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Bipolar disorder and schizophrenia are serious psychiatric conditions that cause a

significant reduction in quality of life and shortened life expectancy. Treatments

including medications and psychosocial support exist, but many people with

these disorders still struggle to participate in society and some are resistant to

current therapies. Although the exact pathophysiology of bipolar disorder and

schizophrenia remains unclear, increasing evidence supports the role of

oxidative stress and redox dysregulation as underlying mechanisms. Oxidative

stress is an imbalance between the production of reactive oxygen species

generated by metabolic processes and antioxidant systems that can cause

damage to lipids, proteins, and DNA. Sleep is a critical regulator of metabolic

homeostasis and oxidative stress. Disruption of sleep and circadian rhythms

contribute to the onset and progression of bipolar disorder and schizophrenia

and these disorders often coexist with sleep disorders. Furthermore, sleep

deprivation has been associated with increased oxidative stress and worsening

mood symptoms. Dysfunctional brain metabolism can be improved by fatty acid

derived ketones as the brain readily uses both ketones and glucose as fuel.

Ketones have been helpful in many neurological disorders including epilepsy and

Alzheimer’s disease. Recent clinical trials using the ketogenic diet suggest

positive improvement in symptoms for bipolar disorder and schizophrenia as

well. The improvement in psychiatric symptoms from the ketogenic diet is

thought to be linked, in part, to restoration of mitochondrial function. These

findings encourage further randomized controlled clinical trials, as well as

biochemical and mechanistic investigation into the role of metabolism and

sleep in psychiatric disorders. This narrative review seeks to clarify the intricate

relationship between brain metabolism, sleep, and psychiatric disorders. The

review will delve into the initial promising effects of the ketogenic diet on mood

stability, examining evidence from both human and animal models of bipolar

disorder and schizophrenia. The article concludes with a summary of the current

state of affairs and encouragement for future research focused on the role of

metabolism and sleep in mood disorders.
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1 Introduction

Bipolar disorder is characterized by cycles of depression and

mania with increased risky behavior. Bipolar disorder affects up to 5%

of the population and is the 6th leading cause of disability (1).

Schizophrenia is a psychiatric condition characterized by delusions,

disorganized speech, hallucinations, and impaired executive

functioning that affects up to 1% of the population (2). People with

schizophrenia have a 10-20 year shortened life expectancy. Although

treatment options, such as medications and psychosocial support are

available, many patients continue to grapple with social integration

challenges, and some exhibit resistance to existing therapies (3).

While the precise pathophysiology of bipolar disorder and

schizophrenia remains elusive, a growing body of evidence

underscores the pivotal role of oxidative stress and redox

dysregulation as an underlying mechanism in bipolar disorder and

schizophrenia (4–7). Meanwhile, ketones are neuroprotective

including anticonvulsant properties in epilepsy (8–10), reduced

oxidative stress and inflammation (11–13), and epigenetic

upregulation of neurotrophic factors which could mediate

improved mood symptoms (14). Recent pilot clinical trials have

indicated the potential benefits of ketone-based interventions for

individuals with bipolar disorder and schizophrenia (15–21).

However, there remains a noticeable gap in our understanding of

the biological mechanisms underlying the positive effects of ketones

on psychiatric symptoms. Sleep disorders and disruption in circadian

rhythms are recognized as fundamental contributors to the onset and

progression of bipolar disorder and schizophrenia (22–24). Research

has brought to light evidence of astroglia dysfunction in conditions

surpassing antioxidant capacity (25–27), potentially resulting in

disruption of circadian rhythms (28, 29). Interestingly, reports

indicate neuroglial abnormalities, including a reduction in the

overall number of neuroglial cells may provide important clues to

the pathogenesis in psychiatric disorders (30, 31). Despite numerous

hypotheses and evidence from various disciplines, a multidisciplinary

approach to understanding the pathology of schizophrenia and

bipolar disorder in relation to sleep abnormalities has yet to be

established. In this narrative review, we will provide an overview of

the metabolic pathology associated with bipolar disorder and

schizophrenia. Subsequently, we will provide evidence of the

therapeutic effects of ketogenic diets on psychiatric disorders from

preclinical and clinical research. We will also review the changes in

metabolism, sleep disorders, and circadian rhythms on psychiatric

disorders. The objective of this review is to connect brain metabolism,

sleep, and psychiatric disorders.
2 Dysfunctional metabolism in bipolar
disorder and schizophrenia

In contemporary metabolomics, emerging insights into bipolar

disorder reveal notable pathologies, encompassing mitochondrial

dysfunction, perturbed energy synthesis, and abnormal

mitochondrial morphology (6, 32–35). Mitochondria, the primary

contributors to adenosine triphosphate (ATP) synthesis, play a
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pivotal role in reactive oxygen species generation, apoptosis, and

calcium homeostasis (36–39). Among individuals with bipolar

disorder, mitochondrial dysfunction leads to diminished energy

production (6, 40). This mitochondrial dysfunction coincides with

heightened apoptosis, increased reactive oxygen species, oxidative

damage, hyperexcitability (41, 42), and a demonstrated elevation in

proinflammatory cytokine levels associated with bipolar disorder

(41, 43). Beyond mitochondrial dysfunction, structural aberrations

in mitochondria have been documented in bipolar disorder

patients, manifesting in anomalous mitochondrial structure in the

prefrontal cortex, fibroblasts, and lymphocytes (34). Scaini et al.

have proposed that an imbalance in mitochondrial fission and

fusion processes result in an excess of damaged mitochondria,

ultimately contributing to apoptosis (44). Calcium homeostasis, a

critical determinant of apoptosis, is regulated by mitochondria

through the modulation of intracel lular calcium ion

concentrations across the mitochondrial membrane. This

regulation governs energy production rates, apoptosis, and

neuronal excitability (45–47). Notably, bipolar disorder patients

exhibit elevated intracellular calcium ion levels during both manic

and depressive phases, indicating a connection between bipolar

disorder pathophysiology and calcium signaling (48). Furthermore,

calcium homeostasis holds significance for neuronal excitability, a

crucial element in synaptic plasticity and maintaining excitatory/

inhibitory balance (49). Consequently, dysregulation of calcium

plays a pivotal role in the pathophysiology of bipolar disorder (50).

Bipolar disorder patients also present high lactate levels and

reduced intracellular pH in the brain suggesting ATP generation

relies on glycolytic metabolism (51, 52). The disruption in the ATP

production pathway has been postulated as a potential contributor

to the pathogenesis of bipolar disorder (53). Normal ATP levels

hinge on both oxidative phosphorylation and glycolysis, implying

that a decrease in Na+/K+-ATPase function may impede oxidative

phosphorylation (54). Altered ATP levels can impact

neurotransmitter release duration, influencing a neuron’s

transition into excitatory or refractory states. Thus, changes in the

activation threshold of neurons could contribute to the observed

manic and depressed states in bipolar disorder (55).

Schizophrenia is also rooted in dysfunctional cerebral

bioenergetics, arising from disruptions in brain cell function,

neuroplasticity, and brain circuits, often associated with impaired

energy metabolism (56–58). Recent studies have revealed consistent

trends in metabolic dysfunction in schizophrenia, including

compromised insulin signaling, impaired glucose metabolism

(59–62), and dysfunctional astrocyte-neuron coupling leading to

impaired lactate shuttling and glycolysis (63–67). These findings

highlight a fundamental disruption in key metabolic cycles, notably

the tricarboxylic acid (TCA) cycle and oxidative phosphorylation

(56). Oxidative phosphorylation, a primary contributor to ATP

synthesis, is important for cellular signaling and neuronal activity.

When it is disrupted, it can lead to an energy imbalance in the

central nervous system, resulting in neuronal dysfunction (68).

Moreover, alterations in neurotransmitter systems are evident in

schizophrenia patients, characterized by low serotonin, dopamine,

and GABA levels in the prefrontal cortex (69–71). Hypofunction of

inhibitory GABAergic interneurons is implicated in an imbalance
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between inhibitory and excitatory processes, a key aspect of

schizophrenia pathophysiology (72, 73). In bipolar disorder,

r epor t s ind ica t e imba lances in the monoaminerg i c

neurotransmitter system, decreased GABAergic transmission,

increased glutamate levels, and heightened NMDA receptor

activity (74–77). Furthermore, shared changes in both

schizophrenia and bipolar disorder, such as increased lactate and

decreased intracellular pH, suggest that glycolysis-dependent

bioenergetics may contribute to the risk of metabolic syndrome in

psychiatric disorders (78, 79).

Emerging research provides growing evidence supporting

oxidative stress as an underlying mechanism in bipolar disorder

(4, 5). Reactive oxidative species, natural byproducts of energy

metabolism and cellular function, can lead to oxidative stress and

cellular damage if not properly eliminated (80). This oxidative stress

can also result in mitochondrial dysfunction, another potential

factor in bipolar disorder (5, 6). Redox homeostasis is crucial not

only for containing tissue damage over time but also for

maintaining appropriate signaling in specific biochemical

pathways (81). Redox dysregulation is also notably regarded as a

pivotal environmental risk factor in the neurodevelopmental

context of schizophrenia (7). The balance between cortical

excitatory and inhibitory activity, mediated by parvalbumin

interneurons (PVI) GABAergic circuits, plays a crucial role in

high-frequency neuronal synchrony (82) and is fundamental for

normal cognitive, emotional, and social behaviors (83). Alterations

in PVI circuits are distinctive features of schizophrenia (84, 85) and

have also been identified in bipolar disorder (86). Fast-spiking PVI

neurons, rely on heightened metabolic activity and oxidative

phosphorylation to support high-frequency discharge (87), exhibit

heightened vulnerability to redox dysregulation. Mounting evidence

suggests the involvement of mitochondrial dysfunction and

augmented reactive oxygen species production in the

pathophysiology of schizophrenia (88–90). Prolonged oxidative

stress in PVI cells may lead to delays and extensions in the

critical period of cortical plasticity, ultimately culminating in the

failure to stabilize cortical circuits (91), coupled with inflammatory

processes marked by elevated cytokine levels that contribute to

neurodegeneration and apoptosis (88, 90, 92).

The hypotheses of bioenergetic dysfunction and redox

dysregulation offer a common framework for understanding the

pathogenesis of bipolar disorder and schizophrenia. Therefore,

future studies might aim to target these metabolic mechanisms to

investigate the underlying pathology of mood disorders.
3 Similarities between psychiatric
disorders and epilepsy

Intriguingly, common underlying pathophysiology exists

between epilepsy and bipolar disorder, with biochemical,

structural, and functional abnormalities found in primary bipolar

disorder potentially occurring secondarily to seizure disorders, both

of which are treated with anticonvulsants (93). Ketogenic diet

metabolic therapy, which promotes a metabolic state of
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nutritional ketosis by low-carbohydrate and high-fat intake, has

long been established as an adjunctive treatment for epilepsy. The

ketogenic diet effectively reduces seizure frequency and severity in

drug-resistant epilepsy across pediatric and adult populations (8, 9).

Although its exact mechanisms remain incompletely understood,

the ketogenic diet likely induces metabolic changes, alterations in

neurotransmitter activity, and microbiome modifications

contributing to its antiepileptic effects (10, 12, 94). Since its

introduction in the 1920s, a substantial body of research,

including randomized controlled trials, has supported its efficacy

in reducing seizure frequency and enhancing cognitive and

behavioral outcomes for those affected by this neurological

disorder (95).

The intricate relationship between epilepsy and bipolar disorder

can be elucidated through the kindling model, first described by

Goddard et al. (96), which provides a framework for understanding

the episodic and progressive nature of both disorders (93). Studies

have shown that neurobiological alterations, such as changes in

second-messenger systems and ion channel functions, are present

in both epilepsy and bipolar disorder, reinforcing the hypothesis of

a shared pathophysiology (97, 98). These commonalities are further

substantiated by the efficacy of antiepileptic drugs in the treatment

of both conditions (99). Research into the kindling paradigm has

indicated that psychosocial stressors may have more profound

effects early in the course of bipolar disorder, with subsequent

episodes increasing in frequency and severity—a pattern that aligns

with the progression observed in epilepsy (100). The potential for

this kindling-like phenomenon in bipolar disorder suggests that

long-term prophylaxis may be critical for preventing relapses and

mitigating disease progression (98). Moreover, the use of

antiepileptic drugs has been reviewed extensively, revealing their

significant impact on mood disorders comorbid with epilepsy,

highlighting the therapeutic crossover between these

disorders (101).

Additionally, epidemiological studies have found a high

prevalence of bipolar symptoms among patients with epilepsy,

suggesting that the management of bipolar disorder symptoms

could be integral to epilepsy treatment strategies (97).

Furthermore, neuroimaging studies, such as voxel-based analyses,

have uncovered structural brain changes in bipolar disorder that

bear resemblance to those found in epilepsy, adding to the body of

evidence of shared neurobiological underpinnings (102). This

converging evidence emphasizes the necessity for an integrative

approach to understanding and treating these complex disorders,

underlining the importance of future research in identifying the

precise mechanisms that may be responsible for their comorbidity

and guiding the development of targeted therapies.
4 Effect of the ketogenic diet on
psychiatric disorders

Emerging evidence suggests potential positive effects of the

ketogenic diet on bipolar disorder and schizophrenia. Case

reports document significant improvements in bipolar disorder
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symptoms, including mood stabilization and decreased anxiety,

following ketogenic interventions (15–17). Patients with

schizoaffective disorder also have experienced mood and

psychotic symptom improvements within a month or achieving

remission of psychotic symptoms upon initiating the ketogenic diet

(19, 20). Additionally, a cohort study reports symptom

improvements and reduced psychotropic medication dosages in

patients with bipolar disorder, major depressive disorder, and

schizophrenia adhering to a ketogenic diet (18). Another recent

cohort study conducted by Needham et al. (21) demonstrated

feasibility of the ketogenic diet intervention in patients with

bipolar disorder. The authors meticulously documented evidence

of ketosis through daily ketone level logs. Notably, their approach

included considerations of health economics. This survey

encompassed economic expenditure levels, quality of life, and

productivity measures among participants during and post the

intervention (103). Overall, these clinical studies collectively

indicate possible beneficial effects of the ketogenic diet in treating

mood disorders and schizophrenia. In our comprehensive analysis

(Supplementary Table 1), we found that more consistent

information on dietary intervention parameters (e.g., dietary ratio

of fat and carbohydrate), intervention duration, and tracking of

ketosis data is needed for achieving reproducible outcomes in

dietary intervention studies. To address these gaps, recent clinical

trials that aim to deliver a comprehensive systematic report

encompassing metabolite measurement, symptom assessment,

and diet adherence continuity are in progress across multiple

centers (104). Meanwhile, conducting more randomized

controlled trials with ketogenic diet interventions is imperative to

establish efficacy, which patient populations benefit the most, and

level of ketosis needed.

The ketogenic diet works through multiple pathways which

may contribute to its effectiveness for multiple neurological

conditions. These include increasing available fuel/ATP,

decreasing oxidative stress, decreasing inflammation, direct

signaling through HCARs, epigenetic regulation through HDAC

inhibition, microbiome changes, altering neurotransmitters such as

glutamate and GABA balance, improve mitochondrial function

(105) . Here we describe some of these mechanisms.

Improvements in symptoms of mental disorders with the

ketogenic diet may be ascribed to the circumvention or

restoration of mitochondrial function through alternative energy

metabolism via ketosis (106, 107). Both animal models and human

subjects have illustrated heightened mitochondrial biogenesis, mass,

and energy production following ketogenic diet treatment (108,

109). Rats achieving chronic ketosis displayed elevated

mitochondrial proteins and genes associated with oxidative

phosphorylation, conferring increased resilience to metabolic

stress compared to control rats (110). Additionally, the ketogenic

diet can modulate neurotransmitter balance and release by

enhancing GABA biosynthesis and glutamate metabolism,

potentially contributing to rebalancing disturbed GABA

concentrations that influence the symptomatology of psychiatric

diseases (111, 112). A recent preclinical study using an acute

NMDA receptor hypofunction model of schizophrenia

demonstrated that feeding C57BL/6 mice a low carbohydrate/
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high-fat ketogenic diet for seven weeks prevented behavioral

abnormalities induced by pharmacological inhibition of NMDA

glutamate receptors (113). Furthermore, ketosis is hypothesized to

modify ion concentrations, both extracellular and intracellular,

mirroring therapeutic effects observed with mood stabilizers (14).

Indeed, rats provided ketone supplements, including medium-chain

triglycerides which can be converted into ketones, ameliorated

anxiety- and depression-related behaviors, suggesting that ketone

supplementation may represent a promising anxiolytic strategy

through a novel means of inducing ketosis (114, 115).

Mitochondrial dysfunction, oxidative stress, and microglial

activation have been implicated in the pathophysiology of

schizophrenia (88–90, 116). Elevated ketone body levels were

reported in schizophrenic patients, demonstrating a positive

correlation between changes of executive function and the level of

b-hydroxybutyrate, indicating a potential need for supplementary

energy supply through ketone bodies in schizoaffective patients

(117). Furthermore, ketones decreased neuroinflammation caused

by oxidative stress or mitochondrial dysfunction via

neuroprotective effects (118–120). In vitro studies have shown

that a ketogenic diet exerts essential neuroprotective impacts by

reducing the production of the proinflammatory cytokine

interleukin (IL)-17 and increasing the levels of the anti-

inflammatory cytokine IL-10 (121). These neuroprotective effects

may be mediated by the regulation of immune cell response,

suppressing inflammasome-related microglial inflammation

progression (122). These effects were associated with reduced

amounts of IL-1b and decreased release of reactive oxygen species

(123). Ketones also block NLRP3 inflammasome mediated

inflammation (120). In vivo studies revealed that b-
hydroxybutyrate suppressed IL-6 and TNF-a production, induced

brain-derived neurotrophic factor, and suppressed microglial

progress retraction, along with depression-like behaviors (117).

Therefore, the neurotrophic and antioxidant effects of ketone

bodies could potentially offer benefits for bipolar disorder

depression, which is associated with downregulated gene

expression of antioxidant enzymes and increased oxidative

damage (124–126). Meanwhile, the potential antidepressant effect

of the ketogenic diet may involve the regulation of G-Protein

Coupled Receptors (GPCRs) signaling, which transmits

extracellular signals into the cell. Epigenetic effects on GPCRs

could contribute to biochemical changes in psychiatric disorders

(127). Environmental factors (e.g., chronic or acute stress) influence

genetic risk, and studies associate candidate genes encoding GPCRs

with schizophrenia (128). Notably, b-hydroxybutyrate reduces

inflammation by engaging GPCRs, particularly GPR109A or

Hydroxycarboxylic Acid Receptor 2 (HCAR2) (129). Studies

indicate that b-hydroxybutyrate binding to GPR109A reduces

lipid metabolism and inflammation, supported by animal studies.

One study demonstrated that b-hydroxybutyrate inhibits the

production of pro-inflammatory enzymes, IL-1b, IL-6, and TNF-

a, from microglia, mediated by GPR109A (130). These findings

suggest that ketone bodies can modulate various pathways related

to inflammation, a significant factor in psychiatric disorders.

Although the exact pathophysiology of bipolar disorder and

schizophrenia remains unclear, evidence supports the notion that
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impaired energy metabolism and related oxidative stress plays a

crucial role in symptom manifestation. The current evidence from

clinical trials of the ketogenic diet’s antipsychotic effects on bipolar

disorder and schizophrenia is promising. However, more clinical

trials are needed to establish efficacy, which patient populations it

benefits the most, and the level of ketosis needed to achieve

symptom remission. Such studies are difficult given the complex

nature of executing large well controlled dietary clinical trials and a

team of psychiatrists and knowledgeable nutritionists are needed.

Patient education and continuous monitoring for adverse events are

required. Patients with kidney failure or who are prone to kidney

stones should be monitored closely if they choose to follow a

ketogenic diet as high protein intake can increase the risk of

kidney stones. Making sure to stay hydrated and supplementing

with potassium citrate can mitigate the risk of developing kidney

stones. Patients with psychiatric disorders often have accompanying

metabolic disorders like diabetes and the fact that these two

conditions often coexist highlights the connection between them.

In fact, large multiyear studies of patients with type 2 diabetes have

shown that the ketogenic diet can reverse all symptoms of diabetes

and patients are able to deprescribe most of their diabetes

medications (131) so ketogenic diets are safe in diabetics. Taken

together, both randomized clinical trials and preclinical research

focusing on cellular and molecular mechanisms of the ketogenic

diet’s effects on psychiatric disorders are needed. Translational

research using animal models is a promising additional approach

to validate and elucidate the metabolic mechanisms underlying

antipsychotic effects of a ketogenic diet in mood disorders and

schizoaffective diseases. See Supplementary Table 1 for a rapid

systematic review of clinical studies looking at ketogenic diet

interventions in psychiatric diseases.
5 Sleep disorders and disruption of
circadian rhythms in bipolar disorder
and schizophrenia

Patients with bipolar disorder frequently experience hypersomnia

(132, 133), and disruption of circadian rhythms, which are thought to

be fundamental contributors to bipolar disorder onset and

progression (22, 23). Sleep abnormalities in bipolar disorder vary

between acute depressive and manic episodes (134). During

depressive episodes, patients generally have increased total sleep

time and time in bed but lower sleep efficiency, while manic

episodes are characterized by reduced sleep time and increased

rapid eye movement (REM) sleep, also with lower sleep efficiency

(135). Bipolar disorder typically involves prolonged sleep onset

latency, increased frequency of rapid eye movement sleep across all

stages (136), and irregular sleep patterns that may increase the risk of

recurrence of manic or depressive episodes (137–139).

In schizophrenia, about half of the patients exhibit significant

disruption of circadian rhythms (24), characterized by increased sleep

onset latency, decreased total sleep time, and reduced sleep efficiency

(140). Schizophrenia affects various neurotransmitter systems

involved and overlaps with those in sleep regulation (141). For
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example, one of the hypotheses of neural mechanisms of

psychiatric symptoms of schizophrenia is aberrant dopamine

signaling, which is one of the major regulators of sleep and

wakefulness (142). Patients with schizophrenia also have a

significant reduction in REM sleep latency and sleep density (143,

144) and insomnia is associated with psychopathology of

schizophrenia (145). Additionally, spindle deficits in schizophrenia,

particularly in the frontal-parietal and prefrontal areas, are observed

in patients on antipsychotics (146–148) and in patients with first-

episode psychosis who are antipsychotic-naïve or minimally treated

(149). Patients with first-episode psychosis also show reduced slow

wave density in frontal-central regions, including the prefrontal

cortex (150). In schizophrenia, spindle density is correlated with

positive symptom intensity, working memory deficits, and the

severity of negative symptoms in patients with first-episode

psychosis (147, 149, 151). These abnormalities are linked to

reduced mediodorsal thalamic volumes (148) and decreased

connectivity between the mediodorsal thalamus and prefrontal

cortex, evident in fMRI studies (152). Altered resting-state

connectivity in the thalamocortical network is also negatively

associated with spindle density (153).

We also found decreased total sleep time, lower sleep efficiency,

and longer sleep latency in schizophrenia from multiple meta-

analyses (Supplementary Table 2). In addition to the sleep

disruptions, another significant sleep disorder commonly found

in both schizophrenia and bipolar disorder is obstructive sleep

apnea (154). Obstructive sleep apnea is characterized by repeated

episodes of partial or complete obstruction of the upper airway

during sleep, leading to disrupted sleep-wake cycles and decreased

oxygen saturation (154). This disorder is particularly related to

metabolism, as it often co-occurs with metabolic syndrome,

involving increased blood pressure, high blood sugar, more body

fat and waist circumference, and low high density lipoprotein

cholesterol or high triglycerides (155). Patients with psychiatric

disorders, including schizophrenia and bipolar disorder, show a

higher prevalence of metabolic syndrome (141, 156), suggesting a

potential common metabolic pathway that may contribute to the

development and exacerbation of both psychiatric and

sleep disorders.

Bipolar disorder and major depression also show widespread

glial abnormalities (157–159). In the suprachiasmatic nucleus, the

master circadian clock, astrocytes regulate circadian rhythms via

glial fibrillary acidic protein expression, influencing glutamate levels

(28). Additionally, accumulated data suggests that, under

physiological conditions, astrocytes play a crucial role as the

primary source of adenosine (29, 160, 161). Sleep homeostasis is

regulated by the accumulation of adenosine in the brain during

wakefulness and its subsequent decline during sleep (161–163).

Interestingly, postmortem studies of patients with major depressive

disorder and bipolar disorder reveal a decreased number of glial

cells (30). It implies that decreased number of glial cells in the

suprachiasmatic nucleus can contribute to the disruption of

circadian rhythms in patients with bipolar disorder (160, 164). In

addition, chronic stress causes astrocyte structural atrophy and loss

of function, decreasing astrocyte support of neural transmission,

leading to depressive behavior (165). This astrocyte asthenia in
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mood disorders may contribute to impaired sleep regulation,

linking immune dysfunction as a potential mediator of the

bidirectional relationship between sleep dysfunction and bipolar

disorder (166, 167).

Despite numerous hypotheses and evidence from various

disciplines, a multidisciplinary approach to understanding the

pathology of schizophrenia and bipolar disorder in relation to

sleep abnormalities has yet to be established. Therefore, further

research is needed for a comprehensive understanding of the

underlying mechanisms and relationship between circadian

abnormalities and the pathophysiology of mood disorders,

including bipolar disorder and schizophrenia. See Supplementary

Table 2 for a rapid systematic review of meta-analyses looking at

sleep disturbances and their associations with psychiatric diseases.
6 Effect of the ketogenic diet on sleep
and circadian rhythms

It has long been known that sleep and metabolism are related.

For example, sleep deprivation alters glucose metabolism (168) and

altered glycemic control in diabetics correlates with sleep quality

(169, 170). In fact, the level of carbohydrate intake is correlated with

sleep quality, where more carbohydrates lead to lower subjective

sleep quality (171), less slow wave sleep, and more REM sleep (172,

173). The role of ketones in modulating sleep [reviewed in (174,

175)] has support from both rodent and human studies.

Intracerebral ventricular injection of the ketone body,

acetoacetate, in mice increases delta power during sleep (176).

The ketogenic diet in both diabetics (177) and psychiatric (178)

patients improved their subjective sleep quality measured by the

Pittsburgh Sleep Quality Index. Narcoleptic patients on a ketogenic

diet showed reduced narcolepsy symptoms (179). The ketogenic

diet has also been shown to improve migraine patients sleep quality

and decrease insomnia (180). Women with obesity on a very low

carbohydrate diet for 31 days showed improved sleep quality that

correlated with the change in fat mass (181). Children with epilepsy

showed improved sleep quality, normalized sleep architecture with

increased REM sleep, and decreased daytime sleep (182).

The ketogenic diet is becoming more widely used in weight loss

and medical interventions such as diabetes and psychiatry but there

are few high-quality long-term studies investigating its effect on

objective sleep criteria. Consistent with the idea that ketones

improve sleep quality, a study measuring sleep across 4 days of

fasting, where ketones are known to rise, found NREM sleep

increased and REM sleep decreased (183). Exogenous ketone ester

supplements are able to counter intense exercise induced decrease

in REM sleep and improve sleep efficiency (184). When ketogenic

diets are tested in young healthy people, there have been varying

results. Short-term ketogenic diet consumption increased slow wave

sleep and reduced REM sleep in one study (185) whereas 3 weeks of

the ketogenic diet did not improve patients sleep further in young

healthy people (186). These differences may be due to young healthy

people already having high quality sleep so there is not as much

room for improvement. In addition, keto-adaptation can take
Frontiers in Psychiatry 06
longer than 3 weeks to occur (187) so longer interventions in

more people are needed.

Ketone bodies also function as metabolic and signaling

mediators impacting circadian rhythms. The composition of food

and meal timing can influence circadian activity, and ketone bodies,

along with nutritional challenges from a ketogenic diet, can

modulate diurnal rhythms in peripheral tissues, interpreted

differently by tissue-specific clocks (188–193). Additionally,

ketogenic diet feeding induces circadian transcriptional

reprogramming of intestinal energy metabolism, controlled by

core clock-independent mechanisms (190).

While disrupted sleep and circadian rhythms are fundamental

contributors to the onset and progression of bipolar disorder (22–24),

understanding the relationship between sleep and mood disorders is

incomplete. In schizophrenia research, macrostructural changes in

sleep are evident, and sleep oscillations (e.g., sleep spindle and slow

oscillations) are affected by schizoaffective disorder. However, the role

of sleep in understanding the mechanism of schizophrenia is often

overlooked (194). Therefore, further research should prioritize

identifying specific sleep parameters as reliable indicators for

predicting mood disorder progression and evaluating the

effectiveness of therapeutic interventions for mental diseases.
7 Conclusions: sleep, metabolism, and
mental health – current state and
future directions

This review has comprehensively assessed the multiple theories

underlying the pathology of bipolar disorder and schizophrenia and

explored potential ketosis therapeutic mechanisms. Shared

pathophysiological aspects between bipolar disorder and

schizophrenia include suspected associations with bioenergetic

dysfunction, potentially stemming from mitochondrial dysfunction,

alterations in the TCA cycle, and disturbances in neurotransmitter

systems (6, 32–35, 56–58). Among these factors, mitochondrial

dysfunction has downstream effects, contributing to disruption in

energy supply, increased oxidative stress, apoptosis, and imbalances

in calcium ion concentrations, with interplay among these effects

(44–47). Moreover, prolonged oxidative stress in the circuitry of

neurotransmitters, e.g., parvalbumin interneurons in GABAergic

circuits, have been identified in schizophrenia and bipolar disorder

(84–86). This implies that redox dysregulation can be regarded as a

notable environmental risk factor for neuronal dysfunction in

psychiatric diseases which may relate to psychotic symptoms (5, 7, 81).

The therapeutic potential of the ketogenic diet for bipolar

disorder and schizophrenia was also discussed. Recent clinical trials

have offered substantial evidence of the therapeutic effects of a

ketogenic diet in bipolar disorder and schizophrenia (15–20).

Patient commitment is required to adhere to the dietary guidelines

to achieve and maintain ketosis. There are well-controlled clinical

trials with systematic protocols that are promising for understanding

the therapeutic effects of the ketogenic diet in psychiatric patients

(21, 104). Nevertheless, the complexity of these effects warrants

concurrent preclinical research to elucidate the intricate impact of
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ketosis on the pathology of bipolar disorder and schizophrenia.

Preclinical studies have suggested the potential benefits of ketone

bodies on mental health, supporting mitochondrial function and

exhibiting improved energy production and gene expression

associated with oxidative phosphorylation (118–120). Both human

and animal studies also validate the anxiolytic, antioxidant, and

neuroprotective effects of ketosis in the context of oxidative stress

and inflammation (108–110, 113–115).

We also summarized sleep disorders and disruption in circadian

rhythms in mood and psychiatric disorders. Patients with bipolar

disorder experience hypersomnia and insomnia depending on the

phase of the disease and sleep disturbances have negative impacts

on the course of psychiatric illness in both of bipolar disorder and

schizophrenia (22, 195, 196). In schizophrenia, prominent

deficiencies in sleep spindles, associated with cognitive symptoms,

are observed (146–149, 151). Moreover, patients with bipolar

disorder and schizophrenia exhibit a higher prevalence of

metabolic syndrome, often accompanied by obstructive sleep

apnea, indicating a common metabolic pathology (154). Glial

abnormalities, particularly in astrocytes, are implicated in the

pathology of mood disorders (157–159), with astrocytes being a

primary source of adenosine crucial for sleep homeostasis (29, 160,

161). Consequently, damaged or decreased glial cells in the

suprachiasmatic nucleus, the master circadian clock, may

contribute to impaired sleep regulation (160, 164).

This review has examined the evidence of bioenergy

dysfunction and redox dysregulation in the pathogenesis of

bipolar disorder and schizophrenia. These foundational

pathologies in psychiatric disorders have been substantiated

through diverse research approaches, encompassing human

postmortem analysis, preclinical studies involving animal models

or cell cultures, and molecular science research detailing the

favorable impacts of ketone bodies on energy metabolism, redox

homeostasis, and neuroprotection. These comprehensive insights

advocate for the necessity of translational research exploring the

ketogenic diet as a therapeutic approach for mood disorders and

psychiatric diseases, potentially supporting ongoing clinical trials.

Furthermore, the critical role of sleep in bipolar disorder and

schizophrenia research has been underscored. While sleep-related

observations for biomarker research are currently undervalued, our

emphasis on the impact of glial abnormalities in sleep highlights the

need for future preclinical research to unravel the metabolic

mechanisms underpinning sleep disorders in mental health.

Oxidative stress emerges as a primary pathology leading to

downstream damage in the neural-glial network of individuals

with bipolar disorder and schizophrenia. Considering the

neuroprotective effects of ketone bodies and their capacity to

mitigate oxidative stress, investigating the ketogenic diet in sleep

research becomes a rational approach to elucidate the beneficial

effects of ketosis on sleep disorders.

This comprehensive narrative review highlights the intricate

relationship between sleep disorders, dysfunctional metabolism,

and mood disorders, as they share similar pathologies and

therapeutic targets—specifically, oxidative stress and the ketogenic

diet. Despite a substantial body of evidence on each research topic,

there is a noticeable dearth of studies considering these
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interconnected pathological mechanisms in bipolar disorder and

schizophrenia. Therefore, we propose that future research in mood

and schizoaffective disorders, in the form of both randomized

controlled clinical trials and translational studies in animal models,

should adopt a multidisciplinary approach to explore the interplay

between sleep, metabolism, and mood disorders. This approach is

poised to uncover the pathology and therapeutic targets of these

diseases, and we anticipate that translational research in these

domains will usher in a new chapter in psychiatric disorder research.
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