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One size does not fit all:
notable individual variation
in brain activity correlates
of antidepressant
treatment response
Gwen van der Wijk1*, Yaruuna Enkhbold1, Kelsey Cnudde1,
Matt W. Szostakiwskyj1, Pierre Blier2,3, Verner Knott2,3,
Natalia Jaworska2,3 and Andrea B. Protzner1,4,5

1Department of Psychology, University of Calgary, Calgary, AB, Canada, 2Institute of Mental Health
Research, Affiliated with the University of Ottawa, Ottawa, ON, Canada, 3Department of Cellular &
Molecular Medicine, University of Ottawa, Ottawa, ON, Canada, 4Hotchkiss Brain Institute, University
of Calgary, Calgary, AB, Canada, 5Mathison Centre, University of Calgary, Calgary, AB, Canada
Introduction: To date, no robust electroencephalography (EEG) markers of

antidepressant treatment response have been identified. Variable findings may

arise from the use of group analyses, which neglect individual variation. Using a

combination of group and single-participant analyses, we explored individual

variability in EEG characteristics of treatment response.

Methods: Resting-state EEG data and Montgomery-Åsberg Depression Rating

Scale (MADRS) symptom scores were collected from 43 patients with depression

before, at 1 and 12 weeks of pharmacotherapy. Partial least squares (PLS) was

used to: 1) identify group differences in EEG connectivity (weighted phase lag

index) and complexity (multiscale entropy) between eventual medication

responders and non-responders, and 2) determine whether group patterns

could be identified in individual patients.

Results: Responders showed decreased alpha and increased beta connectivity,

and early, widespread decreases in complexity over treatment. Non-responders

showed an opposite connectivity pattern, and later, spatially confined decreases

in complexity. Thus, as in previous studies, our group analyses identified

significant differences between groups of patients with different treatment

outcomes. These group-level EEG characteristics were only identified in ~40-

60% of individual patients, as assessed quantitatively by correlating the

spatiotemporal brain patterns between groups and individual results, and by

independent raters through visualization.
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Discussion: Our single-participant analyses suggest that substantial individual

variation exists, and needs to be considered when investigating characteristics

of antidepressant treatment response for potential clinical applicability.

Clinical trial registration: https://clinicaltrials.gov, identifier NCT00519428.
KEYWORDS
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1 Introduction

Neuroscience research on major depression (MD) has greatly

improved our understanding of the brain alterations accompanying

the disorder. Accumulating studies comparing patients with MD to

controls have highlighted both local and global alterations in brain

network function, indicating that MD might best be characterized

as a network disorder (1, 2). Studies have also examined

relationships between brain network characteristics and

antidepressant treatment success; this is especially relevant given

the variability in treatment outcomes in MD (e.g. 3). Despite high

hopes for the application of such research in clinical practice,

findings have been variable, and no robust diagnostic or

prognostic information for individual patients have been reported

to date, or are being implemented routinely (4, 5).

Functional connectivity, which is an index of brain network

function that measures the level of synchronized activity between

brain regions, has shown promise for revealing network

characteristics associated with treatment success (6–9).

Electroencephalography (EEG) studies investigating associations

between treatment success following pharmacotherapy and

functional connectivity found that weaker low frequency (delta,

theta and alpha) connectivity at baseline, and a decrease in

connectivity at these frequencies in right frontal and temporal

electrode pairs was associated with better outcomes (6, 9).

However, increased alpha connectivity with treatment has also

been associated with better treatment outcomes (8). In the beta

frequency band, some studies found lower pre-treatment

connectivity and an early increase in connectivity, again mostly at

frontal, temporal and central sites, to be associated with a better

response (7, 8), while others did not find any treatment-related

effects in beta connectivity (6), further highlighting the variability of

findings in this context.

Researchers have also investigated network dynamics in MD by

examining complexity in brain signals, which provides

complementary information to more traditional measures of

brain network function (10). Signals are considered to be complex

when they have both stochastic and deterministic properties, and

thus are neither completely predictable nor entirely random (11).

Some studies suggest that patients with MD exhibit greater signal
02
complexity than controls (12–15), and decreases in complexity have

been associated with symptom improvement (16, 17). In contrast,

Čukić and colleagues (18) found higher complexity in patients in

remission from MD compared to both currently depressed patients

and controls. Importantly, most of the discussed studies assessed

complexity only at high temporal resolutions (1-10 milliseconds

between datapoints). Our group found no association between

treatment response and complexity at these fine temporal scales

prior to treatment, but demonstrated that greater treatment

response was associated with greater complexity at lower

temporal resolutions (i.e. 20-40ms; 19).

These variable findings have been attributed to the intrinsically

heterogeneous nature of depression (3, 20, 21), and not just in terms

of symptom profiles, which alone can present with over 1000

unique symptom profiles (22). Other sources of heterogeneity

include age of onset, chronicity and severity of depression,

psychiatric comorbidities, as well as sex and gender differences

(23, 24). In this context, group analyses using small to moderate

samples could easily lead to variable findings, which may account

for difficulties identifying robust diagnostic or prognostic classifiers.

Group analyses tend to capture central tendencies in the data and

treat individual variation outside of these common features as noise;

as such, this might result in somewhat different commonalities

depending on the patient sample included in each study. Evidence

of such individual divergence from group level findings in brain

recordings was recently shown by our group in MD, where we

quantified individual differences in fMRI functional connectivity

(resting state and task, with task effects revisualized) from patients

and controls. Individual differences in functional connectomes

accounted for >40% of the explained variance in the data. Group

differences were significant but much smaller for sex, depression

diagnosis and its treatment which accounted for only about 5% of

the variance together (25, preprint). These results underscore the

importance of exploring individual variation in relation to group

findings in psychiatric research.

Based on this work, we sought to characterise the extent to

which group level findings are able to describe individuals. We

examined EEG connectivity and complexity in data from a

registered clinical trial comparing mono- vs. dual-therapy with

antidepressant medications (escitalopram and bupropion) whose
frontiersin.org
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efficacy has already been established, and for which group results on

brain function have been investigated and reported (e.g., 19, 26–28).

In our study, we novelly focused on brain comparisons betweenMD

groups with different treatment outcomes and examined how well

such group differences translate to individuals. To our knowledge,

the latter has not yet been done in the context of MD.

Similar to other studies in this field (e.g., 7, 8, 18), our sample

consisted of 43 well-characterized patients, receiving one of three

antidepressant medication regimens (escitalopram, buproprion or

buprioion+escitalopram) for 12 weeks. For group analyses, patients

were divided into eventual antidepressant pharmacotherapy

responders (≥50% symptom improvement on the Montgomery-

Åsberg Depression Rating Scale [MADRS] from baseline to 12

weeks of treatment) and non-responders (<50% improvement).

EEG was measured at baseline, and after 1 and 12 weeks of

treatment. We identified patterns of change in EEG connectivity

and complexity at the group level in responders and non-

responders, and examined the extent to which each individual’s

results conformed to their own group’s pattern through single-

participant analyses. Based on the most consistently reported

findings from previous literature, we expected that as a group,

responders would exhibit decreased connectivity at lower

frequencies (delta, theta and alpha) with treatment, and decreased

complexity in response to pharmacotherapy (6, 7, 9, 16). Based on

our work quantifying individual differences in MD with fMRI

(25, preprint), we expected significant individual variation around

the patterns found in responder and non-responder groups. Here

we map what this variation looks like.
2 Methods

An overview of the data collection, processing, and analysis

procedure can be found in Figure 1.
2.1 Participants

Fifty-three adults with a primary diagnosis of major depressive

disorder (MD), as assessed by a psychiatrist with the Structured

Clinical Interview for the Diagnostic and Statistical Manual of Mental

Disorders-Fourth Edition (Text Revision) DSM-IV-TR [SCID-IV-

TR] (29), participated in this study, as previously described (19).

Briefly, patients were excluded if they had any other Axis I disorder

(except for anxiety disorders), recent (< 6 months ago) problems with

substance abuse/dependence, an unstable medical condition,

significant suicide risk, seizure history, or if they had been

previously treated for their current depressive episode with the

study medications. Medicated patients underwent a supervised

washout period prior to study commencement (>5 weeks for

fluoxetine, 1 week for other medications, consistent with wash-out

protocols). As part of a clinical trial conducted between August 2007

and March 2012 (28, 30), patients received either escitalopram (ESC)

and placebo, bupropion (BUP) and placebo, or a combination of the

two medications for 12 weeks. Assignment to a specific treatment

regimen was randomized (double blind).
Frontiers in Psychiatry 03
Depressive symptoms were assessed using the MADRS (31, 32),

every week during the first 4 weeks, and biweekly for the remaining

8 weeks. Dosage was increased if tolerated and remission was not

yet reached (average dose at 12 weeks for the current sample: dual

treatment: ESC = 32 mg, BUP = 379 mg; monotherapy: ESC = 34

mg, BUP = 425 mg). All patients had a baseline MADRS score ≥ 22.

Patients whose MADRS scores improved ≥50% from baseline to 12

weeks were considered responders (R), while those who improved

<50% were considered non-responders (NR). Due to participant

drop-out and issues with EEG data quality, 10 participants were

excluded, leaving 43 participants for data analysis (i.e. complete

datasets at baseline, week 1 and 12). Of these, 25 were responders

and 18 were non-responders. Demographic and clinical

characteristics can be found in Table 1 (statistically compared on

pertinent variables). All participants provided written informed

consent and were reimbursed $30 CAD/testing session. This

study was approved by the Royal Ottawa Health Care Group and

University of Ottawa Research Ethics Boards.

We conducted power analyses in G*Power (33) to assess the

statistical power our sample afforded us. As no established way

exists to conduct power analyses for our multivariate statistical

approach (partial least squares - see below), we estimated power

based on the univariate model that most closely matched our

experimental design, namely a 2 (responders vs non-responders)

x 3 (baseline, week 1, week 12) mixed ANOVA. We determined that

our sample size is sufficient to detect small within-subject and

moderate between-subject effects at >80% power, and these

calculations are in line with sample size guidelines proposed by

Cohen and colleagues (34).
2.2 EEG data collection

Resting state EEG recordings were collected before the start of

treatment (baseline), 1 week and 12 weeks after treatment initiation

at the Royal Ottawa Mental Health Centre. Participants abstained

from caffeine and nicotine >3 hours prior to testing, and did not

take any psychotropic medications, other than the prescribed

antidepressants. Two 3-minute resting-state EEG recordings were

collected, one with eyes open (EO) and one with eyes closed (EC),

while participants sat in a temperature- and light-controlled testing

chamber. Ip and colleagues (35) showed that 3-minute EEG

recordings are enough to extract reliable EEG characteristics in

the theta, alpha and beta bands using a test-retest design.

Gudmundsson and colleagues (36) furthermore, examined

reliability in EEG spectral power, complexity and connectivity,

and found decent reliability with 40 seconds of data included in

analysis. The order of EO and EC testing was counterbalanced

between participants and sessions. The rationale for these short eyes

open/eyes closed recordings was to mitigate the possibility of

sleepiness contaminating the data. Furthermore, most data

collection was done during the day (i.e., not first thing in the

morning or in the evening), though variability existed. EEG was

recorded using 32 Ag/AgCl (silver chloride) electrodes embedded in

a cap (EasyCap, Inning am Ammersee, Germany), with electrodes

positioned according to a variant of the 10-20 system (37). AFz
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FIGURE 1

Chart diagram of data analysis procedure. (A) Resting state EEG was collected from each participant at three time points: prior to treatment (T1), 1
week after starting treatment (T2), and 12 weeks after starting treatment (T3). (B) Preprocessed EEG data was used to calculate connectivity
(weighted phase lag index - WPLI) and complexity (multiscale entropy - MSE) for each participant and assessment session, resulting in a data matrix
of dimensions 99 (frequencies) * 378 (channel pairs) for WPLI and 28 (channels) * 20 (timescales) for MSE, for each individual and assessment
session. (C) These data matrices were aggregated and entered into PLS-SVD analyses. For the group analyses, we used regular (mean-centering)
PLS. In such analyses, the entered data matrix (containing WPLI/MSE values averaged over epochs for each participant) is mean-centered, meaning
the normalized average is calculated within each condition (in our case assessment sessions). This creates a mean-centered data matrix, which is
subjected to singular value decomposition (SVD). This results in latent variables (LVs), the first accounting for most of the variance, and each
remaining LV accounting for additional parts of the remaining variance (only one LV is illustrated). Each LV consists of a singular value, an observed
contrast and a singular image. The singular value indicates the strength of the effect revealed by the LV, and is used to assess the significance of the
LV through permutation testing. The observed contrast reveals the condition differences the LV represents. The singular image highlights the
elements (in our case, timescales/frequencies and channels/channel pairs) where differences in connectivity/complexity are identified. A
bootstrapping procedure is used to identify the elements that show stable differences across participants (indicated by bootstrap ratios). The singular
image is multiplied by the original data matrices for each participant and session to calculate brain scores, which reveal the individual variation in the
expression of the condition contrast. Brain scores are used to determine the 95% confidence interval around the condition means, and can therefore
show the reliability of the observed contrast. The reliable observed contrasts from the group analyses were used in the individual analyses, for which
we employed non-rotated PLS. In these analyses, the data matrices (WPLI/MSE values from single epochs), were multiplied with the condition
contrasts observed in the group analyses to examine if the same contrasts were present in individual participants. The same components (singular
value, observed contrast and singular image) are then extracted from the cross-correlation matrix and assessed the same way (through permutation
testing and bootstrap resampling). (D) We assessed the similarity between group and individual findings in two ways. 1) We correlated the singular
image from the group analysis with the singular images from each individual’s analysis. 2) We used the singular image from the group analysis to
determine the main features of the group findings, which were then used as rating criteria by two independent, blind raters using visual inspection to
rate whether or not the singular images from individual analyses matched the singular images of the group findings. While the assessment of
similarity was focused on the spatiotemporal pattern (singular images), significance and the match of observed contrasts was also checked before
assessing similarity of singular images. EEG, electroencephalography; T1, assessment session 1 (prior to treatment); T2, assessment session 2 (at 1
week of treatment); T3, assessment session 3 (at 12 weeks of treatment); WPLI, weighted phase lag index; MSE, multiscale entropy; PLS, partial least
squares; SVD, singular value decomposition; BSR, bootstrap ratio; corr, correlation.
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served as the ground, and the average of the two mastoid channels

(Tp9/Tp10) was used as the reference. Four additional channels

were placed outside the left and right eye canthi, and above and

below one eye, to monitor electrooculographic (EOG) activity. Data

was sampled at 500 Hz, and impedance was <5KW (BrainVision

Recorder, Gilching, Germany).
2.3 EEG preprocessing

EEG data were preprocessed using EEGLAB v13.4.4b (38) in

MATLAB 2014 (The MathWorks, Inc., Natick, Massachusetts).

Raw EEG data were bandpass filtered (0.5-55 Hz; slope: 12 dB/

octave) using ERPlab’s IIR butterworth filter, notch filtered at 60 Hz

(lower and upper edge: 55-65 Hz) using EEGlab’s basic FIR filter

and segmented into 2s epochs. We used an independent component

analysis (ICA) to identify and eliminate noise and ocular artifacts.

Channels with excessive noise or drift were excluded from the ICA

procedure, and subsequently interpolated using EEGlab’s spherical

spline interpolation function. The average number of interpolated

channels was 0.11, and no more than two channels were

interpolated for each participant and session (34). Epochs were

visually inspected following ICA, and those with remaining artifacts

were manually rejected. An average of 85.7 (range: 63-113) artifact

free epochs were obtained per participant, state (EC/EO) and

session (baseline, week 1 & 12), including 28 electrodes (Fp1/2;
Frontiers in Psychiatry 05
F3/4; F7/8; FC1/2; FC5/6; C3/4; CP1/2; CP5/6; P3/4; P7/8; T7/8; O1/

2; Fz/Cz/Pz/Oz). The two reference channels and two additional

channels that provided low data quality for most participants (FT9/

FT10) were excluded from analysis. There was no statistical

difference between responders and non-responders in number of

artifact-free epochs per session or state (p-values:.09-.9).
2.4 Connectivity analysis

Functional connectivity, as quantified by the weighted phase lag

index (WPLI), was calculated for each unique combination of the 28

channels (378 pairs) using the open source Fieldtrip toolbox (39) in

MATLAB. WPLI is a modified version of the phase lag index (PLI),

which was first described in 2007 by Stam and colleagues (40). It

estimates connectivity by calculating the phase angle difference

between EEG signals from two channels for each time point, and

determining the consistency in these phase lags over time. As such,

if the difference in phase between two channels is similar over time,

the PLI will be high, indicating high connectivity between two

channels. An advantage of the PLI compared to other EEG

connectivity measures is that it is less sensitive to volume

conduction, because it disregards any phase lags of 0 and p. The
WPLI also takes into account that phase lags can easily turn into

leads and vice versa (e.g. a slightly positive phase angle difference

can turn into a slightly negative phase angle difference). While the

PLI is sensitive to such small disturbances in phase lags, the WPLI

resolves this issue by giving greater weight to angle differences

around 0.5p and 1.5p (41). The result is a value between 0 and 1,

with higher values indicating stronger connectivity. WPLI was

calculated in two ways, first across epochs, as is commonly used

and enables direct comparisions with previous findings, and then

within epochs, which is less commonly used, but enables single-

participant analyses.
2.4.1 Across-epoch WPLI
Phase information was first extracted for each epoch, channel

and frequency bin (0.5-50 Hz, 0.5 Hz bins) using Fieldtrip’s fast

Fourier transformation algorithm. A Hanning taper was used for

the lower frequencies (0.5-30 Hz), while a multi-taper using the

discrete prolate spheroidal sequences (dpss) method with 2 Hz

smoothing was applied to the higher frequencies (31-50 Hz), to

optimize sensitivity of spectral content at each frequency. WPLI

values were then calculated by considering the consistency of phase

lags over epochs at each frequency bin for all channel pairs using

Fieldtrip’s connectivity function. Across-epoch WPLI was used for

the group analyses. This across-epoch method is not suitable for

single-participant analyses, because it does not allow calculation of

WPLI for individual epochs. Therefore, a second approach was used

to calculate WPLI for the single-participant analyses (34).

2.4.2 Single-epoch WPLI
Instead of extracting one phase value per epoch, phase was

determined for each time point within an epoch using a time-

frequency transformation with Morlet wavelets in the time domain.
TABLE 1 Demographic and clinical characteristics (means ± standard
error) of antidepressant treatment responders and non-responders.

Responders
(N = 25)

Non-
responders
(N = 18)

Statistics

Sex (F/M) 14/11 9/9 c2(3) = 0.15,
p = .70

Age 35.1 ± 2.1
(range: 19-57)

44.8 ± 2.7
(range: 20-63)

t(35) = 2.77,
p = .009*

Education (years) 15.4 ± 0.5 16.3 ± 0.6 t(34) = 1.20,
p = .24

Race/Ethnicity 3 Asian;
22 White

1 African;
17 White

p = .48
(Fisher’s
exact test)

Comorbid anxiety
(Yes/No)

3/22 3/15 p = .68
(Fisher’s
exact test)

Treatment regimen
(ESC+BUP/BUP
+placebo/ESC+placebo)

12/6/7 5/6/7 c2(5) = 1.79,
p = .41

Baseline MADRS score 29.4 ± 0.9 32.2 ± 1.1 t(36) = 1.91,
p = .064

MADRS score at
1 week

23.1 ± 1.6 27.9 ± 1.9 t(37) = 1.92,
p = .063

MADRS score at
12 weeks

6.0 ± 1.0 24.9 ± 1.9 t(26) = 8.85,
p <.001*
Group differences were examined using independent samples t-tests in Excel, unless reported
otherwise. * Significance at p <.05. F, female; M, male; ESC, escitalopram; BUP, bupropion;
MADRS, Montgomery-Åsberg Depression Rating Scale.
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To have reasonable temporal and frequency resolution, the length

of the wavelets was increased with frequency in regular steps, from 3

cycles at 4 Hz to 7 cycles at 50 Hz (34). Frequencies below 4 Hz were

not included as the length of our epochs (2 seconds) was too short

to provide reliable estimations at these frequencies (i.e. 3 cycles of a

1 Hz wavelet are longer than 2 seconds). WPLI could then be

calculated for individual epochs by examining the consistency of

phase lags over time points within each epoch (34). These

individual epoch data were used for the individual connectivity

analyses. To confirm that this single-epoch approach provides

similar results at the group level as the across-epoch approach, we

also averaged these data over epochs for each participant and ran

the same group level analyses.
2.5 Brain signal complexity analysis

Multiscale entropy (MSE) was used to quantify brain signal

complexity. An advantage of MSE over other measures of

complexity is that it incorporates multiple time scales. This

feature is important because it differentiates between signals that

are purely random (e.g., white noise) and those comprised of both

random and deterministic components (e.g., 1/f or coloured noise).

Signals that are purely random show a rapid decline in the MSE

curve with increasing scale whereas those with temporal inter-

dependencies will have a more gradual shift in the MSE curve (42,

43). A detailed description and theoretic background for MSE is

outlined in Costa and colleagues (11). In short, MSE estimates the

regularity of a signal by evaluating the ratio of similar patterns of

different lengths repeating over several time scales. It is calculated in

two steps. First, the raw signal is resampled several times to create

data sequences that represent different temporal scales. Essentially,

an increasing number of non-overlapping data points are averaged

into one new data point. The first timescale is the (cleaned) raw time

series. With a sample rate of 500Hz in the current study, time scale 1

had a temporal resolution of 2 milliseconds between data points.

For time scale 2, two consecutive data points were averaged,

yielding a temporal resolution of 4 milliseconds; for time scale 3,

averaging occurs over three time points yielding a temporal

resolution of 6 milliseconds, and so on. The coarsest scale used in

this study was 20 (temporal resolution of 40 milliseconds), to ensure

a sufficient number of data points (minimum 50) for the sample

entropy calculation.

Next, sample entropy is calculated at each time scale. Sample

entropy determines the natural logarithm of the ratio of patterns of

length m over patterns of length m+1 repeated within one epoch.

This gives a value between 0 and 1, with higher numbers indicating

a less predictable/more variable signal (i.e. fewer patterns of length

m+1 compared to the number of patterns of length m). In line with

previous studies, (e.g. 19, 44) and guidelines outlined by Richman

and Moorman (45), we set parameter m to 2, while the similarity

criterion r, which determines which points in the time series are

considered to be ‘the same’, was set to 0.5 (i.e. two data points were

treated as indistinguishable if their amplitudes differed <50% of the

standard deviation of the time series). MSE was calculated for each

epoch and electrode at each time scale, using the algorithm available
Frontiers in Psychiatry 06
at www.physionet.org/physiotools/mse/. Single epoch MSE data

were used for statistical analyses at the individual level. MSE

values were also averaged over epochs to provide one MSE value

for each electrode and time scale per participant, session (baseline,

week 1 and 12) and state (EC and EO), which were used for group

level analyses.
2.6 Regression of age effects

To control for differences in age between responder and non-

responder groups (see Table 1), and because both brain signal

complexity and connectivity have been observed to change with age

(19, 46–49), age was regressed out of the data before the statistical

group comparisons using an in-house MATLAB script (50, 51).
2.7 State contrasts

Consistent with MSE and connectivity differences between EO

and EC states observed in previous studies (19, 52–55), we found

strong EO/EC effects in our analyses that masked changes occurring

over assessment sessions (see Supplementary Figures S1, S2).

Therefore, we performed analyses on EO and EC data separately.

To maximize the chance of replicating group findings at the

individual level, we performed single-participant analyses on the

data showing the strongest effects (EC for WPLI, EO for MSE), and

present those group findings below (other group findings are

presented in Supplementary Materials [Figures S3, S4]).
2.8 Statistical analyses with PLS-SVD

Partial least squares with singular value decomposition (PLS-

SVD) is a multivariate statistical approach that can detect

condition- and/or group-related differences in whole-brain

variables (56, 57). Briefly, PLS-SVD calculates the normalized

average across participants within each condition (in this case,

responder status and assessment sessions) for each element in the

brain characteristic matrices (in this case, frequencies and electrode

pairs for WPLI, or time scales and electrodes for MSE). Then,

this mean-centered matrix is decomposed using SVD into

orthogonal latent variables (LVs) that account for most of the

covariance between groups/conditions and brain characteristics,

revealing the optimal associations between specific groups/

conditions and spatiotemporal patterns in the brain. LVs contain

several components. One is the singular value, which indicates the

strength of the effect the LV represents. Another component holds

the condition contrast, which reveals the linear combination of

weights capturing differences between conditions (groups and

assessment sessions in our data). The third component contains

the element loadings (singular image), which represent the pattern

of the specific data elements (in this study frequencies and electrode

pairs for WPLI, and time scales and electrodes for MSE) that show

the given contrast. These element loadings are used to compute

brain scores: the dot product of the element loadings with each
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participants’ data for each assessment session. Brain scores

represent the extent to which each participant expresses the given

contrast in a single number per participant and condition

(see Figure 1C).

Statistical testing occurs at two levels in PLS-SVD analyses. First,

the overall significance of the LV is determined using permutation

tests. In each permutation, the data are randomly shuffled between

conditions (within participants) and between groups, and PLS-SVD

analysis is performed on the shuffled data just as on the actual data.

LVs are considered significant when their singular value is more

extreme than 95% of the singular values calculated from the

randomly shuffled data (corresponding to p <.05). In the current

study, 500 permutations were performed for each analysis. Second,

the stability of the identified pattern across participants is established

through bootstrap resampling. In essence, the PLS-SVD analysis is

repeated with different subsamples of participants, to see how

consistently each electrode pair/electrode and frequency/time scale

display the identified pattern of differences across the whole sample.

This consistency is quantified as a bootstrap ratio (BSR), which is

calculated by dividing the element loadings by the standard error of

the created bootstrap distribution for each element. In addition to

determining the stability of the pattern, bootstrap resampling also

protects against the influence of outliers, as subsamples with and

without the outlier would produce different outcomes, thereby

decreasing the consistency of the findings (i.e. the bootstrap ratio).

In practice, this means that effects that are driven largely by an outlier

get attenuated. Bootstrap ratios are similar to z-scores, with absolute

values ≥ 3.1 corresponding to ~99% confidence interval. In this study,

bootstrap resampling was performed 200 times. As each statistical

test is computed in one mathematical step, no correction for multiple

comparisons is necessary (56). P-values indicating significance levels,

and percentage of crossblock covariance explained (PCCE) are

reported for each LV of interest. PLS-SVD analyses were applied

both at a group and individual level.
2.9 Group level analyses

Both groups (responders vs. non-responders) and all sessions

(baseline, 1 & 12 weeks of treatment) were entered in four PLS-SVD

analyses: two for connectivity (EO/EC states separately) and two for

complexity (EO/EC). As all showed interaction effects between

groups and assessment sessions, two additional analyses were run

for each analysis for responders and non-responders separately,

again including all sessions. The p-values of these follow-up

analyses were corrected for multiple comparisons using the

Bonferroni method.

The input data consisted of across-epoch WPLI/averaged MSE

values, organized into 2D matrices with n * k rows, and m * t

columns, with n being the number of participants (R: 25; NR:18)

and k the number of conditions (assessment sessions: 3). M and t

represent the spatiotemporal elements, namely the number of

electrode pairs (378) and frequencies (99) for the WPLI analyses

and the number of electrodes (28) and timescales (20) for the MSE

analyses. The same procedure was followed for the averaged, single-

epoch WPLI data (Methods – Connectivity analyses).
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2.10 Single-participant analyses

Non-rotated (hypothesis-driven) PLS analyses were performed

for each individual, using single-epoch EC WPLI data, and single-

epoch EO MSE data. Non-rotated PLS was chosen because it allows

one to determine whether and to what extent a specific, predefined

contrast is present in the data (57). Using the contrasts (patterns of

differences in connectivity and complexity between groups and

across sessions) found in the group analyses, non-rotated PLS was

used to test whether each individual followed the pattern of change

observed in responder and non-responder groups. Single epoch

WPLI/MSE values were organized into similar 2D matrices as

described for the group analyses, only now each participant had

their own matrix, with the n dimension representing the number of

epochs instead of participants (57). No correction for multiple

comparisons was applied, as these analyses aimed to replicate group

findings in separate datasets for each individual.

The similarity of the individual PLS outcomes to the group PLS-

SVD outcomes was quantified in two independent ways to balance

the advantages and suitability of quantitative and qualitative

measures (see Figure 1D). First, the similarity was estimated

quantitatively, by correlating the stable (|BSR| > 2, corresponding

to ~95% confidence interval) element loadings (i.e. the

spatiotemporal brain pattern) of the group results with the element

loadings of each participants’ individual analysis in MATLAB. For

connectivity, the element loadings from the group analyses on

averaged single-epoch WPLI were used for this correlation

procedure (Methods – Connectivity analyses). For participants

whose PLS analysis was non-significant (p >.05) or did not match

the predefined contrast (responder/non-responder), indicating a

different timing and/or direction of the change highlighted by

element loadings, the element loadings were not correlated with the

group results and were included as ‘showing no correlation with the

group pattern’ in the summaries. The percentage of participants

showing moderate-strong correlations (r≥.4; 58) with their own

group outcome was considered as a quantitative indicator of how

well group results translated to individuals. Second, to balance

arbitrary cut-offs, significant individual outcome patterns were

visualized and classified by two independent raters, blind to

response status, as being similar to either or both the responder or

non-responder group patterns, or neither. Important responder and

non-responder features were selected based on visual inspection of

the most consistent changes across time (i.e. those with |BSR| > 3.1) in

the group analyses, and used to construct the rating criteria that both

independent raters used to determine similarity. The percentage of

participants being classified as conforming to their own group pattern

exclusively was determined as a qualitative indicator of the

replicability of the group patterns at the individual level.
3 Results

3.1 Participants

By design, responders had lower MADRS scores at week 12, but

not at baseline or week 1 (Table 1). Apart from responders being
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younger than non-responders, the two groups did not differ

statistically in clinical and demographic characteristics (Table 1).

We accounted for the age difference by regressing age effects out of

our data before running the statistical tests at the group level.
3.2 Group analyses - WPLI

The PLS-SVD analysis including both groups and all sessions

identified one significant LV (p <.001, PCCE = 35.07%). As this LV

presented an interaction effect between groups and sessions, two

additional analyses for each group separately were run, with the

statistical significance threshold corrected to a <.025. These

analyses revealed a complex, opposite pattern of change from

weeks 1 to 12 in responders (p=.024, PCCE=55.8%), but only
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approached significance in non-responders after Bonferroni

correction (p = .032, PCCE=56.6%; Figure 2). The most

prominent frequencies for each group are highlighted by red

boxes in Figure 2: Non-responders showed a widespread increase

in alpha connectivity from weeks 1 to 12 (10Hz), while responders

exhibited an extensive increase in beta connectivity (22Hz).

Considering the same frequencies in the opposite groups (e.g.

alpha in responders; highlighted by blue boxes) revealed more

spatially contained changes in the opposite direction: Responders

showed a decrease in connectivity at 10Hz, while non-responders

showed a decrease at 22Hz. In both groups, changes in alpha

connectivity were most pronounced at interhemispheric frontal-

to-occipito-parietal electrode pairs but involved.

additional electrode pairs in non-responders. The most

consistent beta changes occurred in left intra-hemispheric
A

B

FIGURE 2

Results from the partial-least squares singular value decomposition (PLS-SVD) analyses examining change in connectivity as measured by weighted
phase lag index (WPLI) over the course of antidepressant medication treatment in eventual non-responders (left) and responders (right). Bar graphs
(A) depict the contrast between assessment sessions within groups, that was significantly expressed across each data set as determined by
permutation testing. The statistical image plots (B) present the bootstrap ratio maps over all channel pairs (rows) and frequencies (columns). The
orange and purple pixels display where the contrast represented by the bar graphs was most reliable across participants as determined by
bootstrapping. Positive values (purple) indicate increased WPLI in responders, and decreased WPLI in non-responders from 1 to 12 weeks of
treatment, while negative values (orange) indicate decreased WPLI in responders and increased WPLI in non-responders from weeks 1 to 12. To aid
interpretability, the most prominent increases in WPLI are highlighted by red boxes, while decreases in WPLI are outlined by blue boxes. As
highlighted by these boxes, non-responders showed an increase in alpha and a decrease in beta connectivity from week 1 to week 12 of treatment,
while responders showed the opposite pattern.
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connections in both groups, but also included right central and

parietal channel pairs in responders (Figure 3).

The group PLS-SVD analyses performed on the averaged

single-epoch WPLI data showed a similar pattern of change in

connectivity in responder and non-responders (Supplementary

Material and Figure S5). However, the results spread over

multiple frequencies (e.g. from 8-14 Hz instead of dominantly at

10 Hz), which is unsurprising, considering the reduced spectral

resolution associated with sliding window approaches (34).
3.3 Group analyses - MSE

The PLS-SVD analysis examining changes in MSE over time in

responders and non-responders identified one significant LV

(p <.001, PCCE = 82.71%), which revealed an interaction effect.

The analyses exploring changes for each group separately each

found one significant LV (responders: p = .006, PCCE = 93.85%,

non-responders: p = .02, PCCE = 86.9%, significant at a <.025).

Both groups showed a decrease in coarse scale complexity from

baseline to 12 weeks, but the timing and extent of change differed.

Responders showed an early (starting at week 1) and widespread

decrease in coarse scale complexity, while non-responders showed a

later (only present at week 12) decrease in coarse scale complexity in

limited electrodes (Figures 4 & 5). Additionally, fine scale

complexity increased only in non-responders.
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3.4 Individual analyses - WPLI

The pattern of change across assessments identified by the

group PLS-SVD examining connectivity was similar regardless of

the approach used to calculate WPLI. Specifically, it consisted of a

change in connectivity from week 1 to week 12 in both non-

responders and responders (Figure 2; Supplementary Figure S5).

Therefore, we applied this contrast in the non-rotated single-

participant PLS-SVD analyses (Figure 1C). As the non-responder

and responder patterns only differed in the direction of change (i.e.,

increase or decrease in WPLI), only one contrast was defined for

each analysis (0 1 -1). This contrast examines changes in WPLI

from week 1 to week 12 but leaves the direction of change and at

which frequencies this occurs to be determined by the data. All non-

responders and 22/25 responders exhibited the predefined pattern

of change at an uncorrected significance level (all p <.05), of whom

33 (19R/14NR) survived Bonferroni correction (p <.001).

The similarity of the pattern of connectivity across channel

pairs and frequencies between the individual and group-level results

was examined in two ways (see section 2.10 and Figure 1D for

details). First, each individual’s connectivity pattern was correlated

with the connectivity pattern identified in the group analyses. This

procedure showed that 60.5% of individual patients exhibited

moderate-strong positive correlations (i.e., r ≥ .4; 58) between

their individual and group outcomes. Another 9.3% showed weak

positive correlations (i.e., .1 < r < .4), while 14.0% revealed negative
A B

DC

FIGURE 3

Topographical location of channel pairs showing the most consistent change in connectivity as measured by weighted phase lag index (WPLI) over
assessment sessions in non-responders (A, C) and responders (B, D) at 10Hz (A, B) and 22Hz (C, D). Positive values (purple) indicate increased WPLI
from 1 to 12 weeks of treatment, while negative values (orange) indicate decreased WPLI from weeks 1 to 12.
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A B

FIGURE 5

Topographical location of channels showing the most consistent change in complexity as measured by multiscale entropy (MSE) over assessment
sessions in non-responders (A) and responders (B) at a time scale of 32ms between data points. Negative values (orange) indicate decreased MSE at
week 12 compared to baseline and week 1 in non-responders, and decreased MSE at week 12 compared with baseline in responders. There was no
increase in MSE for any channel at this time scale.
A

B

FIGURE 4

Results from the partial-least squares singular value decomposition (PLS-SVD) analyses examining change in complexity as measured by multiscale
entropy (MSE) over the course of antidepressant medication treatment in non-responders (left) and responders (right). Bar graphs (A) depict the
contrast between assessment sessions within groups, that was significantly expressed across each data set as determined by permutation testing.
The statistical image plots (B) present bootstrap ratio maps over all channels (rows) and time scales (columns). The colored values display where the
contrast represented by the bar graphs was most consistent across participants as determined by bootstrapping. Positive values (purple) indicate
decreased MSE, while negative values (orange) indicate increased MSE at week 12 compared to baseline and week 1 in non-responders, and at week
12 compared to baseline in responders.
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correlations between individual and group PLS outcomes. The

remaining 16.3% of patients’ individual analyses either correlated

negligibly (-.1 < r < .1) or did not reach significance and were

therefore not correlated (Figure 6).

Second, the main characteristics differentiating responders and

non-responders were defined and their presence in individual

results were visually inspected and rated by two independent,

blind raters. Following the direction of change found at 10Hz

(alpha) and 22Hz (beta) for the responder and non-responder

groups, individuals showing a pattern of a meaningful decrease in

alpha (~8-14Hz) and/or increase in beta (~18-30Hz) WPLI from

week 1 to 12 were considered to fit the responder pattern, while

patients showing a pattern of a meaningful increase in alpha and/or

decrease in beta WPLI from week 1 to 12 were considered to fit the

non-responder pattern. Two authors (K.C. and G.W.) examined

each individual outcome pattern and independently decided

whether they conformed to the outlined definitions. Inter-rater

reliability was quantified using Cohen’s Kappa: k=0.76 for rating

whether patients fit the responder pattern, and k=0.57 for rating

whether patients fit the non-responder pattern. Raters discussed

discrepancies until consensus, which indicated that 39.5% of

patients fit the pattern of their own group exclusively, 34.9% fit

both patterns, 14.0% only showed the pattern of the opposite

groups, and the remaining 11.6% did not conform to either

pattern (7% did not reach significance).

Table 2 shows the characteristics of patients who were rated as

fitting their own WPLI pattern exclusively versus the other

categories. Aside from individual responders who conformed to
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the responder group pattern showing higher correlations with their

ownWPLI group pattern compared to responders assigned to other

categories (p = .005, did not survive Holm’s sequential Bonferroni

test for multiple comparisons), there were no obvious clinical and

demographic differences between individuals in the different

responder and non-responder categories. We also illustrate the

correlations between individual WPLI patterns and the WPLI

pattern of participants’ own groups along the four categories in

Table 2, colour coded according to treatment regimen and sex in

Figure 7 (top row). No clear patterns of individual variation in

WPLI related to sex or treatment regimen emerged.
3.5 Individual analyses - MSE

Non-rotated PLS was performed for all participants with two

predefined contrasts: a linear contrast (1 0 -1) as the responder

pattern (change across the three time points, top of Figure 4) and 1

1 -2 as the non-responder pattern (no change from baseline to week

1, change from weeks 1 to 12, top of Figure 4). While all individual

analyses revealed significant results for both predefined LVs (all

p <.001), 16% of patients did not show the same pattern of change

over assessment sessions as defined in their own group contrast.

The similarity of the pattern of complexity across channels and

time scales between the individual and group-level results was

examined in two ways (see section 2.10 and Figure 1D for

details). First, each individual’s complexity pattern was correlated

with the complexity patterns identified in the group analyses. This
A B

DC

FIGURE 6

Proportion of participants that exhibited the same pattern as their own group exclusively, the pattern of the opposite group exclusively, both group
patterns or neither group pattern in their individual analysis of connectivity as measured by weighted phase lag index (WPLI; A) and complexity as
measured by multiscale entropy (MSE; B). Proportion of participants showing a strong/medium positive correlation (r≥.4), a weak positive correlation
(.1<r<.4), a negligible or lack of correlation (-.1<r<.1) or a negative correlation (r<-.1) between their individual outcome matrix and that of their own
group for WPLI (C) and MSE (D).
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procedure showed that 53.5% of individual outcome patterns

correlated positively with moderate-high strength (r ≥ .4; 58) to

that of their groups. Another 9.3% showed a weak (.1 < r < .4)

positive correlation between their individual outcome and that of

their group. Of the remaining individuals’ analyses, 11.6% yielded

negative correlations, while 25.6% either showed negligible

correlations (-.1 < r < .1) or did not show the predefined contrast

and were therefore not correlated with group patterns (Figure 6).

Second, the main characteristics differentiating responders and

non-responders were defined and their presence in individual

results were visually inspected and rated by two independent,

blind raters. Participants were characterized as fitting the

responder pattern if they showed a meaningful decrease in coarse

scale MSE from baseline to week 1 in their first LV, and

characterized as fitting the non-responder pattern if they

demonstrated no meaningful change in coarse scale MSE from

baseline to week 1, and any change in coarse scale MSE from week

1 to week 12 in their second LV. Again, two raters (K.C. and G.W.)

examined the significant patterns found in each individual analysis

and independently decided whether they conformed to these

definitions. Inter-rater reliability yielded k=0.91 for rating

whether patients fit the responder pattern, and k=0.96 for ratings

on whether patients fit the non-responder pattern. Based on

consensus, 46.5% of patients exclusively showed the pattern of

their own group, 25.6% fit both patterns, 14.0% exclusively showed

the opposite pattern, and 14.0% showed neither. Patients in this last

group, including 4 responders and 2 non-responders, showed an

early increase in coarse scale complexity instead.
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The characteristics of patients rated as conforming to their own

group pattern exclusively versus those who did not are presented in

Table 3. Again, the most notable difference was that responders

exclusively showing the responder pattern exhibited higher

correlations between their individual and group MSE patterns

compared to responders assigned to the other categories; this

comparison did not survive Holm’s sequential Bonferroni test to

correct for multiple comparisons (p = .006). The correlations

between individual MSE patterns and the MSE pattern of

participants’ own groups along the four categories in Table 3,

colour coded according to treatment regimen and sex are

presented in Figure 7 (bottom row). We observed no noticeable

patterns of individual variation in MSE related to treatment

regimen or sex.
4 Discussion

The current study identified group-based patterns of change in

EEG connectivity and complexity that differentiated responders and

non-responders. As a group, responders exhibited decreasing alpha

connectivity, increasing beta connectivity, and widespread

decreases in coarse scale complexity over the course of treatment.

Nonresponders showed an opposite pattern of connectivity, and

spatially limited decreases in coarse scale complexity. Single-

participant analyses revealed that these differentiating group

features only existed unambiguously in up to 61% of individuals.

Others showed the pattern of the opposite group, both group
TABLE 2 Demographic and clinical characteristics (means ± standard error) of antidepressant treatment responders and non-responders divided
based on which individuals matched the group WPLI patterns.

Responders
(N = 25)

Non-responders
(N = 18)

Responder
pattern

only (N = 10)

Other
categories
(N = 15)

Non-responder
pattern only

(N = 7)

Other
categories
(N = 11)

Sex (F/M) 4/6 10/5 4/3 5/6

Age 38.0 ± 3.7
(range: 23-57)

32.5 ± 2.5
(range: 19-46)

40.3 ± 4.6
(range: 20-57)

47.6 ± 3.3
(range: 28-63)

Education (years) 16.7 ± 0.8* 14.5 ± 0.6 15.1 ± 0.8 17.1 ± 0.9

Race/Ethnicity 1 Asian; 9 White 2 Asian; 13 White 7 White 1 African; 10 White

Comorbid anxiety (Yes/No) 0/10 3/12 0/7 2/9

Treatment regimen (ESC+BUP/BUP+placebo/ESC+placebo) 4/2/4 8/4/3 2/2/3 3/4/4

Baseline MADRS score 29.4 ± 1.4 29.4 ± 1.3 33.1 ± 1.0 31.5 ± 1.7

MADRS score at 1 week 23.9 ± 2.8 22.6 ± 2.0 29.7 ± 2.6 26.7 ± 2.7

MADRS score at 12 weeks 5.1 ± 1.5 6.7 ± 1.3 25.4 ± 3.1 24.5 ± 2.5

Correlation with own group WPLI pattern (>.4/<.4) 9/1* 6/9 3/4 3/8

Correlation with own group WPLI pattern 0.67 ± 0.09** 0.13 ± 0.15 0.51 ± 0.07 0.30 ± 0.09

Correlation with own group MSE pattern 0.44 ± 0.16 0.26 ± 0.12 0.40 ± 0.15 0.40 ± 0.18
Group differences were examined using independent samples t-tests and Fisher’s exact test in Excel. **Significant differences between groups at p <.05 (with Holm’s sequential Bonferroni test to
correct for multiple comparisons, as these were unplanned comparisons). *Group differences with p <.05 that did not survive the correction. F, female; M, male; ESC, escitalopram; BUP,
bupropion; MADRS, Montgomery-Åsberg Depression Rating Scale; WPLI, weighted phase lag index; MSE, multiscale entropy.
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patterns, or neither group pattern in their individual analysis.

Therefore, although group analyses were able to detect neural

characteristics of treatment success that apply to certain patients

at an individual level, a substantial proportion of individuals is

poorly represented.

For both EEG connectivity and complexity, our group findings

were in line with some previous findings, but not others, as is

generally the case in the depression literature. Namely, responders

showed a decrease in alpha connectivity over treatment, most

notably in left fronto-temporal and right occipito-parietal

electrode pairs, similar to Iseger and colleagues (9) and Lee and

colleagues (6). Contrarily, increased alpha connectivity has also

been observed in response to antidepressant pharmacotherapy (8).

Although others have also found weaker baseline connectivity in

delta and theta bands to be associated with better response (6), we

did not find pronounced group effects in these frequency ranges. In

line with the work of Olbrich and colleagues (8), we observed beta

connectivity increases with successful treatment in left central,

parietal and frontal areas. In line with yet others’ work (16), we

found that EEG complexity at lower temporal resolution (20-40ms)

decreased with treatment, and this was prominent only in

responders. This differs from findings highlighting a decrease in

complexity at high temporal resolutions instead (16, 17), and would

be worth examining in future studies.
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Together, these variable group-level findings and the substantial

individual variation found in our single-participant analyses provide

a possible explanation as to why reliable EEG characteristics

associated with antidepressant treatment response have not yet

emerged. Depending on the EEG characteristic and how it was

identified, 39-61% of our sample did not unambiguously show the

same outcomes as their group, and a similar level of variability was

observed in both responders and non-responders to treatment. These

findings are consistent with the idea that multiple response patterns

to antidepressant treatment exist (59). Taking alpha connectivity as

an example, recent work shows that alpha connectivity profiles may

differentially predict response to placebo versus antidepressant

pharmacotherapy (sertraline; 60), highlighting the possibility that

different alpha connectivity patterns may distinguish responders to

different types of interventions. The decrease in alpha connectivity in

treatment responders using group analyses in this and previous

studies might thus only represent one of several response profiles

that exist in patients with MD. Similarly, the variable findings in beta

connectivity in our individual analyses suggest changes in beta

connectivity are not consistent across all patients and might

therefore explain the variable findings in previous literature on this

frequency range.

The responder group pattern we report here involved a decrease

in alpha connectivity and coarse scale complexity, and an increase in
FIGURE 7

Correlation of individual WPLI (top row) and MSE (bottom row) patterns with participants’ own group patterns, grouped according to ratings based
on visual inspection and color coded according to sex (left column) and treatment regiment (right column). NR only = individual non-responders
whose patterns exclusively matched the non-responder group pattern; NR other = individual non-responders whose patterns either matched only
the responder pattern, both the responder and non-responder patterns, or neither pattern; R only = individual responders whose patterns exclusively
matched the responder group pattern; R other = individual responders whose patterns either matched only the non-responder group pattern, both
the responder and non-responder patterns, or neither pattern; ESC+BUP, dual therapy with escitalopram and buproprion; BUP, monotherapy with
buproprion; ESC, monotherapy with escitalopram. WPLI, weighted phase lag index; MSE, multiscale entropy.
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beta connectivity. Although increased alpha connectivity in patients

with MD compared to controls has been interpreted in varying ways

(9, 61), the decrease in alpha connectivity with successful treatment

reported here supports the notion that this feature plays a key role in

MD pathology and its treatment. The importance of this frequency

band is further highlighted by frequent findings of altered alpha

power and hemispheric asymmetry (e.g., 62, 63). Given that intra-

hemispheric anterior-posterior beta connectivity has been associated

with emotion regulation in neurotypical populations (64), increased

beta over successful treatment could reflect increased top-down

control over altered emotional processing in MD in response to

treatment (65). Increased overall EEG complexity in MD has been

linked to recruiting more neural resources when performing an

emotion processing task than controls (13). Generally, increased

signal complexity has been associated with a greater number of

simultaneously activated systems (66). As MD has been associated

with reduced ability to suppress default mode network activation and

greater interconnectedness between affective and other information

processing systems (67, 68), the decrease in complexity over

successful treatment found here might indicate decreased

dominance and interference by emotional processing circuits.

While our findings are in keeping with multiple response

patterns existing within the population of patients with MD, they

do not provide proof of this, as we only tested whether the patterns

appearing at the group level were also present in individual patients.

Indeed, our approach is markedly different from other studies

aiming to address applicability of neuroimaging to individual

patients. For example, clustering approaches aim to divide
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patients into functionally relevant MD subcategories, and

machine learning methods aim to identify features that predict

individual treatment outcomes. Although encouraging work has

emerged (69–71), subtyping research has had limited success so far

(59), and these studies are far from perfect: Most existing research

relies on study samples that are too small and homogeneous to

provide reliable results for clustering or machine learning

approaches (72, 73). Additionally, findings from a recent machine

learning study using a large multi-site dataset (N=1188) were not

replicated, highlighting methodological challenges in analyzing

high dimensional datasets using such approaches (59, 74, 75).

Thus, examining the brain characteristics associated with

antidepressant treatment response likely warrants the use of

multiple, complementary approaches. We propose that the use of

single-participant analyses could help advance this field by

determining the degree of individual variation and capturing the

range of patterns present at the individual level.

In the field of neuroimaging, select studies have already shown

that stable individual-specific fMRI characteristics are associated

with cognitive functioning and clinical symptoms (76–78). A recent

preprint further indicates that individual characteristics of the

salience network can be related to the development, presence and

fluctuation of MD symptoms (79). Research on the use of EEG as a

biometric to identify individuals suggests that similar stable

individual-specific EEG characteristics exist (e.g., 80, 81). While

we are unaware of studies examining individual EEG features in

relation to cognition or mental health, it could be interesting to

explore the range of individual patterns and their relation to MD
TABLE 3 Demographic and clinical characteristics (means ± standard error) of antidepressant treatment responders and non-responders divided
based on which individuals matched the group MSE patterns.

Responders
(N = 25)

Non-responders
(N = 18)

Responder
pattern only
(N = 12)

Other
categories
(N = 13)

Non-responder
pattern only

(N = 8)

Other
categories
(N = 10)

Sex (F/M) 5/7 9/4 3/5 6/4

Age 30.6 ± 3.2
(range: 21-46)

38.5 ± 2.4
(range: 19-57)

46.5 ± 4.0
(range: 33-63)

43.4 ± 3.9
(range: 20-57)

Education (years) 15.8 ± 0.5 15.0 ± 0.8 16.0 ± 0.9 16.6 ± 0.9

Race/Ethnicity 1 Asian; 11 White 2 Asian; 11 White 1 African; 7 White 10 White

Comorbid anxiety (Yes/No) 1/11 2/13 1/7 1/9

Treatment regimen (ESC+BUP/BUP+placebo/ESC+placebo) 7/2/3 5/4/4 0/4/4 5/2/3

Baseline MADRS score 28.8 ± 1.4 29.9 ± 1.3 32.0 ± 1.5 32.3 ± 1.7

MADRS score at 1 week 20.3 ± 2.5 25.8 ± 1.9 27.5 ± 2.4 28.2 ± 2.9

MADRS score at 12 weeks 4.4 ± 1.1 7.5 ± 1.5 24.5 ± 2.4 25.2 ± 2.9

Correlation with own group MSE pattern (>.4/<.4) 9/3* 3/10 6/2 4/6

Correlation with own group MSE pattern 0.59 ± 0.10* 0.10 ± 0.13 0.51 ± 0.23 0.32 ± 0.12

Correlation with own group WPLI pattern 0.44 ± 0.15 0.26 ± 0.16 0.25 ± 0.12 0.48 ± 0.07
Group differences were examined using independent samples t-tests and Fisher’s exact test in Excel. * Group differences with p <.05 that did not survive the Holm’s sequential Bonferroni
correction for multiple comparisons. F, female; M, male; ESC, escitalopram; BUP, bupropion; MADRS, Montgomery-Åsberg Depression Rating Scale; MSE, multiscale entropy; WPLI, weighted
phase lag index.
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symptoms and progression over time to see if they yield similar

potential for clinical utility.
4.1 Limitations & future directions

Despite the novelty of the presented work, certain limitations

exist. First, we grouped patients receiving different treatment

regimens (i.e. escitalopram, bupropion or both) to ensure sufficient

statistical power for our main analyses. Similarly, as the clinical trial

was designed to compare different treatment arms, we were not able

to differentiate between treatment and placebo effects, a noteworthy

future direction. Our sample was also largely White, and from

WEIRD (Western, Educated, Industrialized, Rich and Democratic;

82) societies, and thus findings cannot be generalized outside of such

populations. While our sample was fairly balanced in terms of sex,

we were also unable to test for sex differences due to power issues. In

addition, our sample included patients with different MD symptom

subtypes (e.g. melancholic, atypical) and several patients had

comorbid anxiety disorders (given the high co-occurrence of

anxiety in depressed individuals these individuals were not

excluded). Although this heterogeneity in the sample complicates

statistical analyses, it does give an accurate representation of the

population seeking treatment for MD. At the same time, the

treatment provided was not representative of what people with

comorbid conditions may receive in clinical practice, as

participants were not allowed to take psychotropic medications

outside of those prescribed for the study. While heterogeneity may

also have contributed to the individual variation we found in the

individual analyses, we did not find any indication that individual

variation in EEG connectivity and complexity patterns could simply

be explained by differences in treatment regimen, sex, clinical profiles

or other clinical and demographic characteristics (see Tables 2, 3;

Figure 7). That being said, future studies with larger samples should

be conducted to explore the influence of heterogeneity of treatment

and patient characteristics in more detail. They might also collect

data during more narrow time windows during the day, or control

for sleepiness/drowsiness in other ways (e.g., as a covariate in the

analyses), which we were unable to do here. Similarly, it could be

relevant to include more follow-up measurements across longer time

periods, other types of individual information (e.g., neuroimaging)

and outcome metrics (e.g., functional measures) in such studies, as

well as explore alternative analysis methods (e.g., classification

methods using Bayesian or machine learning approaches).

In addition, there are numerous ways to quantify similarity

between individual and group patterns. The correlation procedure

was objective, but also led to arbitrary limits for categorizing who

did and did not match the group patterns (i.e. r ≥.4). The

independent ratings avoided setting such arbitrary limits. While

inter-rater reliability was high for ratings of MSE (k = 0.91-0.96),

there was less agreement for the ratings of WPLI (k = 0.57-0.76),

highlighting the subjectivity of this method. The lower inter-rater

reliability for WPLI was likely due to the larger number of elements

included in this analysis (378*99 compared to 28*20 for MSE), or

could reflect more variety in WPLI response patterns compared to

MSE patterns. Finally, we applied no correction for multiple
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comparisons in the individual analyses, as this would have made

it more difficult to find the group patterns in individuals. However,

lowering the significance threshold to a = .001 did not alter our

MSE findings, and only changed 16% of the individual WPLI

analyses (7 patients) from being significant to being insignificant.

Overall, both measures of similarity showed that there was

substantial individual variation in the connectivity and

complexity group patterns.
5 Conclusion

Most existing work involving neural characteristics of

antidepressant treatment success is based on responder/non-

responder group differences. We show that substantial individual

variation in EEG connectivity and complexity existed in a well-

characterized sample of patients receiving pharmacotherapy for MD.

Though speculative at this point, exploring the range of individual

patterns and their relations to MD symptoms and stages in depth

may lead to a better understanding of the heterogeneity in brain

signals in MD. This also provides an alternative approach to

identifying clinically relevant EEG features to group studies, which

to date have not yielded convincing results. Regardless, future

research should take individual variation into account when

developing and considering the utility of EEG characteristics in

informing clinical practice.
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