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Unraveling the enigma:
housekeeping gene Ugt1a7c as a
universal biomarker for microglia
Wonju Kim, Minji Kim and Beomsue Kim*

Neural Circuit Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
Background: Microglia, brain resident macrophages, play multiple roles in

maintaining homeostasis, including immunity, surveillance, and protecting the

central nervous system through their distinct activation processes. Identifying all

types of microglia-driven populations is crucial due to the presence of various

phenotypes that differ based on developmental stages or activation states.

During embryonic development, the E8.5 yolk sac contains erythromyeloid

progenitors that go through different growth phases, eventually resulting in the

formation of microglia. In addition, microglia are present in neurological diseases

as a diverse population. So far, no individual biomarker for microglia has been

discovered that can accurately identify and monitor their development

and attributes.

Summary: Here, we highlight the newly defined biomarker of mouse microglia,

UGT1A7C, which exhibits superior stability in expression during microglia

development and activation compared to other known microglia biomarkers.

The UGT1A7C sensing chemical probe labels all microglia in the 3xTG AD mouse

model. The expression of Ugt1a7c is stable during development, with only a 4-

fold variation, while other microglia biomarkers, such as Csf1r and Cx3cr1, exhibit

at least a 10-fold difference. The UGT1A7C expression remains constant

throughout its lifespan. In addition, the expression and activity of UGT1A7C are

the same in response to different types of inflammatory activators’ treatment

in vitro.

Conclusion: We propose employing UGT1A7C as the representative biomarker

for microglia, irrespective of their developmental state, age, or activation status.

Using UGT1A7C can reduce the requirement for using multiple biomarkers,

enhance the precision of microglia analysis, and even be utilized as a standard

for gene/protein expression.
KEYWORDS
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Introduction

Microglia are involved in immune responses as tissue-resident

macrophages of the central nervous system (CNS) (1–3). In addition

to the immune role, their cellular activities are involved in the

neuronal array regarding the refinement of synaptic connections

and the elaboration of neuromodulatory factors for cognitive ability

(4–7). They take up approximately 5 ~ 12% of the total cells in the

mouse brain, with a diversity of transcriptional module combinations

and levels of crowd across the brain region (8–12). Given their

functional role and prevalence in the brain, microglial regulation has

a high potential to develop brain disease therapy (13–15). Indeed,

recent studies have linked microglia to neurodevelopmental and

psychiatric diseases and neurodegenerative diseases (16–19).

Accumulated mouse in vivo lineage tracing results indicate that

microglia at different developmental stages are characterized by

unique molecular features (20–23). Erythromyeloid progenitors

(CD45-c-Kit+) arise before the end of embryonic day (E) 8 during

the first wave of hematopoiesis in the yolk sac (24). Erythromyeloid

progenitors - derived primitive macrophage progenitors (CD45+c-

KitloCX3CR1-) colonize the developing brain at E9.5 and further

differentiate into microglia in a Myb-independent manner via the

PU.1- and IRF8-dependent pathway (22, 25). Regardless of

distinctive ontogeny, microglia also express general macrophage

markers such as CD11b, CSF1-1 receptor CD115, surface

glycoprotein F4/80, and fractalkine receptor CX3 chemokine

receptor CX3CR1 (24, 26–28). Although the expression level is not

very high, microglia even express the hematopoietic marker CD45

(24, 29). However, most of the general markers does not satisfy the

requirements for covering all stages of microglia. F4/80 is present

from E9.5, but its expression is undetectable at E8.5 in the brain

according to fate-mapping analysis of CSF1R (CD115)-expressing

cells (30). CX3CR1 is expressed in the gut region at E8.5 and is

sparsely visualized throughout the embryo. At stage E8.5 to 9.0, it was

detectable in neural tissue within telencephalic vesicle. At E9.5,

CX3CR1 microglial precursor cells were detected in the surface

ectoderm [(31), Figure 1A]. As a result of these restricted

generalities, it is common for researchers to utilize at least two

biomarkers in lineage tracing experiments [(32), Table 1].

However, this approach often results fragmented data and unclear

interpretation during specific time periods.

Since the publication of the fate mapping study in 2010, there has

been a significant increase in information regarding microglia’s

ontogeny, maintenance, neuroimmune activities, and interactions

(20). Microglia express heterogeneous profiles with different shapes,

gene expression patterns, and even function (84, 85). The integration of

several microglia biomarkers for translational/transcriptomic analysis is

an informative feature based on information about microglia (84, 86–

90). A single microglia biomarker was not sufficient to identify them

and track their ontogeny and characteristics, especially when there was

an interaction with other types of glia/neurons and a transition of status

(13, 91–93). For example, P2RY12 downregulation occurs upon

microglia activation (65). TMEM119 appears to be influenced by

inflammatory responses and environmental factors including TGF-b
and LPS (65, 81, 94). Sall1 expression is highly correlated with TGF-b1
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signaling and varies between microglial cell lines (71, 72). The

activation state of microglia also strongly impacts the expression of

CD11b (59–61), CD115 (48, 49) and F4/80 (12, 33–35). Identifying a

novel biomarker formonitoringmicroglia remains amajor challenge in

microglial biology.

Many aspects of microglial development and origin have been

clarified through fate mapping studies in mice (20, 95). Depletion–

repopulation experiments have demonstrated that microglia rely

solely on self-renewal and are not influenced by other organs (96).

Microglia were once considered to be uniform cells that respond to

their environment because of their distinctive feature: “single

origin” and “self-renewal.” However, recent research indicates

that microglia exhibit high diversity in terms of morphology,

function, and gene expression (27, 57, 71, 97–100). This

heterogeneity in microglia is due to various factors, including

intrinsic factors such as species, gender, and genetic background,

and extrinsic factors such as pathogens, nutrition, and microbiota

(10, 80, 101–103). The conventional in vitro-based classification

distinguished “M1” and “M2” microglia, with M1 indicating

neurotoxic and proinflammatory microglia and M2 representing

neuroprotective and anti-inflammatory microglia (104–107).

Nonetheless, the dichotomous classification has been replaced by

multiple subclass-cluster classification based on transcript

combinations and surface protein combinations with the advent

of technologies such as single cell RNA seq and single cell mass

spectrometry (CyTOF) (98, 108–115).

Low gene expression is often disregarded, as it is anticipated to

have a negligible impact on cells. A recent study discovered a new

microglial biomarker, UDP-glucuronosyltransferase 1a7c

(UGT1A7C). The discovery was made during the analysis of the

target gene to a microglia-specific BODIPY-based fluorescent dye

called CDr20 (83). Thanks to the low yet sufficient level of the

enriched UGT1A7C enzyme, the microglia population efficiently

converts the small chemical into a fluorescent active form (57). The

development of high-performance fluorogenic chemical probes

enables the visualization of microglia with the biomarker and

allows UGT1A7C to enter the microglia research area with its

unique approaching capacity that can act both in vitro and in vivo

(116). From this perspective, we present a concise overview of

microglia and UGT1A7C, while also shedding light on areas that

faced technical limitations and did not receive adequate attention

due to previous doubts about their existence in the brain.
Discussion

Microglia originate from the yolk sac and go through different

phases, such as erythromyeloid and macrophage precursors. Once

they enter the brain, microglia take on the role of tissue-resident

macrophages and become involved in neuromodulation, which

explains the diverse protein expression patterns observed in

different developmental stages and microglia functions. To track

microglia, different markers that match their specific property of

interest are utilized. As technology advances, the list of attributes

specific to each stage of microglia, including the genes they express,
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is continuously growing. Consequently, microglia are undergoing

additional subclassification according to their recognized features.
Microglia heterogeneity

Microglia exhibit variations across distinct brain regions.

Microglia in the prefrontal cortex (PFC) express high levels of

Cx3cr1, P2ry12, and Tmem119 and low levels of Apoe, Lyz2, and

Spp1, which are involved in synaptic modulation and plasticity for

learning and memory and in inflammation and immune response,

respectively (117). Microglia in the striatum express significant

amounts of Map1b, Map2, and Tubb2a and low levels of Cd68,
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Lgals3, and Mrc1, which are involved in cell movement and shape

and for the suppressed activity for phagocytosis and lysosomal

function against pathogens and injuries, respectively (117).

Microglia in the midbrain express high levels of Ccl2, Ccl5, and

Il1b and low levels of Cx3cr1, P2ry12, and Tmem119, caused by their

active inflammation and immune response and low synaptic

modulation and plasticity activities (117). Microglia in the

cerebellum express high levels of Gpx1, Gpx4, and Sod2 and low

levels of Cx3cr1, P2ry12, Tmem119, and Aif1, indicating that they

are sensitive to oxidative stress and metabolism, but show less

function related to synaptic modulation and identity (118).

In addition to regional differences, the specific microenvironment

is also linked to the molecular signature of microglia. For example,
B

C

A

FIGURE 1

Microglial marker genes and Ugt1a7c. (A) Schematic diagram of microglial housekeeping gene. (B) Line plot of expression of microglial marker genes
and Ugt1a7c across the microglial development including yolk sac (YS), pre-mature brain (Brain), and mature brain (Adult). From GSE79812,
expression profiling data of microglial marker genes and Ugt1a7c were acquired. Units on the y axes are arbitrary. (C) Line plot of expression of
microglial marker genes depending on TMEM119 protein expression. Data were acquired from NCBI BioProject (Accession PRJNA307271). For
microglial marker genes, Csf1r, Cx3cr1, P2ry12, and Tmem119 were selected. A line represents the mean value of replications (colored spots). E,
embryonic day; P, postnatal day; Hippo, hippocampus; SC, spinal cord; LPS, lipopolysaccharide. Created with BioRender.com.
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TABLE 1 Microglia marker.

Gene Protein UniProt Synonyms Functions JAX
ID

References

Adgre1 Adhesion G protein-
coupled receptor E1

Q61549 Cell surface
glycoprotein F4/
80, EGF-like
module
receptor 1

Involved in cell adhesion and probably in cell-cell interactions
specifically involving cells of the immune system; Play a role
in regulatory T-cells development

038175 (12, 33–35)

Adora3 Adenosine A3 receptor Q61618 A3AR, Gpcr2 Potential targets for acute or chronic pain management 066730 (36–40)

Aif1 Allograft inflammatory
factor 1

O70200 Iba1, Ionized
calcium-binding
adapter
molecule 1

Enhances the actin-bundling activity of LCP1; Plays a role in
RAC signaling and in phagocytosis

(41)

Cd14 Monocyte
differentiation
antigen CD14

P10810 Myeloid cell-
specific leucine-
rich
glycoprotein,
CD14

Coreceptor for bacterial lipopolysaccharide (LPS); Mediating
the innate immune response to the bacterial LPS

003726 (42–44)

Cd80 T-lymphocyte
activation
antigen CD80

Q00609 Activation B7-1
antigen
(B7), CD80

Involved in the costimulatory signal essential for T
lymphocytes activation

036705 (45–47)

Csf1r Macrophage colony-
stimulating factor
1 receptor

P09581 CSF-1
receptor, CD115

Acts as cell-surface receptor for CSF1 and IL34 and plays an
essential role in the regulation of survival, proliferation and
differentiation of hematopoietic precursor cells, especially
mononuclear phagocytes, such as macrophages and
monocytes; Play a role in the development of
microglia macrophages

021212 (48, 49)

Cst3 Cystain-C P21460 Cystain-3 Related cerebral amyloid angiopathy; cysteine protease
inhibitor; regulate lysosomal enzyme activity

(39, 50)

Cx3cr1 CX3C chemokine
receptor 1

Q9Z0D9 Fractalkine
receptor, C-X3-
CCKR-1

CX3CR1-CX3CL1 signaling exerts distinct functions in
different tissue compartments, such as immune response,
inflammation, cell adhesion and chemotaxis

005582 (26, 51)

Ecscr Endothelial cell-specific
chemotaxis regulator

Q3TZW0 ECSM2, ARIA Role in angiogenesis and apoptosis via modulation of the
actin cytoskeleton

(52)

Entpd1 Ectonuceloside
Triphosphate
Diphosphohydrolase 1

P55772 NTPDase-
1, CD39

Hydrolyze ATP and other nucleotides to regulate purinergic
neurotransmission; Involved in microglial senses and
suppresses neuronal hyperexcitability in epilepsy

(53)

Fcgr1 High affinity
immunoglobulin
gamma Fc receptor I

P26151 Fc-gamma RI
(FcRI), CD64

Functions in both innate and adaptive immune responses (54–56)

Hexb Beta-hexosminidase
subunit beta

P20060 N-acetyl-beta-
glucosaminidase
subunit beta

Hydrolyzes the non-reducing end N-acetyl-D-hexosamine;
responsible for the degradation of GM2 gangliosides in the
presence of GM2A

030864 (57, 58)

Itgam Integrin alpha-M P05555 Cell surface
glycoprotein
MAC-1 subunit
alpha, CD11b

Implicated in adhesive interaction of monocytes,
macrophages, and granulocytes; Mediating uptake of
complement-coated particles

005515 (59–61)

Mef2a Myocyte-specific
enhancer factor 2A

Q60929 RSRFC4, Serum
Response
Factor-Like
Protein 1

Regulating autophagy related genes; Maintenance of
microglia homeostasis

010587 (62–64)

P2ry12 P2Y purinoceptor 12 Q9CPV9 P2Y12 Inhibit the adenylyl cyclase second messenger system;
Required for normal platelet aggregation and
blood coagulation

034727 (65–67)

P2ry13 P2Y purinoceptor 13 Q9D8I2 P2Y13, Gpr86 Regulate microglial morphology, surveillance, and resting
levels of interleukin 1b release

(68)

(Continued)
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microglia actively express the fractalkine receptor (CX3CR1) when in

contact with neurons that express its ligand, called fractalkine

(CX3CL1) (26, 119–121). The contacted microglia are then actively

involved in neural plasticity by pruning excess and/or weak synapses

through the receptor-specific signaling pathway (122, 123). Another

example is the interaction between the microglial TREM2 receptor

and the neuronal ApoE ligand (124–126). The interaction plays a role

in regulating microglial phagocytosis and inflammation as well as

neuronal lipid metabolism and function (127–130). Lastly, Brain-

derived neurotrophic factor (BDNF) secreted from neurons binds to

TrkB receptors in microglia, enhancing neuronal survival and

function (131–133). These examples collectively indicate that the

microglial signature genes are largely controlled by the activity of

neurons and other glia such as astrocytes, meaning that most of the

signature genes are highly and temporally regulated by the

microenvironment status of the brain (18, 77, 84, 134).

Using a single microglial biomarker in diversity studies is

insufficient for classifying microglia (135, 136). A new trend has

arisen where functional studies are using multiple microglial

biomarkers to define different “subtypes” of microglia (136).

However, it is frustrating to use more than two or three

biomarkers to distinguish a microglial population from other glia/

neurons. The development of a tool capable of continuous detection

of all types of microglial population in any of the brain regions is

necessary for future microglial studies regarding its cellular function

in any “phenotype” of microglia appearing in a region and a
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condition impacted by external factors (117, 118). Therefore, it is

crucial to ascertain the count of microglial subtypes, comprehend

their localization, and identify the adjacent cells in every brain

region while determining these biomarkers. Brain region-specific

cellular relationships are currently characterized across the human

brain as well as the mouse’s through single cell RNA sequencing

with anatomical dissections (111, 137–139). Siletti and colleagues

comprehensively analyzed 105 anatomical dissections of 4 human

brains across 10 brain regions, including the cerebral cortex,

hippocampus, cerebral nuclei, hypothalamus, thalamus, midbrain,

pons, cerebellum, medulla, and spinal cord. Each single cell was

classified into 31 superclusters and 461 clusters using a hierarchical

classification system. According to this dataset, microglia were

classified as a single supercluster and subsequently divided into 9

clusters (111). In contrast, other glial cell types such as astrocytes

were classified as superclusters, comprising 13 clusters. Compared

with glia, neurons showed significant variation across different

brain regions. For example, medium spiny neurons (MSNs) were

classified into 32 clusters, including eccentric MSN clusters (111).

This study compares cell clustering combinations in adjacent

anatomical dissections and offers new insights into the impact of

cell type diversity on regional-specific variations across the human

brain through single cell-level transcriptome analysis of regions.

Comparative analysis of neighboring anatomical dissections reveals

that when a new neural circuit is established for a particular

function, gradual changes occur in the neuron’s surroundings,
TABLE 1 Continued

Gene Protein UniProt Synonyms Functions JAX
ID

References

Ptprc Receptor-type tyrosine-
protein phosphatase C

P06800 Leukocyte
common antigen
(L-CA), CD45

Acts as a positive regulator of T-cell coactivation upon
binding to DPP4

002014 (69, 70)

Sall1 Sal-like protein 1 Q9ER74 Zinc finger
protein Spalt-3

Critical regulator of organogenesis and microglia identity;
Associated Townes–Brock syndrome

033318 (71–74)

Sall3 Sal-like protein 3 Q62255 Spalt-like
protein 3

Mutations of these gene are associated with congenital
disorders in human. Binding DNMT3A reduces DNMT3A-
meidated CpG island methylation

(73)

Sparc SPARC P07214 BM-40 Regulate cell growth through interactions with the
extracellular matrix and cytokines; Regulates the distribution
and branching of mature microglia

003728 (75, 76)

Spi1 Transcription
factor PU.1

P17433 PU.1, SFFV
proviral
integration
1 protein

Plays a crucial role in determining macrophage lineages and
microglial genesis and is a major factor in selecting the set of
enhancers expressed by microglia

006147 (71, 77, 78)

Tgfa Proptransforming
growth factor alpha

P48030 TGF-Alpha Promote anchorage-independent cell proliferation; Regulate
the pathogenic activities of astrocytes

(79, 80)

Tmem119 Transmembrane
protein 119

Q8R138 Osteoblast
induction
factor (OBIF)

Promotes the differentiation of myoblasts into osteoblasts 031823 (65, 81, 82)

Ugt1a7c UDP-
glucuronosyltransferase
1A7

Q6ZQM8 UDP-glucuronosyltransferase (UGT) that catalyzes phase II
biotransformation reactions in which lipophilic substrates are
conjugated with glucuronic acid to increase the metabolite’s
water solubility, thereby facilitating excretion into either the
urine or bile

(83)
Inspired Jurga and colleagues’ work (32), data were acquired from www.uniprot.org and www.jax.org.
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including microglia and astrocytes, instead of creating a “primary

function neuron” all at once. Subsequently, the existing “primary

function neuron” undergoes fine-tuning to transform into a new

“primary function neuron” through interactions with its

environment (111, 137). This means that not only individual cell

function, but also the function of individual brain regions is

strongly influenced by interactions between cells. As a result,

identifying genes that are expressed regardless of regional

differences and cell-cell interactions becomes a priority.

The gene-based heterogeneity of microglia, however, is limited

because current knowledge is provided by information only about a

specific snapshot in time. The diversity of microglia due to

environmental factors, such as cell–cell interactions and disease

states, is more precisely delineated when observed over a broad

period. To track environmentally responsive microglial phenotypes

and associated protein functions over time, reliable stable markers

that are constitutively expressed and independent of the environment

are essential. We serendipitously discovered UGT1A7C as a new type

of microglia biomarker during the development of a fluorogenic

microglia probe called CDr20, an enzyme that marks microglia

regardless of environmental differences.
UGT1A7C as a house-keeping biomarker
of microglia

According to Matcovitch-Natan et al. RNA-seq data, the

development of microglia was identified in three stages: early

(until embryonic day 14), pre- (within a few weeks after birth),

and adult microglia. They revealed a stepwise developmental

program of microglia that is synchronized with the development

of the brain. Early microglia were initially formatted with genes

related to cell cycling and differentiation, such as Mcm5 and Dab2.

Thereafter, the expression of genes related to neurodevelopment,

such as Csf1 and Cxcr2, increased and reached its peak a few days

before birth. Cd14 and Pmepa1, which are representative genes for

mature microglia, were found to be expressed primarily in adult

microglia (62). In this dataset, we examined the expression patterns

of well-known microglial markers including P2ry12, Tmem119,

Csf1r and Cx3cr1 compared to Ugt1a7c across different

developmental stages (Figures 1B, C).

The gene P2ry12, which encodes P2RY12, is expressed

approximately 82 times more in the adult stage than in the yolk

sac stage [(62), Figure 1B]. P2RY12, which was initially identified on

platelets as a mediator of platelet activation and blood clotting, is a

Gi/o-coupled purinergic receptor expressed in the CNS specifically

by homeostatic microglia (140–144). Activation of P2RY12 through

ATP/ADP induces rapid microglial chemotaxis and directional

branching of microglial processes (65, 145). Additionally, it is

involved in activities such as substrate-dependent cell migration

and extension in vitro and ex vivo, as well as the regulation of

microglial migration (65, 146, 147). P2RY12 is highly expressed

along the microglial membrane under normal circumstances (57)..

However, after an injury, P2RY12 downregulation occurs (65, 145).

This means that microglia may promptly identify alterations in

brain homeostasis and react appropriately by expressing P2RY12
Frontiers in Psychiatry 06
(57, 65, 148, 149). The gene encoding transmembrane protein 119

(TMEM119) was expressed 803 times higher in the adult stage than

in the yolk sac stage (62). Tmem119, also referred to as Obif

(Osteoblast induction factor), is expressed exclusively in microglia

in the brains of mice and humans, allowing for distinction from

infiltrating blood-derived macrophages (81, 89). Its function in

microglia remains unclear (81, 82, 89, 94). TMEM119 is located in

the endoplasmic reticulum and plasma membrane (150–152). It is

also expressed in several organs like the alimentary system,

genitourinary system, limb, and skeleton as well as the brain (153,

154). A previous study found that frozen tissue samples of the

frontal cortex from patients with Alzheimer’s had increased levels of

TMEM119 mRNA (81, 155). Transforming growth factor beta

(TGF-b) induced an upregulation of Tmem119 gene expression in

cultured mouse microglia (156). In contrast, lipopolysaccharide

(LPS), interleukin 4 (IL–4), or interferon-gamma (IFN-g) induced
downregulation of TMEM119 gene expression in cultured human

microglia (81, 89). The diverse expression patterns of TMEM119

appear to be influenced by inflammatory responses and

environmental factors (82).

In contrast to the wide variation observed in the expression of

P2ry12 and Tmem119, the expression of Csf1r and Cx3cr1 remains

relatively stable across microglial developmental stages, with only 9-

fold and 13-fold changes, respectively [(62), Figure 1B]. Csf1r

encodes the colony-stimulating factor 1 receptor (CSF1R), a

member of the tyrosine kinase receptor family (157). Upon

stimulation by its ligands, including CSF1 and interleukin 34,

CSF1R undergoes autophosphorylation of tyrosine residues in the

intracellular domain, followed by activation of downstream

signaling pathways (158). CSF1R is primarily expressed in the

microglia of the brain and is crucial for their survival,

proliferation, and differentiation (159–162). The gene Cx3cr1

encodes the receptor for the C-X3-C chemokine fractalkine

(CX3CL1), which is found in numerous leukocyte cells during

early development (163–165). Signaling through CX3CR1-

CX3CL1 exerts distinct functions in various tissue compartments,

including immune response, inflammation, cell adhesion, and

chemotaxis (163, 166–169). It controls the inflammation process

that triggers atherogenesis, by facilitating the recruitment of

macrophages and monocytes to inflamed atherosclerotic plaques,

thus promoting cell survival (170, 171). CX3CR1 plays a crucial role

in regulating the inflammatory response and synapse maturation in

CNS microglia (122, 172, 173). During postnatal brain

development, the brain participates in synaptic pruning, a natural

process in which brain microglia eliminate extra synapses (122, 123,

133, 174, 175). Interestingly, despite the relative stability of both

Csf1r and Cx3cr1 expression, the fluctuation of their expression

levels around 10-fold makes the two genes more suitable for

distinguishing microglial subtypes rather than serving as

housekeeping biomarkers for microglia (62).

Surprisingly, Ugt1a7c expression remains remarkably stable

throughout the yolk sac, pre-microglia, and adult microglia stage,

exhibiting only a 4-fold difference between maximum and

minimum expression [(62), Figure 1B]. The peak expression

period occurs between 3 and 6 days after birth, with expression

levels remaining moderate thereafter as the microglia reach full
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maturity (62). The Ugt1a7c gene belongs to the UGT (UDP-

Glycosyltransferase) gene family and is the only member enriched

in microglia (176–179). The UGT gene families found in animals,

plants, fungi, and bacteria facilitate phase II biotransformation

reactions (180–184). They conjugate lipophilic substrates with

glucuronic acid, from the UDP-glucuronic acid to the functional

hydroxyl group of substrates, resulting in increasing hydrophilicity

and facilitating excretion through bile and urine in the systemic

organs eventually (176, 184–188). The role of Ugt1a7c in the brain,

however, has not been extensively studied because its expression is

not high compared with that of microglia-specific genes such as
Frontiers in Psychiatry 07
P2ry12 and Tmem119, although its expression remains constant

throughout development (Figures 1B, C).

To assess the stability of Ugt1a7c expression in mouse brains

across different ages, we employed the UGT1A7C-specific substrate,

CDr20, and conducted further evaluation. Interestingly, the

fluorescence intensity of CDr20 remained unchanged across all

tested ages, ranging from 3 months to 18 months (Figure 2A). This

indicates that Ugt1a7c activity persists throughout the lifespan of

the mouse. In addition to physiological condition, treatment with

various activators, such as LPS, IFNg, LPS/IFNg, ATP, IL-13, or Ab,
did not alter the activity or expression of Ugt1a7c in mouse
B C

D

A

FIGURE 2

Environmental factor independent UGT1A7C. (A) Age-independent Ugt1a7c. The intensities from CDr20 (UGT1A7C-specific fluorescence substrate)-
derived fluorescence were analyzed by treatment of live single cells dissociated from each age of the whole brain of a mouse. (B) Activation-
independent Ugt1a7c. CDr20 fluorescence intensity was analyzed by each activation stimulation. (C) Activation-independent Ugt1a7c. Ugt1a7c
mRNA expression levels were tracked at each time point. (D) AD-independent Ugt1a7c. Fluorescence image of the CDr20 (upper left, UGT1A7C-
positive cells) in a live cortical brain slice after 30 minutes of treatment and of the immunostaining of Iba-1 (upper middle, microglia) and 6E10
(lower left, Ab aggregates) after fixation of the tissue. Live and immunostaining images were superimposed (upper/lower right). Created with
BioRender.com.
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microglia (Figures 2B, C). This indicates that the stability ofUgt1a7c

expression is extensive, even when strong environmental factors or

activators are present. The stability of Ugt1a7c expression was also

confirmed, as all Iba1-positive microglia in an aged AD animal

could be labeled with CDr20, irrespective of their localization to Ab
aggregates (Figure 2D).

In summary, the expression of particular genes in microglia

changes according to their developmental stage, the brain region

they reside in, and the surroundings in which they communicate.

Microglia express a variety of genes, allowing them to precisely

adjust neural circuits and control inflammatory responses. Even

though they are only expressed in microglia, there are still genes

whose functions and sequences remain unknown. The UGT1A7C is

essential for phase II biotransformation reactions, aiding in the

elimination of lipophilic substances from the body, and is exclusive

to microglia. While the role of Ugt1a7c in the brain is still uncertain,

its recognition as a microglia marker has been achieved through the

development of a fluorescent substrate, despite its low expression

level. Ugt1a7c remains consistently expressed, regardless of

microglial activity, developmental stage, or disease state, making

it distinct from other markers (Figures 1, 2).

In recent years, fluorescent probes for functional enzymes have

attracted considerable attention because of their inherent

advantages, such as high sensitivity, cost-effectiveness, and

applicability to high-throughput screening (HTS). However,

developing a practical fluorescent probe for a given UGT enzyme

remains challenging for the following two reasons. First, UGTs

within a subfamily share high amino acid sequence homology

(>65%) and usually exhibit broad and overlapping substrate

specificity (184). Second, the fluorescence properties of many

fluorophores are often “turned off” following O-glucuronidation

at the hydroxyl group (116, 189–191). Interestingly, the novel

fluorogenic microglia probe, CDr20, identified by unbiased high-

content imaging screening with over a thousand of small fluorescent

molecules, was a specific exogenous substrate of UGT1A7C after

genome-wide CRISPR/Cas9 knockout screening in BV2 microglia.

CDr20 was able to label only microglia with high specificity and

sensitivity in the mixture of primary glia culture and even in the

brain in vivo (83). This means that the low expression levels of

UGT1A7C in microglia are functional enough for the specific

labeling of microglia with its fluorescence substrate.
Conclusion

Microglial detection with CDr20 is not affected by

developmental stages, disease, or environmental factors. This

indicates that Ugt1a7c is a very stable gene in microglia like

housekeeping genes and performs its enzymatic function in both

silent and active states of microglia constantly. Although the

function of this protein in microglia is not yet fully understood,

similar to that of TMEM119, we speculate that this new biomarker

is very interesting to other microglia biomarkers because of its
Frontiers in Psychiatry 08
unique property as the microglia’s housekeeping gene in the brain

and the existence of its specific fluorogenic substrate.
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