylenedioxymethamphetamine; NMDA, N-methyl-D-aspartate; PTSD,
post-traumatic stress disorder; RCT, randomized controlled trial; SDS, Sheehan Disability Scale; SNRI, serotonin and norepinephrine reuptake inhibitors; SSRI, selective serotonin reuptake
inhibitors; TRPC, transient receptor potential canonical ion channel.
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approaches are recommended, randomized controlled trials have

rarely shown them to be more effective than monotherapy.

Therefore, additional studies of novel medications for use as

monotherapy or in combination with psychotherapy to manage

PTSD symptoms are warranted. A summary of candidate

treatments for PTSD, detailing evidence of efficacy from clinical

trials, and effects on the amygdala are given in Table 1.

E xp e r imen t a l a d j un c t t r e a tmen t s s u ch a s 3 , 4 -

methylenedioxymethamphetamine (MDMA), ketamine and

psychedelics, for example psilocybin, have also been proposed for

treating PTSD (117, 118). Recent randomized controlled trials in

patients with chronic PTSD demonstrated that ketamine, an

antagonist of the glutamate N-methyl-D-aspartate receptor,

administered intravenously as either single or six repeated

infusions over a 2-week period, resulted in clinically/significant

improvements in PTSD symptoms compared with midazolam (98,

99). The benefits of ketamine in patients with PTSD and comorbid

chronic pain or major depressive disorder (MDD) have also been

demonstrated with comparable improvement in both PTSD and co-

morbid symptoms (100, 101). However, a more recent study

reported no significant effect of repeated ketamine administration

over 4 weeks on PTSD symptoms (102). Similarly, varied results of

ketamine on anxiety-like behaviors have been reported in animal

models (119–122). Nevertheless, the magnitude of the effect on

PTSD symptoms across other clinical trials, and the fact that

esketamine is already FDA-approved for treating depression,

suggest that the potential for ketamine as an alternative to SSRI

treatments, or administered alongside psychotherapy, warrants

further investigation in PTSD (118, 123). MDMA-assisted

psychotherapy is currently in FDA Phase III clinical trials and is
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considered to facilitate psychotherapy by decreasing amygdala

activation during therapeutic sessions, allowing participants to

revisit distressing memories in a state of emotional security.

Nevertheless, MDMA treatment has risks such as serotonergic

depletion that can induce temporary states of anhedonia, lethargy,

irritability, depression, anxiety, altered pain thresholds, and sleep

disturbance, particularly in females (72, 124). Psychedelics and

MDMA induce profound changes in perception, mood, and

experiences of time and/or space, necessitating therapists to

remain with patients while processing the experience and until

the psychomimetic effects subside. As access to these treatments

may be unavailable and/or cost prohibitive, newer treatments

without such side effects or therapeutic burden are urgently needed.
2.3 Emerging therapy

2.3.1 BI compound
In a Phase I clinical trial, BI 1358894 was well tolerated at doses

of ≤200 mg, with a favorable pharmacokinetic (PK) profile in

healthy Caucasian volunteers (125). Typically, TRPC4 and

TRPC5 channels remain closed when not activated, which blocks

calcium from entering the axon terminal, preventing the

transmission of a neuronal signal and a physiological response

(126, 127). When a stimulus is detected, TRPC4 and TRPC5

channels open, calcium enters the axon terminal and neuronal

signals are transmitted, generating a physiological response (62,

126–128). Therefore, TRPC4/5 inhibition by BI 1358894 should

reduce channel activation, preventing calcium influx, thereby

dampening the related physiological responses (Figure 1).
FIGURE 1

TRPC 4/5 inhibitor mechanism of action. Inhibition of TRPC 4/5 prevents influx of cations including calcium (1) and reduces neuronal activity of the
amygdala (2). Reduced amygdala activity normalizes cortico-limbic system signaling, improving behaviors associated with dysfunctional emotional
processing (3). These effects are mediated through modulation of biological processes (4) that impact on various brain functions of the amygdala (5).
TRPC, transient receptor potential canonical ion channel.
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Further study of BI 1358894 in 73 patients with MDD treated

with BI 1358894 100 mg, citalopram 20 mg, or a matched placebo

tablet, found reduced activation in several brain regions involved in

emotional processing on fMRI, including the amygdala in those

treated with BI 1358894 (97). BI 1358894 induced signal reduction

in bilateral amygdala, the left anterior insula, the anterior cingulate

cortex, and the left dorsolateral PFC in response to negative faces or

scenes, whereas the attenuating effect of citalopram was limited to

right amygdala activity in response to negative facial expressions

(97). This agent may be beneficial in the reduction of PTSD

symptoms. Given the association between the amygdala and

PTSD, modulating the amygdala response with a pharmacologic

agent could lead to improved compliance and completion of

trauma-focused psychotherapy, thus providing greater PTSD

symptomology improvements.
3 Discussion

Despite recent innovations in both psychological and

pharmacologic interventions for PTSD, an unmet clinical need to

improve treatment strategies remains (1). Given its significant

prevalence and economic burden, novel treatment approaches are

urgently needed to better manage symptoms.
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