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The hippocampus is one of the brain areas affected by autism spectrum disorder

(ASD). Individuals with ASD typically have impairments in hippocampus-

dependent learning, memory, language ability, emotional regulation, and

cognitive map creation. However, the pathological changes in the

hippocampus that result in these cognitive deficits in ASD are not yet fully

understood. In the present review, we will first summarize the hippocampal

involvement in individuals with ASD. We will then provide an overview of

hippocampal structural and functional abnormalities in genetic, environment-

induced, and idiopathic animal models of ASD. Finally, we will discuss some

pharmacological and non-pharmacological interventions that show positive

impacts on the structure and function of the hippocampus in animal models of

ASD. A further comprehension of hippocampal aberrations in ASD might

elucidate their influence on the manifestation of this developmental disorder

and provide clues for forthcoming diagnostic and therapeutic innovation.
KEYWORDS
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1 Introduction

Autism spectrum disorder (ASD) is a developmental disability

resulting from a combination of genetic and environmental factors,

with an estimated prevalence of 0.72% globally (1). The most

characteristic symptoms of ASD are impaired social communication

and stereotyped or repetitive behaviors (2). In addition, ASD is

associated with a typical profile of difficulties across various domains

of cognition, including memory, learning, language ability, emotion,

and cognitive map creation (3, 4). It has long been recognized that

impaired memory for faces, working, and social scenes in individuals

with ASD contributes to clinical manifestations of the disorder, such as

executive dysfunction (5, 6). The co-occurrence of ASD and learning

disability is common, with previous estimates suggesting that as many

as three-quarters of individuals with ASD have impaired learning

abilities, including language learning skills (7). Language delay is an

important feature of autistic children – word and speech learning

difficulties are noticeable early in development and continue

throughout the school-aged years (8, 9). Individuals with ASD often

experience emotional dysregulation, including symptoms of anxiety,

which are associated with a range of negative mental and physical

health outcomes (10). Data from several navigation and search tasks

suggest that people with ASD were slower at learning spatial

distribution regularities, less efficient in exploring an environment,

and more likely to revisit the area they have already explored (11–13).

The hippocampus has consistently been a brain structure of

interest in the seek for physiopathological mechanisms and

rehabilitation treatment of ASD, given its important role in

memory (14), learning (15), language ability (16), emotional

regulation (17), and cognitive map creation (14). For example,

recently researchers found that increased recruitment of the

hippocampus compensated for decreased connectivity between

medial temporal lobes and the posterior medial network during

relational encoding tasks, which supported preserved episodic

memory in individuals with ASD (18). Previous observations in

ASD adults have also suggested that altered hippocampal

functioning contributes to difficulties with structural learning that

are likely to underlie more complex cognitive processes, including

episodic memory, learning processes, and cognitive map creation

(19). The language impairments observed in some individuals with

ASD are linked to abnormalities in the hippocampal regions (20).

Moreover, recent evidence indicates that altered neuronal projection

and chemical metabolites in the amygdala-hippocampus region

modulate emotional regulation in ASD (21, 22).

Herein, we will first review structural and functional

abnormalities in the hippocampus of individuals with ASD and

discuss discrepancies in the results of existing studies. In the next

part, we will discuss the known genetic, environment-induced, and

idiopathic animal models of ASD, mostly in mice and rats, that

exhibit hippocampal synaptic plasticity impairments and

hippocampus-dependent behavioral deficits. Then, we will

summarize the main findings from pharmacological and non-

pharmacological interventions for ASD that have been shown to

positively affect the structure and function of the hippocampus.

Directing more attention to the involvement of hippocampal
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pathology in the aetiology of ASD and ASD-related behaviors will

provide new insights into pathogenic mechanisms, contributing to

innovative molecularly or cellularly targeted therapies.
2 Hippocampal involvement in
individuals with ASD

The adult human hippocampus, a prominent part of the limbic

system, has a three-dimensional tortuous structure that resembles a

seahorse because of its arched shape in the axial plane. Based on the

cellular composition, the hippocampus can be anatomically divided

into four subregions, namely cornu ammonis one (CA1) to cornu

ammonis four (CA4) (23). In addition to the hippocampus, the

hippocampal formation comprises the dentate gyrus, subiculum,

presubiculum, parasubiculum, and entorhinal cortex. The dentate

gyrus retains the capacity for neurogenesis throughout an individual’s

lifespan, which is widely believed to play a pivotal role in cognitive

processes such as learning and memory (Figure 1A) (24). The fornix

is a primary outflow bundle of the hippocampus and wraps around

the thalamus. The hippocampus extends its axons into the fornix to

establish synaptic connections with neurons in the mammillary body,

which then project fibers via the mammillothalamic tract toward the

anterior thalamic nucleus. Subsequently, the cingulate gyrus that

contains a large number of myelinated fibers receives a connection

from the anterior thalamic nucleus. The cingulate gyrus curves over

the corpus callosum and stretches into the parahippocampal region

and the entorhinal cortex. In this way, it forms a closed loop by

returning to the hippocampal formation. This intrinsic neural

pathway, known as the Papez circuit, has long been considered to

be responsible for regulating emotions, memories, and learning

processes (Figure 1B) (25, 26).

The volume of the human hippocampus increases linearly

throughout gestation and the first two years after birth, and

continues to increase slowly thereafter, suggesting that the crucial

developmental period of the human hippocampus is likely to be

before the age of two (27, 28). Extensive research has proven that

social and behavioral impairments specific to individuals with ASD

also emerge between the ages of one-and-a-half and two years,

which lead to diagnostic delays until at least three to four years of

age (29, 30). It is therefore argued that the developmental timeline

of the hippocampus is probably consistent with the behavioral

developmental milestones of ASD (31). To sum up, considering the

importance of the hippocampus in learning, memory, language

ability, emotional regulation, and cognitive map creation, it could

conceivably be hypothesized that gaining an understanding of the

structural and functional characteristics of the hippocampus in

ASD may offer novel perspectives on the pathogenesis and

therapeutic targets for ASD.
2.1 Hippocampal volume changes

The advancement of neuroimaging methods has significantly

increased the ability to observe alterations in the morphology and
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brain activation patterns of individuals diagnosed with ASD over

the past decades. In particular, since the late 1980s, when the first

research of ASD using magnetic resonance imaging (MRI) was

published, various MRI modalities, including different types of

functional MRI, structural MRI, and diffusion tensor imaging,

have been reported to effectively facilitate the non-invasive

clinical diagnosis of ASD. These publications emphasize that the

clinical symptoms of ASD are correlated with volumetric

abnormalities in different areas of the brain, including the

hippocampus. For instance, extensive MRI research has

demonstrated abnormalities in hippocampal volume in

individuals with ASD when compared to typically developing

people, which is proven to be associated with aberrant

autobiographical memory, impaired language skills, social

communication deficit, and emotional problems in individuals

with ASD (32–34).

Sussman and co-workers (35) have observed a decreased

relative volume of the left hippocampus in 72 children and

adolescents with ASD. Similarly, a study comparing autistic adults

without intellectual disability and healthy community volunteers,

found that the reduction in hippocampal volume in the autistic
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subjects was apparent when corrected for total brain volume (36).

Another research based on the ABIDE database also found

decreased gray-matter volume in the posterior hippocampus

among a large sample of participants with ASD as compared to

typically developing controls (32). As these studies all included

high-functioning autistic individuals (Full-Scale IQ > 80), the

reduction in hippocampal volume is likely to reflect features of

autism itself, rather than features of the intellectual deficits that

typically accompany autism (36). In other words, autistic traits have

a robust correspondence with reduced brain volume in the

hippocampus that is related to social processing, working

memory, perceptual reasoning, and spatial learning. One possible

hypothesis is that high-functioning autistic populations may

experience an adaptive reduction in hippocampal volume as a

result of their decreased specific functional demands on the

hippocampus and altered interactions with the environment (37).

Decreased hippocampal volume in ASD individuals was also related

to impaired language skills, including verbal learning and memory

(32, 38). It has also been suggested that left hippocampal volume is a

positive predictor of early language development in females, but not

in males (39). Furthermore, it is worth mentioning that in many
A

B

FIGURE 1

(A) Anatomy of the adult human hippocampus (Ref: Parkin AJ. Human memory: novelty, association and the brain. Curr Biol. 1997;7(12):R768-9);
(B) Papez circuit of the human hippocampus (Ref: Bubb EJ, Kinnavane L, Aggleton JP. Hippocampal - diencephalic - cingulate networks for memory
and emotion: An anatomical guide. Brain Neurosci Adv. 2017;1(1):2398212817723443). This figure is created by using Adobe Photoshop
and PowerPoint.
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studies that have reported reductions in hippocampal volume

among ASD subjects, only reductions in relative hippocampal

volume (percentage of total brain volume) have been observed

rather than the absolute volume (35, 36, 40). Numerous studies have

now firmly established that individuals with ASD have a

significantly larger head circumference and a higher prevalence of

macrocephaly than age-matched healthy subjects (41), which could

explain the reduced relative hippocampal volume in the ASD group.

Surprisingly, in contrast to the aforementioned findings, an

MRI study discovered larger volumes of the hippocampus

bilaterally in ASD adults with IQ > 100 when compared to

healthy controls (42). Likewise, Xu et al. (43) found evidence of

larger absolute hippocampal volume in adults with ASD and

adequate intelligence than that of healthy adults based on the

ABIDE datasets. The Intense World Theory posits that ASD traits

may be attributed to the activation of a molecular syndrome, which

sensitizes gene expression pathways to excessively respond to

environmental stimulation. Under normal circumstances, these

pathways facilitate brain development through enriched

environments; however, when sensitized, they can lead to

accelerated brain development in response to environmental

stimuli (44). This theory focuses on the neocortex and the

amygdala, but it may also apply to other brain regions, such as

the hippocampus. For example, the chronic stress process in ASD

enhances amygdala activity, which may initially result in

hypertrophy of the hippocampus as it moderates the amygdala

activity through multiple reciprocal connections (34). The

amygdala and hippocampus also play a major role in olfaction.

Research has shown that the severity of taste and smell dysfunction

is inversely related to the hippocampal volume, and females with

ASD have more severe taste and olfactory impairment than males

(45). These theories reflect characteristic behavioral variations in

ASD and remain to be elucidated in the future. Another possible

hypothesis suggests that the increased size of the hippocampus in

people with ASD may be due to an enhancement in experience-

dependent function (43, 46). Indeed, individuals with ASD have

been reported to excel in certain cognitive domains for which the

hippocampus is responsible (e.g. visuospatial abilities) compared to

typically developing individuals, but these differences may be driven

by task demands (31). Current scientific opinion still holds that

ASD can lead to a range of hippocampus-related dysfunctions,

which are linked to abnormalities in the volume of the

hippocampus (32–34). The assertion that individuals with ASD

are more proficient than their neurotypical peers in a specific

hippocampus-dependent function is a limited occurrence and

cannot be generalized to the entire autistic population (4).

In addition to these observations, a number of researches have

reported no difference in the hippocampal volume between ASD

individuals and healthy volunteers (47–49). The above inconsistent

findings on hippocampal size can actually be attributed to the

heterogeneity of ASD individuals. For example, the age range is a

significant confounding factor because individuals with ASD appear

to consistently have larger hippocampus than their healthy peers

from childhood to adolescence (46), but in adulthood, their

hippocampus begins to decrease (36), or in some cases, remain

stable (47). Although several studies have reported no correlation
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between age and hippocampal volume in individuals with ASD (35,

42), this may be because of the broad age range of participants,

which appears to neutralize the disparities. Second, sex is another

important determinant of hippocampal volume in people with

ASD. Possibly due to the higher prevalence of ASD in males,

existing studies have included a larger sample of male

participants. It has been reported that male ASD subjects had

faster hippocampal volume growth and greater hippocampal

asymmetry than female subjects (50, 51). Relative volumes of

both the left and right hippocampus were smaller in females with

ASD than in age-matched males (35, 39). Third, many studies have

included autism, Asperger ’s syndrome, and pervasive

developmental disorder (32, 46–48), and a mixed population with

varying levels of intellectual disabilities (33, 46, 48) and seizure

disorders (52). There are also significant variations in medication

statuses, brain MRI scanners, measurement approaches, controls

for total brain volume, and anatomical definitions of the

hippocampus in related studies. Furthermore, hippocampal

abnormalities in ASD could potentially be genetically based, as

evidenced by the larger hippocampal volume observed in parents of

children with ASD compared to control subjects (53). Due to the

high variability in hippocampal volume in typical individuals (54),

and the current prevalence of cross-sectional studies with limited

sample sizes, considerably more MRI studies will need to be done to

determine hippocampal volume changes in ASD, particularly for a

specific autistic group with large sample sizes and a

longitudinal design.
2.2 Hippocampal
morphological abnormalities

Postmortem examinations were conducted in ten cases of ASD,

comprising eight males and two females, with eight individuals

presenting intellectual disability and five individuals exhibiting

seizure disorder, ranging from 4 to 29 years old. The findings

revealed reduced neural size and increased neuronal density within

the hippocampal formation (55–57), similar to typical hippocampal

developmental trends. It has previously been observed in an

immunohistochemical study, that the density of parvalbumin-,

calbindin-, and calretinin-immunoreactive interneurons within

the subfields of the hippocampus was increased in cases of ASD

compared to controls (58). Increased gray matter density was found

in the hippocampal formation and peri-hippocampal cortex of

children with ASD, correlating with symptoms of impaired social

interaction and mnemonic function in ASD (59, 60). These

observations of heightened neuron density in the hippocampal

formation could be attributed to incorrect neuronal migration

(59). The distorted shape of the dentate granule layer, forming

irregular circles and loops, was indicative of abnormal neuronal

migration and seemed to be another evidence of the phenomenon

described above (61). Additionally, Golgi studies of CA4 and CA1

neurons revealed a noticeable decrease in dendritic branching

complexity in two ASD children compared to their age-matched

controls. Nevertheless, it remains uncertain whether increased

hippocampal neuron density, fewer neuron size volumes, and
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dendritic branching lead to corresponding reductions in the

macroscopic size of the hippocampus. If this is the case, it could

account for the decrease in MRI volumes observed in the

hippocampus of individuals with ASD. The dentate gyrus

development distortion in ASD was manifested by granule cell

migration to the molecular layer and the formation of an extra

granule cell layer (61). A previous MRI evidence of ASD also

suggested that significantly smaller cross-sectional areas of the

area dentata than healthy subjects could be attributed to the

hypoplasia of the dentate gyrus and CA4 subfield (52). However,

caution should be exercised when interpreting these findings as this

MRI study and prior neuroanatomical researches have included

ASD individuals with seizure disorders that are known to be

connected with a decrease in hippocampal volume (62).

Moreover, most current autopsy studies have been conducted in

males, and it is unclear whether there are sex differences in

hippocampal pathological anatomy in ASD. Three-dimensional

MRI measurements of hippocampal shape variation in children

with ASD indicated an upward curvature in the head and tail of the

hippocampus, as well as inward deformation in its medial aspect

(48). In terms of morphological structure, the hippocampal regions

in children with ASD may be the initial site of alteration and a

significant area in brain imaging that can be utilized for diagnosing

ASD in children (63). Considering that clinical autistic symptoms

were associated with various structural abnormalities in

hippocampal regions, additional neuropathological and imaging

studies will be needed to obtain the objective criteria for early

diagnosis of children with ASD based on the morphological changes

of the hippocampus.
2.3 Hippocampal blood flow abnormalities

As documented through quantitative MRI and 3D pseudo-

continuous arterial spin labeling, cerebral hypoperfusion has been

observed in the hippocampus among children with ASD in

comparison to healthy controls, which may not be related to sex

differences (63–65). Proper brain oxygenation is essential not only for

the early development of neurons but also for optimal functioning.

Previous research has indicated a positive correlation between

hippocampal blood flow and spatial memory performance (66).

Therefore, measuring hippocampal blood flow may be an effective

method for brain imaging diagnosis in children with ASD. The

reduction in cerebral blood flow in the hippocampus also led to a

decrease in hemoglobin iron and non-hemoglobin iron in the blood,

which ultimately resulted in a decrease in iron content in the

hippocampus (63, 65). The hippocampal growth is closely related

to blood perfusion, but current findings suggest that reduced blood

perfusion and iron ion levels within the hippocampal region do not

have a significant impact on the hippocampal volume of ASD

children (63–65). One contradictory result was that as compared to

healthy controls, high-functioning ASD adults showed a significant

cerebral blood flow increase in the right parahippocampal cortex (67).

Differences in functional ability and sedative use among the included

ASD participants may explain this inconsistency.
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2.4 Hippocampal metabolite abnormalities

Previous magnetic resonance spectroscopy studies have

suggested altered chemical metabolism in hippocampal regions in

ASD. Most studies of the hippocampus have reported a trend

toward reduced N-acetylaspartate concentrations and N-

acetylaspartate/creatine ratios in children with ASD (21, 68, 69).

N-acetyl-aspartate synthesis occurs exclusively in the mitochondria

of neuronal cells and is widely accepted as a marker for axonal and

neuronal integrity and viability (70), so a diminished level of N-

acetyl-aspartate may signify an irregularity in hippocampal regional

neuronal development and mitochondrial function. This hypothesis

was corroborated by a previous study that demonstrated a positive

correlation between N-acetyl-aspartate levels in the right

hippocampal region and performance IQ in the ASD group (69).

However, among adult subjects, Page et al. (71) and O’Brien et al.

(72) discovered no variation in NAA levels between the ASD group

and the matched comparison group. The impact of age on

alterations to metabolites in distinct areas of the brain has been

evidenced; for instance, NAA levels are diminished in a neonate and

subsequently surge during cerebral development (70). When

comparing only boys with and without ASD, there were also no

differences in NAA, choline, and creatine concentrations in the

hippocampal region (73). People with ASD had a significantly

higher concentration of glutamate+glutamine, aka Glx in the

amygdala-hippocampal complex than comparison subjects (71),

which is consistent with prior data in the auditory cortex of people

with ASD (74). As glutamate is the most abundant excitatory

neurotransmitter, the pathogenesis of ASD is likely to be

associated with increased hippocampal excitability. Previous

researches have identified an association between choline/creatine

ratio elevation within the hippocampus and the severity of autistic

symptoms, including language impairment (69, 75). Similarly, high

concentrations of creatine and phosphocreatine in the hippocampal

formation of ASD individuals had a significant positive correlation

with their aggressive behaviors (70, 76). In sum, it can be

hypothesized that disturbances of metabolic substances in the

hippocampus are associated with abnormalities in hippocampus-

dependent functions.
2.5 Hippocampal network
connectivity dysfunction

In the study of the autistic human hippocampus, functional

MRI has emerged as a powerful tool for mapping disrupted

functional connectivity, which denotes the measurement of the

temporal synchronization of activity between the hippocampus and

other brain regions while a person is at rest or involved in a given

cognitive activity. For example, in ASD children and adolescents,

the resting-state functional connectivity strength between the left

posterior hippocampus and the posterior cingulate cortex has a

significant negative correlation with successful memory

performance (77). Aberrant circuitry between the hippocampus

and posterior cingulate cortex was found to be a common feature in
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ASD associated with reduced general and facial memory (78). A

preliminary neuropsychological and neuroanatomical investigation

has indicated that hippocampal and parahippocampal

abnormalities are associated with memory deficits in low-

functioning ASD individuals, which in turn undermines their

learning and language abilities (20). Earlier data from

experimental tasks suggested that adults with ASD had particular

difficulties with structural learning due to changes in the function of

the hippocampus, which played a critical role in the aetiology of

ASD (19). During learning, strong functional connectivity was

observed between the hippocampus and caudate in both ASD and

typically developing adolescents, but this connectivity was positively

associated with task performance in ASD and negatively associated

with performance in typically developing adolescents (79). Infants

with low familial risk for developing ASD exhibited stronger

resting-state functional connectivity between the right posterior

superior temporal gyrus and the right hippocampus, as well as

parahippocampal gyrus, in comparison to high-risk infants. The

atypical and immature functional connectivity in high-risk infants

could cascade into their later language deficits (80). During the

emotional resonance condition, boys with ASD displayed reduced

responses in the bilateral hippocampus, indicating potential

difficulties with emotional information integration (81). Neural

abnormalities within the hippocampus area may potentially place

young individuals with ASD at risk for anxiety or other emotional

and behavioral dysfunctions (82). Finally, in spatial memory tasks

involving the dorsolateral prefrontal-hippocampal circuit, people

with ASD showed worse performance than typical controls (83).

When performing the virtual reality shopping task, participants

with ASD also displayed lower activation in the parahippocampal

gyrus, which is implicated in scene recognition and spatial

navigation (84). These studies investigate a range of functional

domains linked to the hippocampus, indicating that altered
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functional connectivity between the hippocampal region and

other brain networks may account for diverse autism symptoms.

As discussed above, changes in hippocampal volume,

morphology, blood flow, metabolites, and functional connectivity

may underlie altered hippocampal functions, including the formation

and consolidation of memory, learning, language abilities, emotional

regulation, and cognitive map creation (Figure 2).
3 Abnormalities in the structure and
function of the hippocampus in ASD:
evidence from animal models

Over recent decades, numerous animal models have been

constructed to examine the mechanisms underlying the

pathophysiology of ASD, with growing evidence substantiating

abnormalities in the structure and function of the hippocampus

in ASD. These animal models can be generally categorized into

genetic, environment-induced, and idiopathic models.
3.1 Animal models based on ASD-
associated genes

It is widely accepted that ASD is a heritable disorder with

origins in copy number variants, unusual mutations of a single gene,

and cumulative effects of particular gene variants (85). To date,

hundreds of genetically modified models (especially monogenic

models) have intentionally replicated identified human autistic

syndromes, both syndromic and non-syndromic ASD. The

genetic cause has been clearly defined in cases of syndromic ASD,

which often presents alongside ASD-related behavioral phenotypes,
FIGURE 2

Hippocampal pathological changes and hippocampus-dependent behavioral deficits in individuals with ASD. This figure is created by
using PowerPoint.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1364858
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Long et al. 10.3389/fpsyt.2024.1364858
and on the contrary, non-syndromic ASD lacks a distinct

phenotype (86).
3.1.1 Animal models of syndromic ASD
3.1.1.1 Fragile X syndrome

Transcriptional silencing of the Fragile X messenger

ribonucleoprotein 1 (Fmr1) gene encoding the Fragile X

Messenger Ribonucleoprotein causes fragile X syndrome, the

most common monogenic cause of ASD characterized by

intellectual and language disabilities (87). Compared to wild-type

mice, the dendritic spines of hippocampal neurons in Fmr1

knockout (KO) mice are longer and thinner, and the density of

stubby and mushroom-shaped (mature) spines is lower (88–91).

Lazarov and colleagues reported a notable reduction in the number

of neural progenitor/stem cells and the subsequent survival of these

cells in the subgranular layer of the dentate gyrus in Fmr1-KO mice

(92). Moreover, hippocampal neurons in Fmr1-KO mice had fewer

functional synaptic connections, which develop at a slower rate and

produce smaller excitatory synaptic currents relative to wild-type

controls (93). In agreement, Klemmer et al. (94) discovered that 2-

week-old Fmr1-KO mice exhibited an early-stage presynaptic

phenotype marked by diminutive synaptic structures, decreased

number of vesicles per cluster surface, and an overall reduction in

the number of synaptic vesicles. Fmr1-KO mice also showed a

prominent reduction in synaptic density and thickness of

postsynaptic density, and an increase in synaptic cleft width (91).

On the other hand, while baseline neurotransmitter release and

short-term synaptic plasticity are unaffected at CA1 synapse in both

younger and older Fmr1-KO mice (95), synaptic release probability

is excessively elevated in CA1-CA3 areas during repetitive activity,

resulting in abnormal short-term plasticity (96). Regarding

alterations in long-term plasticity, Fmr1-KO mice have specific

impairments of glutamatergic signaling in the hippocampus.

Abnormally enhanced metabotropic glutamate receptor-

dependent long-term depression (mGluR-LTD) in the CA1

region and defective long-term potentiation (LTP) of N-methyl-

D-aspartate receptors (NMDA) in the dentate gyrus have been

considered as established phenotypes of Fmr1-KO mice (95, 97).

These abnormalities observed in the hippocampus may

underlie, at least in part, behavioral and cognitive changes of

fragile X syndrome animal models. Extensive research has shown

that fragile X syndrome murine models have significant deficits in

hippocampus-dependent forms of spatial learning and memory as

tested using the Morris water maze (91, 98–102). During the novel

object recognition test, it was observed that Fmr1 mutant mice

spent significantly more time sniffing the old object and less time

exploring the novel object than wild types, suggesting visual

recognition memory deficits in these mice (100, 101).

Furthermore, Fmr1-KO mice had deficiencies in hippocampus-

dependent fear memory, characterized by low levels of freezing

behavior response to fear conditioning (91, 102). It has previously

been noted that Fmr1-KO mice had circadian defects involved in

hippocampus-dependent memory, which may lead to sleep

disturbance (103). The abnormal hippocampal neural activity of

Fmr1-KOmice during sleep likely leads to adverse consequences for
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memory processes (104). As mentioned before, neural

abnormalities within the hippocampus also cause emotional

problems, including anxiety-like behavior. Current experiment

results from the open field test and elevated plus maze indicate

that Fmr1-KO mice exhibit high anxiety levels (91, 105), and mice

of the fragile X premutation (CGG repeat sequences between 55 and

200) demonstrate an indication of “social anxiety” (106).

3.1.1.2 Rett syndrome

Rett syndrome, one of the rare ASDs affecting mainly females, is

caused by loss-of-function mutations of the X chromosome-linked

gene encoding the Methyl CpG binding protein 2 (MECP2) (107,

108). Rett syndrome animal models reproduce typical neurological

features of this disorder, including impairments in hippocampus-

dependent memory and learning. For example,Mecp2mutant mice

present deficits in spatial memory and spatial learning in the Morris

water maze task (107, 108), the Barnes maze test (109), and the

object location test (110). In addition, compared to wild-type mice,

Mecp2 mutant mice showed declines in contextual fear memory

when subjected to the fear conditioning task. This was evidenced by

their notable decreases in freezing duration, primarily observed at

long but not short time scales (107, 108, 111, 112). It is worth noting

that the hyperactive hippocampal network (i.e. an imbalance of

synaptic excitation/inhibition in hippocampal neurons) is

responsible for learning and memory impairments in Rett

syndrome (111, 113, 114). Pervasive spontaneous glutamate

release in the hippocampus has been considered a defining

characteristic of Mecp2 KO mice, which contributes to the

hyperexcitability of neurons (115). In the hippocampus of

symptomatic Mecp2 mutant mice, Schaffer-collateral synapses

exhibited enhanced neurotransmitter release (108), and

potentiated glutamatergic synapses (e.g. high surface levels of

GluA1) occluded the LTP (116). Moreover, the frequency and

amplitude of spontaneous excitatory postsynaptic currents of

hippocampal neurons from Mecp2 KO mice were found to be

significantly decreased, revealing a loss of excitatory synaptic

response in the inhibitory neurons of the hippocampus (111, 113,

117, 118). The diminished basal inhibitory rhythmic activity in the

hippocampus of Mecp2-null mice can in turn give rise to a hyper-

excitable state of the hippocampal network (119). In morphology,

CA1 pyramidal neurons and dentate gyrus granule neurons

exhibited delayed dendritic maturation and low dendritic spine

density in Mecp2 mutant mice compared to wild types (114, 120),

which could potentially arise from insufficient BDNF expression in

hippocampal neurons (109). Taken together, these findings imply

that mutation in Mecp2 causes various forms of hippocampal

synaptic plasticity impairment, which in turn affects learning and

memory functions.

3.1.1.3 Angelman syndrome

With a high prevalence of comorbid ASD, Angelman syndrome

is caused by the deletion of the maternally inherited ubiquitin

protein ligase E3A (Ube3a) gene in the 15q11-q13 chromosome

region, associated with impaired hippocampus-dependent learning,

memory, and emotion (121–124). Several animal studies have
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collectively reported that learning and memory deficits in

Angelman syndrome are due to a marked decrease in

hippocampal LTP (121–124). Researchers have demonstrated that

hippocampal pyramidal cells of Angelman syndrome mice have

elongated axon initial segments (125), reduced activity-dependent

calcium dynamics (122), and hyperpolarized resting membrane

potentials (125), which can be attributed to increased expression

of a1-NaKA in the hippocampus. These alternations in intrinsic

properties of hippocampal neurons could have driven the

hippocampal pathology, namely LTP impairment, and memory

and learning deficits revealed by contextual fear conditioning and

Morris water maze (121, 122). In addition, increased inhibitory

phosphorylation of aCaMKII (123) and elevated Arc expression

(124) in hippocampal slices from Angelman syndrome mice also

underlie the hippocampal LTP deficits. As another type of synaptic

plasticity involved in learning and memory, mGluR-LTD of

excitatory synaptic transmission was enhanced in hippocampal

slices of Ube3a-deficient mice, possibly due to increased synaptic

small conductance calcium-activated potassium channel protein 2

levels in the hippocampus (126). As far as emotional problems are

concerned, maternal Ube3a-deficient mice are under chronic stress

and exhibit anxiety-like behaviors. Within the hippocampus, these

mice demonstrate susceptibility to glucocorticoid exposure (127),

disrupted glucocorticoid receptor signaling (127–129), and reduced

number of parvalbumin-positive inhibitory interneurons (128,

129), resulting in chronic stress, hippocampal hyperactivity and

ultimately increased anxiety.

3.1.1.4 Tuberous sclerosis complex

Tuberous sclerosis complex is a rare form of ASD that is often

accompanied by epilepsy and cognitive deficits, caused by

mutations in either of the Tuberous sclerosis complex 1 or 2

(Tsc1/2) gene. These genes act as inhibitors of the mTOR

signaling, and their mutations lead to hyperactivity of the

pathway (130). Like other syndromic ASDs, tuberous sclerosis

complex mice also have impairments in hippocampus-dependent

spatial learning (131–133), contextual fear memory (131–133), and

spatial working memory (131), associated with hippocampal

synaptic excitation/inhibition imbalance induced by up-regulated

mTORC1 signaling (131, 134). This hippocampal hyperactivity

likely results from a reduced synaptic inhibition of pyramidal

cells, while the excitatory transmission is unaffected (131, 134,

135). Previous studies have identified a potential link between

hippocampal hyperexcitability and epilepsy phenotypes in mice

deleting Tsc1 or Tsc2 (134, 136), but Koene et al. found the

hippocampal excitation/inhibition imbalance only present in the

epileptic state, which suggests that these changes in the

hippocampus are unlikely to drive epileptogenesis (135).

Additionally, dysfunctional glutamate homeostasis (137),

impaired astrocytic gap junction coupling (138), and altered

potassium clearance (138), as well as microgliosis (139) and

astrogliosis (140) in the hippocampus of tuberous sclerosis

complex mice, are correlated with seizure onset. Prior studies

have noted that mGluR-LTD was not enhanced but rather
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reduced in tuberous sclerosis complex mutant mice (141–143),

indicating divergent synaptic plasticity phenotypes from fragile X

syndrome and Angelman syndrome. A possible explanation for this

is that the deletion of Tsc1/Tsc2 genes heightened the expression of

mGluR5 and exaggerated ERK signaling, which developed a novel

mTOR-independent LTP in the CA1 hippocampus (141, 142).

Several studies have also reported the enlargement of

hippocampal neurons and dendritic spines in mutant mice (143,

144), whilst significantly increased basal cerebral blood flow and

oxygen consumption in the hippocampus of rats with tuberous

sclerosis complex could partially explain this observation (145, 146).

3.1.1.5 Phelan-McDermid syndrome

As major synaptic scaffolding proteins, SH3 and multiple

ankyrin repeat domains protein 1/2/3 (SHANK1/2/3) are highly

concentrated in the postsynaptic density of hippocampal excitatory

synapses (147–149). Shank family genes (Shank1/2/3), especially the

Shank 3, are well-known ASD-related genes. Deletions or mutations

of the Shank3 gene can lead to Phelan-McDermid syndrome,

characterized by autistic behavior, intellectual disability, and

speech delay (150). It has been reported that the disruption of

major Shank3 isoforms in mouse/rat models decreases levels of

other post-synaptic density scaffolding components and

glutamatergic receptors in the hippocampus, including the

HOMER1 (147–149), PSD95 (148), mGluR5 (148), GluA1 (149),

and GKAP (149). At the level of hippocampal synaptic morphology,

these animals had smaller postsynaptic density structures (151),

lower spine density (149, 151, 152), and longer dendritic spines

(149, 151) as compared to wild types. Unlike these profound

synaptic changes, however, there have been no distinct alterations

in the frequency and amplitude of miniature excitatory (149, 153–

155) and inhibitory (149, 154, 155) postsynaptic currents, as well as

field excitatory postsynaptic potentials (147, 156) in CA1 pyramidal

neurons from mice and rats lacking different Shank3 isoforms.

These data indicate that basal synaptic transmission,

neurotransmitter release probability, and short-term plasticity at

hippocampal synapses may be preserved in Phelan-McDermid

syndrome. Indeed, Shank3 is critical for long-term hippocampal

synaptic plasticity. Shank3-deficient mice and rats have reduced

LTP (147, 149, 155–157) but unaltered LTD (155–157), and a

hippocampal excitation/inhibition imbalance (153, 154). These

deficits result in impaired social recognition memory (147, 156,

158), object location memory (147, 149, 155), and spatial learning

and memory (149, 152, 153, 155, 156), particularly affecting long-

term memory processes. In contrast to the above observations, Peça

et al. (159) have reported that the frequency and amplitude of

miniature excitatory postsynaptic currents and Morris water maze

performance in Shank3B mutant mice are comparable to those of

controls. Similarly, Cope et al. (160) have found impaired social but

not object location memory in Shank3B KO mice. Contradictory

findings across these studies may be attributed to mutations of

various Shank3 isoforms. This hypothesis is backed by recent

transcriptomics investigating gene dosage-differential changes in

the hippocampus of Shank3 mutant mice (161).
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3.1.2 Animal models of non-syndromic ASD
3.1.2.1 Neuroligin (Nlgn)

The NLGN family of synaptic cell adhesion molecules is

fundamental in regulating excitatory and inhibitory synapses.

There are four isoforms (Nlgn1-4) expressed in rodents or

humans, all of which are linked with ASD symptoms. Nlgn1 is

predominantly localized to glutamatergic synapses, and Nlgn1

overexpression in mice enhances the number and maturity of

excitatory synapses and spines in the CA1 region (162). As for

Nlgn1-KO mice, it is highly probable that their hippocampal

NMDAR-LTP deficits (163, 164) result from diminished

glutamate receptor functions, including reductions in NMDAR-

mediated excitatory transmission (163, 164), expression levels of

synaptic AMPA and NMDA (163), and the NMDAR/AMPAR ratio

(164, 165) in perforant path-granule cell synapses and CA1

pyramidal neurons. In contrast, the Nlgn2 is principally localized

to inhibitory GABAergic synapses with a key role in enhancing

inhibitory but not excitatory synaptic function (165). Nlgn2-

deficient mice displayed reduced postsynaptic gephyrin and

GABAAR cluster numbers in the dentate gyrus, decreased

inhibitory GABAergic synaptic transmission, and increased

granule cell excitability (166). This observation matches those

observed in recent studies that mice overexpressing Nlgn2 have a

reduced hippocampal excitation/inhibition ratio, thereby inhibiting

their aggressive behaviors and impairing spatial memory

performances (167, 168). Nlgn3 is the only NLGN isoform that is

found in both excitatory and inhibitory synapses. In Nlgn3 KO

mice, the number of excitatory synapses in the CA1 stratum oriens

(169) and neuronal excitability in the CA2 area (170) were

increased. Deleting Nlgn3 also reduced hippocampal gamma

oscillations and sharp wave ripples, which could lead to abnormal

fear memory retention and extinction (170, 171). Nlgn3-R451C

mutant mice exhibited large increases in both excitatory (172, 173)

and inhibitory (174) synaptic transmission in the hippocampal CA1

region, and particularly the increased NMDA/AMPA ratio may

have enhanced NMDAR-dependent LTP (172, 173). This also

accords with several observations, which showed that these mice

have better spatial learning and memory performance than wild-

type controls (173, 174). However, it has also been shown that the

Nlgn3-R451C mutation can cause loss-of-function effects in

neonatal mice, characterized by premature hyperpolarizing effect

of GABA at immature hippocampal MF-CA3 synapses and fail to

express spike time-dependent LTP (175). The specific subcellular

localization of Nlgn4 in synapses is not fully understood, but Nlgn4

is certainly expressed in the mouse hippocampus (176). A prior

study has shown that the loss of Nlgn4 caused postsynaptic changes

at inhibitory synapses and aberrant inhibitory neurotransmission,

heavily disrupting g-oscillations in the CA3 region of the mouse

hippocampus (176). Unexpectedly, Muellerleile and colleagues

discovered increased network inhibition within the dentate gyrus

of adult Nlgn4 KO mice but unaltered in neonatal Nlgn4 KO mice

(177). Guneykaya et al. (178) found that hippocampal g-oscillations
were disrupted and hippocampal microglia density was reduced

only in male Nlgn4 KO mice. Hence, contradictory results in the

hippocampal inhibitory state may partly be explained by sex-

dependent and age-related impacts of Nlgn4 loss.
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3.1.2.2 Phosphatase and tensin homolog detected on
chromosome ten (Pten)

Like Tsc1/2, the Pten gene functions as a mTOR pathway negative

regulator, and alteration of this pathway is involved in ASD

pathogenesis. Activation of mTOR via Pten deletion from

hippocampal dentate granule cells re-initiates additive growth,

which leads to hypertrophied neurons (179–182), enlarged mossy

fiber axons (179, 180, 183), elongated dendrites (179, 180, 184) and

increased dendritic spine density (179–181, 184). These hippocampal

morphological changes partly underlie the macrocephaly and

epilepsy that are notable features of inherited Pten mutations. The

observed increase in spontaneous excitatory synaptic current

frequency (particularly in females) (181, 184) and field excitatory

postsynaptic potential slope (185, 186) suggests increased excitatory

synapses on cells and enhanced basal synaptic transmission in the

hippocampus of Pten KO mice. The increased epileptogenic activity

of PtenKOmice is largely due to hippocampal hyperexcitability (182,

184). More importantly, these mouse models display impaired

hippocampal LTP and LTD (185, 187), as well as spatial memory

(187) during postnatal development, which has been shown to

precede the appearance of their morphological abnormalities (185).

3.1.2.3 Cyclin-dependent kinase-like 5 (Cdkl5)

Mutations in the X-linked Cdkl5 gene cause severe

neurodevelopmental disorders marked by early-life autistic

behaviors and intractable epilepsy (188). The Cdkl5 is highly

expressed in the hippocampus, and its deficiency in mice reduces

dendritic length, branches, and maturation of hippocampal

pyramidal and granule neurons (189–192). Meanwhile, Cdkl5 KO

mice exhibit an elevated incidence of newborn cell apoptosis within

the hippocampal dentate gyrus leading to diminished granule

neuron counts (189, 190), coupled with accelerated senescence

and death of hippocampal neurons during the aging process

(191). Strikingly, the increase in apoptosis is paralleled by the

rapid proliferation of neuronal precursor cells in the dentate

gyrus, which modulates the equilibrium between precursor

proliferation and survival (190). Additionally, it is noted that

hippocampal neurons of Cdkl5 KO mice demonstrate heightened

susceptibility to neurotoxicity, excitotoxicity, and oxidative stress

(192, 193), implying that the absence of Cdkl5 augments neuronal

vulnerability. These neuroanatomical alterations are associated with

hippocampus-dependent learning and memory impairment

observed in multiple tasks (189–191). The robust seizures in

Cdkl5 KO mice have been demonstrated to be correlated with

microglial activation (192), BDNF-TrkB signaling enhancement

(194), and postsynaptic overaccumulation of GluN2B-containing

NMDAR (195) in the hippocampus.
3.2 Animal models of environment-
induced ASD

It is clear now ASD etiology involves both genetic and

environmental factors or their possible combinations. Exposure of

animals to given chemicals, toxins, viruses, and other agents during

gestation can induce models of ASD in their offspring.
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3.2.1 Valproic acid induced animal models
Valproic acid (VPA) is a commonly used anti-epileptic or

mood-stabilizing drug but is classified as a human teratogen. In

animal studies, typical ASD models in newborn mice or rats have

been simulated by exposing their mothers to VPA during

pregnancy (196). Similar to the ASD traits in humans, male

animals might be more susceptible to VPA-induced ASD than

females. For instance, male VPA mice exhibited higher locomotor

activity and lower social ability index than females, potentially

attributed to increased hippocampal cell atrophy and heightened

expression of the 5-HT2A receptor protein in the hippocampus

(197). The VPA exposure in mice or rats can induce several autism-

like behaviors related to hippocampal functions, including

impairments in spatial learning and memory (198–206), visual

recognition memory (198, 203, 207–209), working memory (208,

210), and emotional regulation (199, 200, 204–206, 211–213). It is

widely documented that exposure to VPA notably increases levels of

the pro-inflammatory markers (IL-1b, TNF-a, IL-6, IFN-g, IL-17,
TGF-b) and reduces levels of the anti-inflammatory marker (IL-10)

in the hippocampus (199, 208, 211, 213–216). The hippocampal

neuroinflammatory state is primarily observed in young ages,

perhaps resulting from microglia and astrocyte activation that

started in the early postnatal developmental stages. In adult

mature VPA rats/mice, however, changes in the expression of

neuroglial markers in the hippocampus seem to be mild, with an

amelioration of the neuroinflammatory phenotype (212, 217, 218).

After exposure to prenatal VPA, biochemical markers associated

with neuronal oxidative/nitrosative stress such as MDA, TBARS,

and NO were found to be significantly increased contrary to

markers such as GSH, SOD, and CAT in the hippocampal

regions (198, 202, 212–215, 219). At the same time, increased

oxidative stress is accompanied by aberrant mitochondrial

electron transport chain enzyme activity, reduced ATP levels, and

ultrastructurally destructed mitochondria in the hippocampus (198,

212). Exposure of mice or rats to VPA activates mTOR and Notch

signaling, which amplifies autophagic deficiency in the

hippocampus, characterized by decreased expression levels of

Beclin1 and LC3-II and a small number of autophagosomes (203,

210). Previous studies evaluating hippocampal excitatory/inhibitory

imbalance found that VPA exposure enhanced excitatory

glutamatergic and impaired inhibitory GABAergic synaptic

transmission, with a decrease in the GABA/glutamate ratio (201,

206). Compared to controls, VPA-induced rats showed a

significantly larger number of hippocampal apoptotic neurons,

accompanied by increased levels of the apoptotic markers “Bax,

caspase-3 and p53” and decreased levels of the antiapoptotic marker

“BCL2” (201, 204, 219–221). Moreover, reductions in the

hippocampal levels of BDNF, synapsin-IIa, DCX, and pCREB are

strongly implicated in ASD as these proteins play significant roles in

neuronal formation, synaptic transmission, neuroplasticity, and

neurogenesis (201, 213–215, 221). Taken together, these

pathophysiological processes significantly weaken hippocampal

neuron viability in VPA-exposed mice and rats. Furthermore,

VPA exposure significantly altered the expression of multiple

ASD candidate genes in the hippocampus: Shank3 (212), Shank2
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(209), Nlgn3 (212), and Pten (222). This observation further

supports that high-risk ASD genes can also be altered by

environmental factors – gene-environment interactions have a

pivotal role in the pathophysiology of ASD.

3.2.2 Maternal immune activation induced
animal models

Maternal immune activation (MIA) during pregnancy increases

the risk of the unborn fetus developing ASD later in life (223). The

most commonly used methods for emulating MIA models of ASD

involve the intraperitoneal administration of lipopolysaccharide

(LPS) and polyinosinic: polycytidylic acid (poly (I: C)) during

gestation. The administration of LPS can induce sex-dependent

alterations in hippocampal volume, neuronal morphology, and

gliovascular maturation. Compared with female LPS-induced

mice, the male LPS group showed a larger size of hippocampus

(224), higher hippocampal neuronal spine density (224, 225), and

lower vascular coverage of astrocytic end-feet (226) associated with

their reduced interest in social novelty (224, 225). Microglial

activation and astrogliosis could be functionally important in

altering hippocampus-dependent learning and memory

performance observed in LPS-induced rat models (227, 228).

Surprisingly, at the early postnatal stage, exposure to LPS had no

negative effects on hippocampal cellular or tissue morphology but

instead stimulated nerve growth by promoting cell proliferation

(228), increasing the number of spines (225), and raising the density

of mossy fiber synapses (229) in the hippocampal area. It seems

possible that these results are due to the M2-biased microglia

polarization at the acute inflammatory phase, which releases

excessive anti-inflammatory cytokines and growth factors (228).

In contrast, MIA induced by poly (I: C) did not alter the density of

Iba1+ microglia (or GFAP+ astrocytes), nor did it modify their

activation phenotypes in the hippocampal formation of the

offspring (230, 231). However, prenatal exposure to poly (I: C)

increased hippocampal IL-6 and IL-1b levels, resulting in the

promotion of hippocampal kindling epileptogenesis (230, 232).

Additionally, the offspring of poly (I: C)-exposed mice displayed a

substantial reduction in the relative density of hippocampal pre-

and postsynaptic proteins (synaptophysin, bassoon, PSD95, and

SynGap) and changed the firing traits of hippocampal place cells in

adult offspring (230, 233). The hippocampal synaptic deficits could

alter the electrophysiological properties of hippocampal cells, hence

affecting the firing activity of hippocampal neurons. These changes

may underlie the spatial memory impairments found in MIA mice

following poly (I: C) injection (233, 234).

3.2.3 Air pollution induced animal models
Gestational exposure to air pollution can increase the incidence

of ASD in offspring (223). Hippocampal transcriptome data

revealed that gestational nanosized particulate matter (PM)

exposure induced multiple differentially expressed genes in young

adult offspring. The stratification by sex revealed a twofold increase

in the number of differentially expressed genes in males compared

to females, and there was male-specific enrichment of differentially

expressed genes involved in serotonin receptor signaling,
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cAMP-mediated signaling, and endocytosis (235). Other studies

have also found that PM2.5-induced mice have aggravated

hippocampal neuroinflammation, with elevation in NF-kB, TNF-
a, and IL-1b levels (236) and microglial activation (237).

Meanwhile, these mice exhibited impaired spatial learning and

memory, associated with disrupted hippocampal synaptic

ultrastructure, decreased hippocampal neurogenesis, and

increased hippocampal neuronal apoptosis (236). These findings

can explain the reduction in hippocampal size and structural

integrity after exposure to airborne PM (237, 238).
3.3 Animal models of idiopathic ASD

As genetic and environment-induced models cannot accurately

replicate all the pathological features of ASD, strains of mice and rats

have been developed using idiopathic models, which display robust

and well-replicated behavioral characteristics of ASD such as social

deficits and repetitive behaviors. The BTBR T+Itpr3tf/J (BTBR) strain

is one of the most valid models of idiopathic ASD, and inbred strain

C57BL/6J is often used as a control for BTBR (239).

3.3.1 BTBR animal models
Recently, the BTBR inbred mouse strain has gained popularity

as a rodent model of ASD. In addition to the core symptoms of

ASD, BTBR mice also display learning and memory impairments in

various settings (240–242). Several histological observations and

MRI assessments support separated hippocampal commissure and

increased hippocampal volume in BTBR mice relative to controls,

and these anatomical changes may underlie their behavioral

phenotypes (243–246). Moreover, the hippocampus has lower 5-

HT, acetylcholine, dopamine, and histamine content in the BTBR
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animals than in the C57BL/6J strain (246–248). In particular,

immunofluorescent labeling of 5-HT transporter axons revealed a

reduction in the density of innervation to the hippocampus in

BTBR mice (246). Premature changes in hippocampal neuronal

excitability, involving elevated ERK signaling (248) and increased

GABAergic neurotransmission (249) during neonatal development

in the BTBR mice, may also contribute to the high susceptibility to

epilepsy and aggressive behaviors observed in these mice (248, 250).

As for adult and aged BTBR animals, significant reductions in

mRNA or protein levels of BDNF, as well as neurogenesis in the

hippocampus have previously been reported (241, 245, 250).

To sum up, hippocampal excitatory/inhibitory imbalance is one

of the most important pathological mechanisms in ASD. These

animal models mainly show impairments in dendrite morphology,

neurogenesis, neuronal viability, LTP, and LTD in the hippocampus,

leading to dysfunction in learning, memory, emotional regulation,

and spatial ability. Figures 3, 4 were used to depict some common

hippocampal structural and functional impairments in rodentmodels

of ASD, but it is important to note that each model has its own

characteristics of hippocampal dysfunctions and cannot be

generalized. In a word, the above animal studies suggest that the

hippocampus is strongly implicated in the pathophysiology of ASD

and should be considered as an important target for future

therapeutic approaches.
4 Therapies that positively influence
the structure and function of the
hippocampus in ASD animal models

To date, amounts of pharmacological and non-pharmacological

interventions that positively impact hippocampus-dependent
FIGURE 3

Hippocampal pathophysiological processes of ASD animal models. This figure is created by using PowerPoint.
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cognitive functions have been identified through animal

experimentation as potential treatments for ASD (Figure 5).

Pharmacological interventions mainly include hormones, vitamins

and minerals, atypical antipsychotic drugs, phosphodiesterase

inhibitors, selective serotonin reuptake inhibitors, mTOR

inhibitors, mGluR antagonists, NMDAR antagonists, histamine

H3 receptor (H3R) antagonists, and insulin-like growth factor.

Non-pharmacological interventions mainly include aerobic

exercise and environmental enrichment. Table 1 presents
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elaborate cellular and molecular modifications in the

hippocampus of animal models of ASD following each intervention.
4.1 Hormones

Oxytocin has been proposed as a possible therapeutic agent for

ASD due to its potent regulation of mammalian social behavior. The

injection of oxytocin into the left lateral ventricle specifically
FIGURE 5

Pharmacological and non-pharmacological interventions that positively affect the structure and function of the hippocampus in ASD animal models.
This figure is created by using PowerPoint.
FIGURE 4

Hippocampal dysfunctions in ASD animal models. This figure is created by using PowerPoint.
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TABLE 1 Main effects of each intervention on cellular and molecular changes in the hippocampus of ASD animal models.

Intervention Animal model
Cellular and molecular changes in

the hippocampus
References

Hormone

Oxytocin

Shank3 mutant mouse

Protein level: Synapsin I↔, PSD95↔
Gene expression: Synapsin I↑, Psd95↑, Nlgn3↑, Nlgn2↑,

Nrxn1b↑, Nrxn2a↑, Nrxn2b↑, Rhob↑, Rac1↑,
Pak1↑, Pak2↓

(251)

VPA-exposed rat

Number of parvalbumin-positive interneurons↑
Enzymatic activities of the mitochondrial electron

transport chain↔, 4-HNE protein↔
(198)

Gene expression (transcriptome analysis): Kcnj13↑, KI↑,
Prelp↑, Sostdc1↑, Clic6↑, F5↑, Sclc4a5↑, Mdk↑, Folr1↑,

Mmp14↑, Tmem72↑, Kcne2↑, Sfrp1↑, Mt-nd3↓, Slc19a3↓
(252)

Melatonin VPA-exposed rat
Protein level: p-CaMKII↑, p-Synapsin I↑, p-NMDAR1↑,

p-MARCKS↑, p-PKA↑, p-GluR1↑
(253)

Vitamin and mineral

Vitamin A VPA-exposed rat
Gene expression (RNA sequencing): lncRNA

NONRATT021475.2↓,
desert hedgehog gene↓

(254)

Vitamin B6, folic
acid and

vitamin B12
PM2.5-exposed mouse

Number of damaged mitochondria↓, synaptic cleft↓, PSD
thickness↑, synaptic active area length↑, apoptotic ratio↓,

neurogenesis↑
Protein level: MDA↓, SOD↑, GSH-Px↑, GSH↑, NF-kB↓,

TNF-a↓, IL-1b↓, Caspase-3↓
Gene expression: NF-kB↓, TNF-a↓, IL-1b↓

(236)

Folic acid BTBR mouse
Protein level: GFAP↓, Iba-1↓, IL-1b↓, IL-6↓, IL-18↓,

TNF-a↓, MDA↓, SOD↑, GSH-Px↑, GSH↑, p-CaMKII↑,
p-CREB↑, GPx4↑, Fpn1↑, SOD1↓, TFR↓

(240)

Selenium BTBR mouse

Number of viable neurons↑
Protein level: 5-HT↑, Dopamine↓, glutamate↓, IL-6↓, IL-

18↓, TNF-a↓
MDA↓, SOD↑, GSH-Px↑, GSH↑, CAT↑
Gene expression: IL-6↓, IL-18↓, TNF-a↓

(241)

Lithium
Fmr1 mutant mouse

Protein level: GSK-3b↔, pS202-Tau/Tau↓, Tau↓, pS2448-
mTOR/mTOR↓, mTOR↔

(255)

VPA-exposed rat Number of Iba-1 positive cells↓, IL-6↓ (211)

Atypical antipsychotic drug

Aripiprazole

VPA-exposed mouse
Dendritic spine density↑ (207)

Number of Nissl-positive cells↑ (210)

VPA-exposed rat

Number of intact neurons↑, Number of neurofibrillary
tangles↓, Nissl’s granules optical density↑

Protein level: glutamate↓, GABA↑, BDNF↑, Caspase-3↓,
Bax↓, Bcl-2↑, GFAP↓, CREB↔, p-CREB↔

Gene expression: Glt-1↑

(201)

Risperidone

VPA-exposed mouse Dendritic spine density↑ (207)

VPA-exposed rat

Number of viable neurons↑
Protein level: cytochrome-c↓, lactate dehydrogenase↓,

caspase-3↓, MDA↓, GSH↑, Bcl-2↑,
Gene expression: Adar2↑, GluA2 Q:R↓

(219)

Olanzapine VPA-exposed rat
Dendritic spine density↑, dendritic length↓, neuron

volume↓, number of Nissl-positive neurons↓
(203)

Phosphodiesterase inhibitor

Ibudilast VPA-exposed rat
Protein level: SOD↑, GSH↑, CAT↑, IL-6↓, IL-1b↓, TNF-

a↓, IL-10↑
(199)

Vinpocetine VPA-exposed rat

Number of pyknotic and chromatolytic cells↓
Protein level: BDNF↑, synapsin-IIa↑, DCX↑, pCREB↑,

CREB↑, pCREB/CREB↑, IL-6↓, TNF-a↓, IL-10↑,
GSH↑, TBARS↓

(213)

Cilostazol VPA-exposed rat (214)

(Continued)
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TABLE 1 Continued

Intervention Animal model
Cellular and molecular changes in

the hippocampus
References

Protein level: BDNF↑, pCREB↑, IL-6↓, TNF-a↓, IL-10↑,
GSH↑, TBARS↓

Papaverine VPA-exposed rat
Protein level: BDNF↑, synapsin-IIa↑, DCX↑, pCREB↑, IL-

6↓, TNF-a↓, IL-10↑, GSH↑, TBARS↓
(215)

Rolipram Fmr1 mutant mouse Protein level: GSK-3b↑, pS202-Tau/Tau↓, Tau↑ mTOR↑ (255)

Selective serotonin
reuptake inhibitor

Sertraline Cdkl5 mutant mouse
Number of doublecortin-positive granule neurons↑,

dendritic length and spine density of granule
neurons↑, PSD95↑

(256)

Fluoxetine

Nlgn3 mutant mouse Neurogenesis↑ (257)

Ube3a mutant mouse
Number of parvalbumin-positive interneurons↑
Protein level: glucocorticod receptor↑, SGK1↑,

BDNF↑, FKBP5↑
(129)

Fmr1 mutant mouse
Cell proliferation↔

Protein level: BDNF↔, TrkB↔
(105)

mTOR inhibitor Rapamycin

Pten mutant mouse
nuclear diameter↓, dentate gyrus hypertrophy↓

Protein level: p-Ser235/236–S6 (mTORC1 activity)↓, p-
AKT-S473↓

(258)

VPA-exposed rat

Number of autophagosome↑, cell apoptosis↓
Protein level: LC3 II↑, LC3 I↓, p62↓, Bcl-2↑, p53↓, p-

PI3K↓, p-AKT↓, p-S6↓
(220)

Cell apoptosis↓
Protein level: Bcl-2↑, BDNF↑

(221)

Na-K-Cl
cotransporter inhibitor

Bumetanide
VPA-exposed rat Cl– level↓ (259)

Fmr1 mutant mouse Cl– level↓ (259)

mGluR5 antagonist

MPEP BTBR mouse Protein level: p-ERK1/2↓ (242)

LY341495 Fmr1 mutant mouse GSK-3b↓, pS202-Tau/Tau↓, (255)

Mavoglurant Fmr1 mutant mouse Dendritic spine length↓ (89)

NMDAR antagonist

Agmatine VPA-exposed rat Protein level: p-ERK1/2↓ (260)

Dextromethorphan VPA-exposed rat
Protein level: NMDA↓, p-ERK1/2↓

Gene expression: NMDA↓, p-ERK1/2↓
(200)

Ketamine

VPA-exposed rat
Gene expression: Pten↑, Psd95↔, Glur1↔, Synapsin1↔,

Rab3d↔, Vamp3↔
(222)

MeCP2 mutant rat
Gene expression: Psd95↑, Glur1↑, Pten↔, Synapsin1↔,

Rab3d↔, Vamp3↔
(222)

Memantine VPA-exposed rat

Number of intact neurons↑, Number of neurofibrillary
tangles↓, Nissl’s granules optical density↑

Protein level: glutamate↓, GABA↑, BDNF↑, Caspase-3↓,
Bax↓, Bcl-2↑, GFAP↓, CREB↔, p-CREB↔

Gene expression: Glt-1↑

(201)

Histamine H3R antagonist

E100 VPA-exposed mice
Protein level: IL-6↓, IL-1b↓, TNF-a↓, TGF-b↓, NF-kB

p65↓, iNOS↓, COX-2↓
(216)

ST-713 BTBR mouse
Protein level: ERK↓, p38↓, JNK↓, IL-6↓, IL-1b↓, TNF-a↓,

histamine↑, dopamine↑
(248)

Insulin-like growth factor
Insulin-like growth

factor 2
BTBR mouse

Protein level: mTOR↓, p-mTOR↓, p-S6K↓, p-AMPK↓,
ULK1↓, p-ULK1↓

(261)

Aerobic exercise Wheel running
MIA mice

Density of mossy fiber synapses↓, microglial
synapse engulfment↑

(229)

Cdkl5 mutant mouse (262)

(Continued)
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improved the long-term social recognition memory and LTP at

hippocampal synapses in Shank3-deficient rats (147). In vivo,

subcutaneous oxytocin injections induced upregulation of

hippocampal postsynaptic proteins PSD95 and Nlgn3 of Shank3

deficient mice (251). In rats exposed to VPA prenatally, chronic

intranasal oxytocin administration rescued ASD-like behaviors

including learning and memory impairments (198), and enhanced

the expression of multiple genes in the hippocampus linked to

synaptic function, learning, memory, and neurodevelopment (252).

Erythropoietin, a glycoprotein hormone, has recently been reported

to inhibit the astrogliosis in the hippocampal CA1 subfield in both

LPS (227) and VPA (266) induced rat models of ASD, contributing

to the enhanced learning and memory task performance (227).

A preliminary study in VPA-treated rats has shown that

melatonin treatment restored hippocampal CaMKII/PKA/PKC

phosphorylation and LTP reduction, which might correlate with

amelioration of hippocampus-dependent memory and learning

skills (253).
4.2 Vitamins and minerals

Recent RNA sequencing research has found that vitamin A

supplementation significantly alleviated VPA-induced anxiety

behaviors, possibly by regulating lncRNA-mRNA co-expression

networks (particularly lncRNA NONRATT021475.2 and Desert

hedgehog gene) in the hippocampus of ASD rats (254).

Gestational B-vitamin supplementation (vitamin B6, folic acid,

and vitamin B12) has the potential to mitigate PM2.5-induced

spatial learning and memory defects in mice offspring by
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ameliorating hippocampal inflammation, oxidative stress,

mitochondrial damage, neuronal apoptosis, and synaptic

dysfunction (236). Likewise, using solely folic acid rescued

hippocampal neuron death and spatial learning and memory

impairments in BTBR mice as it suppressed oxidative stress,

inflammation, and ferroptosis in the hippocampus (240).

Regarding mineral supplementation, selenium has a protective

effect on the hippocampus of BTBR mice, with a comparable

mechanism to that of folic acid (241). A six-week zinc water

supplementation led to a decrease in anxiety-like behavior and

seizure susceptibility in BTBRmice. This effect may be related to the

restoration of neural progenitor cell proliferation and excitation/

inhibition balance in the hippocampus (250). Lithium treatment

can rescue olfactory-based learning and memory defects in

drosophila fragile X model, and increase the cAMP signaling by

inhibiting GSK-3b activity in the hippocampus of fragile X mice

(255). In addition, lithium exerts an anti-inflammatory role

probably by reducing microglial activation and inflammatory

cytokine release and increasing levels of H3K9 acetylation in the

hippocampus of VPA-exposed rats, with beneficial implications for

improving social memory and anxiety levels (211).
4.3 Atypical antipsychotic drugs

The third-generation, atypical antipsychotic drugs aripiprazole,

and risperidone are the only medications approved by the American

FDA for ASD treatment. Data from several studies suggest that

chronic treatments with aripiprazole attenuated VPA-induced

visual recognition memory (207) and spatial learning and
TABLE 1 Continued

Intervention Animal model
Cellular and molecular changes in

the hippocampus
References

Neurogenesis↑, BrdU-positive cells↑, size and density of
AIF-1-positive microglial cells↓, number of immature

spine↓, number of mature spine↑
Protein level: BDNF↑

Fmr1 mutant mouse Cell proliferation↑, BrdU positive cells↑ (263)

Treadmill running VPA-exposed rat
Neurogenesis↑,

Protein level: Reelin↑, PI3K↑, p-Akt↑, p-ERK1/2↑
(204)

Swimming
Shank3 mutant rat Dendritic spine density↑, number of dendritic branch↑ (152)

VPA-exposed mouse Protein level: IL-6↓, TNF-a↓, IFN-g↓, IL-17↓ (208)

Environmental enrichment

Maternal
stimulation

Fmr1 mutant mouse
Number of filopodia-like spines↓, number of mature thin

and mushroom spines↑
(90)

Housing
condition
enrichment

Fmr1 mutant mouse
Gene expression (transcriptome analysis): Bdnf↑, Mef2c↑,

Gabrg2↑, Drd1↑, Nefm↑, Prkce↑, Ncam2↑, Igsf9b↓
Protein level: BDNF↑, p-TrkB↑, p-PLCg1↑, p-CaMKII↑

(91)

VPA-exposed mice
Dendritic spine density↑

Gene expression: Bdnf↑, Psd95↑, Shank2↑
(209)

Ube3a mutant mouse
Number of PV-positive GABAergic neurons↑

Protein level: GR↑, BDNF↑, pThr286CaMKIIa↓
(264)

MIA rat Gene expression: Bdnf↑ (265)
The direction of the arrows indicates increase (↑), decrease (↓), or no change (↔) compared to controls.
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memory (201) impairments in mouse/rat offspring with ASD. More

importantly, maternal treatment with aripiprazole prevents

working memory deficits and hippocampal cell death in juvenile

mice exposed to VPA during the prenatal period (210). Chronic

administrations of risperidone improved VPA-induced memory

impairment and reductions in hippocampal dendritic spine density,

but there was no improvement with acute administrations (207). In

addition, risperidone impeded hippocampal glutamate

excitotoxicity in the VPA rat model of ASD, ultimately

promoting neuronal survival (219). Similarly, the antipsychotic

olanzapine can alleviate VPA-induced impairments in recognition

and spatial memory by mitigating neuroplastic alterations in the

hippocampus, including neuronal hypotrophy, reduced spine

density, and elongated dendritic length (203).
4.4 Phosphodiesterase inhibitors

The phosphodiesterase class of enzymes is responsible for the

degradation of cAMP, which affects various neurobiological

processes from neuroinflammation to learning and memory

formation (267). For instance, ibudilast, a phosphodiesterase-4

inhibitor, was found to elevate levels of oxidative stress markers

(SOD, GSH, CAT) and lower levels of pro-inflammatory markers

(IL-1b, TNF-a, IL-6) in the hippocampus of VPA exposed rats.

Meanwhile, these ASD rats administered with two doses of ibudilast

showed significantly reduced deficits in learning/memory and

anxious behaviors (199). In the same way, Luhach and colleagues

have demonstrated that vinpocetine, cilostazol, and papaverine, all

of which are phosphodiesterase inhibitors, positively influenced

neurogenesis, neuronal survival, synaptic transmission, neuronal

transcription, neuronal inflammation, and neuronal oxidative stress

in the hippocampus of VPA-exposed rat models (213–215). Both

rolipram (phosphodiesterase-4 inhibitor) and BAY-60-7550

(phosphodiesterase-2 inhibitor) treatment abrogated the

exaggerated hippocampal mGluR-LTD observed in fragile X mice,

which can be attributed to significantly increased cAMP levels (88,

255, 268). In like manner, rolipram treatment rescued the LTP of

hippocampal CA1 neurons to a significant level in Rett syndrome

mice (269). Lastly, rolipram rescued olfactory-based long-term

memory defects of drosophila fragile X models (255, 268).
4.5 Selective serotonin reuptake inhibitors

Sertraline and fluoxetine function as primary selective serotonin

reuptake inhibitors, impeding 5-hydroxytryptamine uptake into

presynaptic vesicles from the synaptic cleft in the central nervous

system. Chronic treatment with sertraline improved autistic-like

features in Cdkl5 KO mice, including hippocampus-dependent

spatial learning and memory deficiency. This positive behavioral

effect was associated with restored neuronal survival, dendritic

development, and synaptic connectivity in the dentate gyrus and

CA1 pyramidal neurons (256). Recent evidence suggests that

fluoxetine can ameliorate social behavior in Nlgn3-KO mice, at

least in part, by promoting adult hippocampal neurogenesis (257).
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More typically, long-term fluoxetine treatment normalizes

hippocampal parvalbumin-positive interneurons number and

glucocorticoid signaling of Angelman syndrome model mice,

which is important for the restoration of anxiety-like behaviors

(129). On the contrary, however, Fmr1 KO mice after fluoxetine

treatment have reduced anxiety but enhanced explorative activity

during the open field test, with abnormal changes of BDNF/TrkB

signaling in the hippocampus (105). Activation with selective

serotonin reuptake inhibitors has been observed in people with

fragile X syndrome, which can manifest as mood changes and

disinhibited behavior (270). What calls for special attention is the

subsequent risk of ASD with exposure to selective serotonin

reuptake inhibitors during pregnancy. Recent findings

underscored that maternal fluoxetine exposure impaired

hippocampal LTP, spatial discrimination, and spatial learning in

adult offspring (271), accompanied by decreased hippocampal

neurogenesis and hippocampal IL-10, IFN-g and IL-13 levels (272).
4.6 mTOR inhibitors

Dysregulation of mTOR signaling is strongly associated with

ASD, and the inhibition of mTOR can prevent the binding of

mTOR with other protein components and reduce mTOR

phosphorylation (273). For example, rapamycin, as a prominent

mTOR inhibitor, has been shown to effectively block the

hippocampal mTORC1 signaling of Pten mutant mice (258).

Besides, rapamycin plays a crucial role in promoting autophagy

(220) and decreasing apoptosis (220, 221) in the hippocampus of

VPA-induced neonatal rats of ASD, thereby improving learning

and memory ability (221). As discussed earlier, tuberous sclerosis

complex models had increased hippocampal neuron volume, blood

flow, and oxygen consumption. Correspondingly, the

administration of rapamycin has been reported to lower cerebral

blood flow and oxygen consumption in hippocampal regions of the

Tsc2 mutant rat, potentially by downregulating Akt signals (146).

This also accords with previous observations, which showed that

pharmacological inhibition of mTORC suppressed granule cell

hypertrophy in Pten mutant mice (258) and inhibited the PI3K/

AKT/mTOR signaling pathway in VPA-induced rats (220).
4.7 Na-K-Cl cotransporter inhibitors

Bumetanide, a loop diuretic that inhibits the Na-K-Cl

cotransporter, has been reported to improve core symptoms of

ASD in children over recent years (274). In VPA-treated rats, even a

brief maternal bumetanide treatment can prevent hippocampal

overgrowth in their offspring (275). In addition, maternal

pretreatment with bumetanide effectively restored elevated

hippocampal intracellular chloride levels, increased hippocampal

excitatory GABA, and enhanced hippocampal gamma oscillations

in offspring of VPA-induced rats and Fmr1 mutant mice (259).

Recently, a new selective Na-K-Cl cotransporter inhibitor called

ARN23746 has been reported to improve sociability in VPA-

induced mice, similar to bumetanide (276). The oral
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administration of torasemide, a diuretic that also acts as a Na-K-Cl

cotransporter inhibitor, has the potential to enhance neuronal

viability and reduce astrogliosis in the hippocampus of ASD rat

models (277).
4.8 mGluR5 antagonists

The dysregulated signaling mediated via mGluR5 contributes to

the pathophysiology of ASD since it acts as a crucial regulator of

excitatory and inhibitory signaling in the hippocampus (278). After

treatment with the mGluR5 antagonist MPEP, epileptiform activity

and ERK signaling in the hippocampal slices of Tsc2 mutant mice

can be suppressed. The blocked mGluR-LTD in the CA3

hippocampus via antagonism of mGluR5 also improved reversal

learning performance between these mice (142). Similarly, for the

BTBR mouse model, MPEP treatment facilitated hippocampus-

dependent object location memory and decreased synaptic p-ERK1/

2 levels (242). Like lithium and rolipram, fragile X syndrome flies

treated with mGluR5 antagonist LY341495 demonstrated an

enhanced long-term memory paradigm compared to controls

(255). Long-term antagonism of mGluR5 also rescued immature

spine phenotype (89) and decreased GSK-3b activity (255) in the

hippocampus of Fmr1-KO mice.
4.9 NMDAR antagonists

NMDAR-mediated excitation and inhibition imbalance is one

of the primary theories explaining the neurotoxicity in ASD. Data

from several studies on rats exposed to VPA indicate that the

NMDAR antagonist, agmatine (260) and dextromethorphan (200),

normalize the overly active ERK1/2 phosphorylation in the

hippocampus, which serves as an indicative marker of

hippocampal hyperexcitability state. Besides, spatial memory and

learning deficits induced by Fmr1-KO and VPA were mitigated

following agmatine (100) and dextromethorphan (200)

administration, respectively. For both rats exposed to VPA and

those with aMecp2-KO, the administration of ketamine produces a

positive effect on their autistic-like behaviors by improving synaptic

molecule levels in the dentate gyrus of the hippocampus (222).

Memantine, a non-competitive antagonist of NMDAR, was

reported to alleviate anxiety and improve learning and memory

deficits in VPA-exposed rats, which could be mediated via the

restoration of hippocampal GABA/glutamate balance and

inhibition of hippocampal neurofibrillary tangles formation and

neuronal apoptosis (201).
4.10 Histamine H3R antagonists

The histamine H3R, as a presynaptic autoreceptor can regulate

the production and release of histamine as well as numerous brain

neurotransmitters like dopamine and acetylcholine (279). Thus,

selective H3R antagonists can improve the cognitive impairment in

ASD. It is evident from the observation that the administration of
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histamine H3R antagonists ST-2223 (247) and ST-713 (248)

significantly elevated the levels of histamine, dopamine, and

acetylcholine in the hippocampal tissue of BTBR mice with

anxiolytic-like effects. Administration of ciproxifan could improve

the VPA-induced LTP decline in the CA1 area and hippocampus-

dependent learning and memory capacity (202). Moreover, the

histamine H3R antagonist E100 mitigates VPA-induced

hippocampal inflammation by reducing the levels of IL-6, IL-1b,
TNF-a, and TGF-b and by suppressing the expression of NF-kB,
iNOS, and COX-2 (216).
4.11 Insulin-like growth factor

The insulin-like growth factor (IGF) system comprising two

activating ligands (IGF-1 and IGF-2) greatly impacts the

development of the central nervous system. It has been

discovered that levels of IGF-1 are reduced in the hippocampus

of Rett syndrome mouse model (280). The active peptide derivative

of IGF-1 can cross the blood-brain barrier and rescue Rett

syndrome symptoms in MeCP2 mutant mice (281). In addition,

daily intraperitoneal injections of IGF-1 for 2 weeks reversed

deficits in hippocampal LTP in Shank3-deficient mice (282).

Previous data revealed that Nlgn3 KO mice treated with IGF-2

fully recovered the social novelty discrimination. This effect was not

accompanied by any alteration in spontaneous glutamatergic

synaptic transmission within the CA2 region, but rather by

enhanced CA2 neuronal excitability (283). Similarly, the

administration of IGF-2 ameliorated social interaction deficits in

BTBR mice and enhanced their social novelty memory via

hippocampal IGF-2 receptor (261). In the Angelman syndrome

mouse model, the impaired contextual and recognition memories as

well as working memory deficits were restored following

subcutaneous injection of IGF-2 (284).
4.12 Aerobic exercises

The beneficial effects on memory functions of aerobic exercise,

as a non-pharmacological intervention, have been well-documented

in individuals with ASD (285). Compared to sedentary controls,

both Cdkl5 KO mice (262) and VPA-induced rats (204) after one

month of wheel/treadmill running showed increased hippocampal

neurogenesis, improved memory performance, and reduced

anxious and impulsive behaviors. One-month voluntary wheel

running not only can decrease hippocampal microglia

overactivation in Cdkl5 KO mice (262), but also stimulate

microglia-mediated engulfment of surplus synapses in the granule

cell axons observed in MIA mice (229). On the other hand,

however, high-intensity exercise may produce negative effects on

ASD symptoms. For instance, two-month treadmill training with

relatively high speed led to impaired social memory in ASD rats

with mercury exposure (286). Voluntary running for seven days

increased cell proliferation in the hippocampal dentate gyrus of

Fmr1 KO mice, but this effect was not observed when running for

28 days (263). Swimming is another beneficial aerobic exercise that
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has been shown to increase hippocampal gray matter volume and

dendritic spine density in Shank3-KO rats (152) and to prevent

hippocampal neuroinflammation in VPA-exposed mice (208). It

also contributes to improvements in spatial, working, social, and

visual recognition memory (152, 208).
4.13 Environmental enrichment

Environmental enrichment is a novel living condition with

increased social exploration opportunities and sensory, cognitive,

and motor stimulations, which positively affect the hippocampus-

dependent learning, memory, and anxiety behavior of children with

ASD (287). Living with the mother and an additional non-lactating

female (enhanced maternal stimulation) can rescue the spatial and

contextual fear memory deficits displayed in adulthood by Fmr1-

KO mice (90). In addition to this “social environmental

enrichment”, enrichment in housing conditions (running wheel,

toys, tunnels, ladders, etc.) also ameliorates impaired anxiety-like

behavior (91, 209, 264), visual recognition memory (209, 264),

spatial learning and memory (91, 265), and fear memory (91),

potentially by acting on the hippocampal BDNF/TrkB-PLCg1-
CaMKII pathway (91, 209, 264, 265), as observed in Fmr1-KO

mice (91), VPA-exposed mice (209), Ube3a-KO mice (264), and

MIA rats (265).
5 Discussion

In summary, hippocampal involvement in the pathophysiology of

ASD is now an acquired knowledge. While the majority of current

structural and functional neuroimaging studies concentrate on the

social brain networks in ASD, hippocampal formation should not be

overlooked as it plays a crucial role in higher non-social cognitive

functions that are also significantly impaired in most ASD individuals.

Numerous lines of clinical evidence on hippocampal volume,

morphology, blood flow, metabolism, and functional connectivity

seem to converge toward the hypothesis of a hippocampal

neurofunctional deficit in ASD, which concerns learning, memory,

language ability, emotional regulation, and cognitive map creation.

Furthermore, researches based on different ASD animal models are

rapidly enhancing our understanding of the neural mechanisms

underlying hippocampus-dependent behavioral deficits. In general,

typical hallmarks of hippocampal deviations in ASD involve

impairments in neurogenesis, dendritic morphology, neuronal

viability, neuronal excitation/inhibition balance, LTP, and LTD.

Results from the recent therapeutic approaches for ASD are

encouraging, since some behavioral alterations such as learning and

memory deficits, could be reversed even when treatment was

performed on adult mice/rats, potentially by influencing the structure

and function of the hippocampus. By targeting therapy at the site of

hippocampal pathology, more effective pharmacological and non-

pharmacological approaches may be developed in the future.

Despite these promising results, several questions remain

unanswered at present. Firstly, as we noted above it is necessary

to further confirm whether hippocampal abnormalities, particularly
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changes in volume, are present in all individuals with ASD or only

in a specific subgroup. To date, comparable anatomical and

morphological alterations have been detected in the hippocampus

of individuals with ASD and ASD animal models, but human

postmortem analysis is still limited by the relatively small

numbers of individual brains. Besides, the developmental profile

of hippocampal pathology in ASD remains unknown. It cannot be

discounted that alternation in hippocampal structure may be

secondary due to the disease process, the emotional stress, or the

various treatments of ASD. Integrating the neuropathology of the

hippocampus in ASD individuals with the aetiology and

pathophysiology of ASD is a major challenge for the coming

years. Other issues to be addressed involve ascertaining the

precision of diagnosing ASD by detecting hippocampal lesions

and determining the significance of hippocampal pathology

compared to other affected regions. Finally, it is beyond dispute

that individuals with ASD exhibit whole-brain functional

connectivity deficits, and it is not possible to simply attribute the

symptoms of ASD to specific regions of the brain. More specifically,

as discussed above atypical connectivity at the local network level

between the hippocampus and other brain regions could potentially

account for impaired non-social behaviors in ASD. The utilization

of multimodal neuroimaging data, such as CT, MRI, fNIRS, EEG,

MEG, etc., is progressively increasing in both scientific research and

clinical settings nowadays. In future investigations, it is hoped that

this multilevel approach will provide insight into the neural circuits

behind the hippocampus-dependent functional deficits in those

with ASD, which can in turn elucidate the developmental

mechanisms underlying hippocampal pathology in ASD.
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