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The glymphatic system, a macroscopic waste clearance system in the brain, is

crucial for maintaining neural health. It facilitates the exchange of cerebrospinal

and interstitial fluid, aiding the clearance of soluble proteins and metabolites and

distributing essential nutrients and signaling molecules. Emerging evidence

suggests a link between glymphatic dysfunction and the pathogenesis of

neurodegenerative disorders, including Alzheimer’s, Parkinson’s, and

Huntington’s disease. These disorders are characterized by the accumulation

and propagation of misfolded or mutant proteins, a process in which the

glymphatic system is likely involved. Impaired glymphatic clearance could lead

to the buildup of these toxic proteins, contributing to neurodegeneration.

Understanding the glymphatic system’s role in these disorders could provide

insights into their pathophysiology and pave the way for new therapeutic

strategies. Pharmacological enhancement of glymphatic clearance could

reduce the burden of toxic proteins and slow disease progression.

Neuroimaging techniques, particularly MRI-based methods, have emerged as

promising tools for studying the glymphatic system in vivo. These techniques

allow for the visualization of glymphatic flow, providing insights into its function

under healthy and pathological conditions. This narrative review highlights

current MRI-based methodologies, such as motion-sensitizing pulsed field

gradient (PFG) based methods, as well as dynamic gadolinium-based and

glucose-enhanced methodologies currently used in the study of

neurodegenerative disorders.
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1 Overview of the glymphatic system

1.1 Introduction

The glymphatic system is a recently discovered macroscopic

waste clearance system that utilizes a unique system of perivascular

channels formed by astroglial cells to promote the efficient

elimination of soluble proteins and metabolites from the central

nervous system (1). This system is a functional analog to the

lymphatic system present in other organs. The name

“glymphatic” is a portmanteau of “glial” and “lymphatic” (2). The

glymphatic system is active during sleep and primarily driven by

arterial pulsation and the aquaporin-4 (AQP4) s maintains health

by efficiently removing waste products and distributing essential

nutrients (1). The significance of the glymphatic system is stressed

by its association with several neurological disorders, including

neurodegenerative disorders (NDs), traumatic brain injury, and

stroke, among others (3–6).

The discovery of the glymphatic system has revolutionized our

understanding of central nervous system physiology. For many

years, the lack of a lymphatic system in the brain led to questions

about how waste products were removed (7). The discovery of the

glymphatic system revealed a robust waste removal system

intimately linked with the brain’s vascular system (3). This

finding has also highlighted the importance of sleep for brain

health, given that the glymphatic system is highly active during

sleep (8). However, the physiological role of the glymphatic system

is not limited to waste removal as it also plays a crucial role in

distributing essential nutrients throughout the brain (1). These

nutrients, including glucose, lipids, amino acids, and other

molecules such as growth factors, are critical for maintaining

brain health and physiological functioning (1). The distribution of

nutrients via the glymphatic system is particularly important given

the brain’s high metabolic demands (9). The discovery of the

glymphatic system has also opened up new avenues for research.
Abbreviations: AD, Alzheimer’s disease; AQP4, aquaporin-4; aSyn, alpha-

synuclein; BBB, blood-brain barrier; BCSFB, blood-CSF barrier; CBF, cerebral

blood flow; CBV, cerebral blood volume; cDSC, DSC MRI in the CSF; CEST,

Chemical Exchange Saturation Transfer; CSF, cerebrospinal fluid; CW,

continuous wave; DANDYISM, Diffusion ANalysis of fluid DYnamics with

Incremental Strength of Motion proving gradient; DCE, dynamic contrast-

enhanced; dDWI, dynamic diffusion-weighted imaging; DGE, Dynamic

glucose-enhanced; DSC, dynamic susceptibility contrast; DTI-ALPS, diffusion

tensor image analysis along the perivascular space; DTI, diffusion tensor imaging;

DWI, diffusion-weighted MRI; FLAIR, fluid-attenuated inversion recovery; Gd,

gadolinium; HCs, healthy controls; HD, Huntington’s Disease; ICA, internal

carotid artery; ISF, interstitial fluid; IVIM, intravoxel incoherent motion; MCA,

middle cerebral artery; mHTT, mutant toxic Huntingtin protein; MRI, magnetic

resonance imaging; MTT, mean transit time; NDs, neurodegenerative disorders;

onDVMP, on-resonance variable-delay multi-pulse; PD, Parkinson’s disease;

PET, Positron emission tomography; PFG, pulsed field gradient; PwAD,

patients with AD; PwAP, patients with atypical Parkinsonian disorders; PwND,

patients with ND; PwPD, patients with PD; ROI, region of interest (ROI); TOF-

MRA, time-of-flight magnetic resonance angiography; WT, wild-type.
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Scientists are now investigating the role of the glymphatic system in

various neurological disorders with the hope of developing new

therapeutic strategies (6, 10).
1.2 Physiology of the glymphatic system

The glymphatic system plays a crucial role in maintaining the

homeostasis of the neural microenvironment (1). It does so by

facilitating the clearance of interstitial solutes, including for instance

amyloid-beta and tau, two proteins considered pathophysiological

hallmarks of Alzheimer’s disease (AD). The glymphatic system is

particularly vital during sleep when the clearance of harmful waste

products is up to two-fold faster than in the waking state (2). This

physiological functioning of the glymphatic system is driven mainly

by the interaction of various cellular and molecular components,

which together facilitate the movement of cerebrospinal fluid (CSF)

and interstitial fluid (ISF) within the brain (see Figure 1) (7). At the

cellular level, the glymphatic system involves several cell types,

including astrocytes, cells of the vascular system, and neurons (7).

Astrocytes, with their endfeet ensheathing the brain’s blood vessels,

play a crucial role in facilitating fluid movement within the

glymphatic system (7). The above-stated polarization of astrocytes

and the formation of endfeet form a network of perivascular

tunnels, which serve as the primary pathways for fluid movement

within the glymphatic system (7). Vascular cells, including

endothelial cells and pericytes, also contribute to the

cytoarchitecture of the glymphatic system (7). These cells play a

role in maintaining the integrity of the blood-brain barrier (BBB).

They are necessary for regulating cerebral blood flow (CBF), which

can influence fluid movement within the glymphatic system (11).

Neurons, while not directly involved in fluid motion, are believed to

influence glymphatic function indirectly through their influence on

the sleep-wake cycle. The sleep-wake cycle is associated with

enhanced glymphatic clearance, likely due to increased interstitial

space, which reduces resistance to convective fluid transport (7). At

the molecular level, the function of the glymphatic system is closely

tied to the expression of AQP4 water channels. These channels,

primarily located on the astrocytic end feet, facilitate water

movement between the CSF and ISF. The cellular distribution of

AQP4 channels and the polarization of astroglia are crucial for

efficient glymphatic function (12). The glymphatic system plays a

significant role in the clearance of potentially harmful solutes from

the brain’s interstitial space. Among these solutes, the clearance of

amyloid-beta has received considerable attention (6, 13). In

summary, the glymphatic system, through its cellular and

molecular components, plays a crucial role in maintaining the

homeostasis of the central nervous system.
1.3 The glymphatic system in
neurodegenerative disorders

The glymphatic system has been implicated in the pathogenesis

of several NDs, including AD, Parkinson’s disease (PD), and

Huntington’s Disease (HD) (10, 14–16). We did not include
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diseases that are primarily considered to be disorders of the

immune system, such as Multiple Sclerosis (MS), but might have

neurodegenerative features. In AD, the most common form of

dementia, the accumulation of amyloid-beta plaques in the brain

is considered a key pathological feature (17). Amyloid-beta is a

peptide produced in the brain as a byproduct of various cellular

processes, e.g., synaptic transmission (17). Under normal

conditions, amyloid-beta is cleared from the brain via several

pathways, including the glymphatic system (17). However, in AD,

this clearance process is believed to be impaired, leading to amyloid-

beta accumulation in the brain (17). Here, studies in mice have

shown that the infusion of amyloid-beta into the brain results in its

clearance via the glymphatic system (18). Furthermore, amyloid-

beta clearance is significantly reduced in mice lacking the AQP4

water channels, which are crucial for glymphatic function (18).

AQP4 channels play a crucial role in the glymphatic system by

facilitating the movement of water between CSF and ISF, thereby

supporting the convective transport of solutes, including large

molecules like amyloid-beta, essential for maintaining brain

homeostasis (18). In humans, post-mortem studies have shown a

loss of AQP4 polarization on the astroglia in patients with AD

(PwAD), suggesting impaired glymphatic function (19). The

glymphatic system has also been implicated in the pathogenesis of

PD, an ND histopathologically characterized by the accumulation

of alpha-synuclein (aSyn) aggregates in the brain (20). aSyn is a
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protein typically found in the brain, but in patients with PD

(PwPD), it forms aggregates believed to contribute to

dopaminergic cell death (20). Similar to amyloid-beta, studies

have shown that exogenously administered aSyn can be cleared

from the ISF via the glymphatic system (21). Studies in mice have

shown that the infusion of alpha-synuclein into the brain results in

its clearance via the glymphatic system, and this clearance is

reduced in mice lacking AQP4 channels (22). Interestingly, the

proper functioning of the glymphatic system has also been linked to

other pathophysiological hallmarks of PD, such as mitochondrial

dysfunction (23). Here, bioenergetic disturbances can drive

increased protein deposition and subsequent breakdown of the

glymphatic system (9). Enhancing our understanding of the

glymphatic system could hold the potential for developing

multidirectional therapies in patients with ND (PwND) (20). HD,

caused by a mutant CAG-triplet repeat expansion in the HTT gene,

is another ND in which the glymphatic system may play a role (14,

15). The link between the glymphatic system and NDs has

significant implications for our understanding of these conditions

and their treatment (1, 10, 24). By deepening our understanding of

the glymphatic system and its role in NDs, we may be able to

develop new therapeutic strategies aimed at improving glymphatic

function. These strategies could slow the progression of NDs and

increase the quality of life for affected individuals (1, 10, 24). Further

research into this topic and its respective role in the onset and
FIGURE 1

Schematic illustration of the glymphatic system. Here, we illustrate the flow of cerebrospinal fluid (CSF) and interstitial fluid (ISF) in the brain. The
green gradient of the “Glymphatic CSF/ISF flow” panel depicts the direction of the waste clearance of the glymphatic system. The CSF flows from
the subarachnoid space into the perivascular space of major cerebral arteries. Subsequently, the CSF flow is directed along the arteries and their
branches into penetrating arteries. This figure also highlights the microscopic details of CSF flow within the brain, showing that the perivascular
space runs along the entire penetrating artery (known as the Virchow–Robin space) and continues to follow the vessel as it branches into arterioles
and capillaries. It further demonstrates the CSF influx into the extracellular space at every level of the perivascular space after entry to the brain
parenchyma, facilitated by a polarized expression of the aquaporin 4 (AQP4) water channel towards the astrocytic endfeet lining the perivascular
space. The figure also presents the concept of ISF bulk flow clearance, a phenomenon observed in animals, which could be driven by multiple
factors such as CSF inflow, arterial pulsatility, hydrostatic pressure gradients between the arterial and venous perivascular spaces, and osmotic
gradients. The directional flow of ISF and its solutes towards the venous perivascular space, where the fluid is taken up and drained by convection
out of the brain parenchyma, is also depicted. This process effectively removes solutes accumulated during neural activity from the brain
parenchyma. Created with biorender.com.
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progression of NDs could provide new insights into the underlying

biology of these debilitating conditions.
1.4 Neuroimaging of the
glymphatic system

Neuroimaging has emerged as a powerful tool for studying the

glymphatic system in health and disease (25). Several techniques

have been used to visualize and quantify glymphatic flow in vivo,

providing unprecedented insights into the function of the

glymphatic system and opening up new avenues for diagnosing

and treating PwND (26). Positron emission tomography (PET) and

magnetic resonance imaging (MRI) are the most commonly used

imaging modalities for studying the glymphatic system (7, 25).

Imaging techniques from these modalities allow visualization of the

glymphatic pathways and quantification of the clearance of solutes

from the brain, thus providing valuable insights into possible coping

mechanisms in PwND (7, 25). The potential of neuroimaging in

establishing new treatment options for PwND is immense (27–29).

Visualizing and quantifying the glymphatic system in vivo can

provide an earlier diagnosis of conditions associated with

glymphatic dysfunction. Earlier diagnosis is crucial for effectively

managing these conditions, as it allows for the timely initiation of

disease-modifying treatments as soon as they become available (27–

29). Furthermore, neuroimaging can provide a means to measure

the effectiveness of treatments to enhance glymphatic function (6,

10, 24). For instance, drugs that enhance the role of the AQP4 water

channels could improve glymphatic clearance and may slow the

progression of PwND. Here, neuroimaging can be used to measure

the effect of these drugs on glymphatic function, providing valuable

information on their efficacy and helping to guide treatment

decisions (6, 10, 24). In addition to guiding the development and

evaluation of new treatments, neuroimaging of the glymphatic

system could also contribute to personalized treatment strategies

for PwND. Given the clinical heterogeneity and the variability in

glymphatic function between PwND, treatments that enhance

glymphatic function may be equally effective only in some

patients (30, 31). Here, neuroimaging can provide information on

an individual ’s glymphatic function, al lowing for the

personalization of treatment strategies based on this information.

Moreover, neuroimaging could offer insights into the

mechanisms underlying the variability in disease progression

observed in many PwNDs (26, 32). For instance, PwAD with a

similar amyloid-beta burden in the brain (i.e., measured by PET

imaging) can exhibit significant variability in cognitive decline (33,

34). This heterogeneity could be partially related to differences in

glymphatic function, with impaired glymphatic clearance of

amyloid-beta contributing to more rapid cognitive decline (35).

Neuroimaging of the glymphatic system could provide insights into

these mechanisms, potentially leading to the development of new

therapeutic strategies to enhance glymphatic function and slow

cognitive decline (6, 10, 24). In conclusion, neuroimaging of the

glymphatic system holds significant potential for advancing our

understanding of NDs. The latter could lead to the development of

individualized treatment strategies. As our knowledge of the
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glymphatic system continuously expands, so does the potential of

pathophysiology-targeted neuroimaging to transform the diagnosis

and treatment of PwND.
1.5 The scope of this review

In this narrative review, we will focus on the significant role of

advanced neuroimaging in studying the glymphatic system in NDs,

with particular emphasis on AD and PD, and some recent insights

into HD. We will explore the potential of MRI-based neuroimaging

techniques in visualizing and quantifying glymphatic flow,

providing insights into the function of the glymphatic system in

health and NDs. Furthermore, we will discuss how these advanced

neuroimaging techniques can guide the development of new,

personalized treatment strategies and contribute to early

diagnosis, potentially transforming the management of PwND.
2 Advanced neuroimaging methods

2.1 Motion-sensitizing pulsed field gradient
based methods

By using a pair of compensating PFGs, MRI methods can be

sensitized to motion by taking advantage of the signal loss due to a

loss of phase coherence in a voxel. With a gradient of small length

and strength (typical order 10-20 s/mm2 described by so-called

diffusion-weighting b-factors or b-values), it is possible to measure a

phase difference proportional to blood velocity when encoding

along a vessel and calculate the volume flow rate (coherent

motion in one direction, macroscopic) (36). Recent approaches

also use phase contrast MRI to measure CBF (37). Diffusion-

weighted imaging (DWI) utilizes higher gradient strengths (b >

100 s/mm2), where the flowing signals no longer contribute, to

measure water self-diffusion (random molecular motion,

microscopic). Application of PFGs also causes signal loss when

flow within a voxel is randomized with respect to the orientation of

vessels or other water-containing channels. The contribution of this

process, named intravoxel incoherent motion (IVIM), is described

by a pseudodiffusion constant, D* (38, 39). To assess this type of

effect in the brain, a series of b-values of 20 – 100 s/mm2 followed by

higher values in the diffusion-sensitive range are applied. Both the

diffusion constant D and D* can then be obtained by bi-exponential

fitting of the data. Since the diffusion in vivo is not random but

affected by tissue boundaries, these constants are also called ADC

and ADC* (apparent diffusion constants or diffusivities). When

using DWI with at least 6 different diffusion gradient orientations

over a sphere, one can assess the diffusion tensor of water averaged

over a voxel, so-called diffusion tensor imaging (DTI), providing

diffusion constants along the brain fibers and the fiber orientation.

Investigators using these DWI pulse sequences to assess the

glymphatic system may tend to call the effects diffusion, but

depending on the choice of b-values, all the above-described

phenomena can contribute. For instance, when performing

standard DWI on a clinical system, it is common to acquire a
frontiersin.org
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reference b-value (b0) of 0 s/mm2 together with one high b-value

(800 s/mm2) and evaluate the signal loss between them. Therefore,

when the literature indicates the use of standard DWI to assess the

glymphatic system, all contributions are included, and the apparent

diffusion constant (ADC) in the tissue would be affected by the

presence of a glymphatic system. Thus, PFG pulse sequences can be

a potential tool for assessing the glymphatic system when studying

the effects of sub-voxel CSF and ISF spaces in the brain. Key

advantages include complete non-invasiveness and wide

availability, including the corresponding data analysis software on

clinical MR systems. On the other hand, since water molecules can

be present in various spaces in the brain, such as macroscopic and

microscopic CSF spaces, ISF, and, of course, intracellular space and

blood, the signal origins in diffusion-based glymphatic studies are

often nonspecific. Thus, care should be taken when interpreting

the results.

Long-TE DWI methods with lower b-values have been

proposed to measure flow in the perivascular space surrounding

large vessels, such as the middle cerebral artery (MCA) (40, 41).

More recently, dynamic DWI (dDWI), in combination with an

analytical framework, was proposed to measure pulsatile CSF

waveforms in the arterial perivascular space by employing a low

b-value (150 s/mm2) and by using retrospective cardiac gating data

to analyze DWI images (42). A multi-b-value scheme termed

Diffusion ANalysis of fluid DYnamics with Incremental Strength of

Motion proving gradient (DANDYISM) was also developed to

measure CSF dynamics using DWI images acquired with multiple

b-values from 0 to 1000 s/mm2 (43). Cardiac-gated IVIM DWI can

also measure CSF pulsatility (44). Using the bi-exponential IVIM

model, the slow diffusion coefficient was linked with fluid

cellularity, the characteristics, and the composition of cells,

whereas the fraction of the fast diffusion index (pseudodiffusion

constant) was attributed to CSF circulation. CSF circulation refers

to the dynamic movement and flow of CSF throughout the brain’s

ventricular system and subarachnoid space, playing a key role in the

distribution and clearance of solutes and waste products within the

CNS. Later, it was reported that the fraction of fast diffusion from

IVIM may indicate that pulsatile CSF flow in the lateral ventricles is

both direction-dependent and cardiac-dependent (45). From a

technical point of view, the term dDWI is used very freely in the

literature as it includes intravoxel incoherent motion (which is not

diffusion) and bulk flow. This terminology should probably be made

more specific in future literature.

A DTI method that has been proposed to assess the glymphatic

system is the DTI analysis along the perivascular space (DTI−ALPS)

approach (46). This approach hypothesizes to measure the water

contributions of motion in the perivascular space as a change in the

diffusion constant (diffusivity), with a decreased diffusivity of water

indicating dysfunction of the glymphatic system. A fundamental

assumption in this method is that the perivascular space is

perpendicular to white matter fibers adjacent to the lateral

ventricle body. Several studies have used DTI-ALPS to assess the

glymphatic system in PwAD and PwPD (30, 46–49). All studies

found a lower ALPS index in PwND compared to healthy controls

(HCs), interpreted as reduced water diffusivity within the

perivascular space. Some studies reported correlations between
Frontiers in Psychiatry 05
the ALPS index and amyloid-beta and tau deposition,

neuroinflammation, cognitive functions, gray matter integrity,

and other conventional neuroimaging markers (30, 46–49). DTI-

APLS have also been used to investigate the relationship between

the glymphatic system and iron deposition in the normal brain.

Zhou et al. applied the DTI-APLS method on 213 healthy

volunteers and found that the regional iron deposition, obtained

using quantitative susceptibility mapping (QSM), significantly

correlated with the APLS index (50). They also found that the

APLS index decreased significantly with age, suggesting that the

glymphatic system gets impaired with normal aging. The DTI-

ALPS method is straightforward since the analysis method can be

performed on standard DTI data or already collected DTI data. On

the other hand, APLS has been criticized based on the fact that

contributions of the perivascular space in white matter should be

small to negligible based on knowledge from histology (51). Thus,

the exciting results from the literature mentioned above, which have

improved our understanding of various diseases, lead us to the

question of whether the ALPS index can be a specific marker for

certain sub-groups of brain diseases or it may reflect a common

change in the brain in all these diseases that have distinct pathology

and etiology.

In summary, PFG approaches, which sensitize the experiment

to self-diffusion, intravoxel incoherent motion, and bulk flow

measurements, have the potential to be valuable tools for

studying the human glymphatic system. Further work is merited,

especially to validate and disentangle the various signal sources and

compartments measured in diffusion MRI to improve their

specificity in imaging the glymphatic system in the human brain.
2.2 Dynamic gadolinium-based methods

Dynamic gadolinium (Gd)-based MRI methods have

historically been used to measure hemodynamic estimates such

as, e.g., CBF and cerebral blood volume (CBV). However, these

methods have also been implemented to evaluate the circulation of

the glymphatic system (52–57). Although the intact BBB prevents

Gd from leaking into healthy tissue, the dura blood vessels, having

no BBB, will allow Gd to permeate the vessel and subsequently enter

the CSF. Thus, post-contrast images often show Gd-induced signal

changes in the CSF (58).

The two major dynamic Gd-based methods that are used for

measurements in the brain are
i) T1-weighted dynamic contrast-enhanced (DCE) MRI,

relying on the theory of diffusible tracers (59, 60) and

ii) T2*-weighted dynamic susceptibility contrast (DSC) MRI-

based on the theory of intravascular tracers,
with the latter being the most widespread clinically (61–63). For

quantification, both methods usually first convert the acquired

signal to concentration and then employ a mathematical

approach to the concentration data to derive parameters. In DCE

MRI, vascular permeability and interstitial volume and/or plasma

volume are usually of interest. In the context of glymphatic system
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research, the relationship between vascular permeability and

interstitial or plasma volume is pivotal, as these factors influence

the exchange of fluids and solutes between blood vessels and brain

tissue, thereby affecting the efficiency of the glymphatic system’s

waste clearance functions. For DSC-MRI, the focus lies on

quantifying CBF, CBV, and mean transit time (MTT), parameters

that also play an integral role in the functioning of the glymphatic

system, as they are key determinants of the brain’s hemodynamic

state. Thus, any variations can significantly impact the rate of

cerebrospinal fluid (CSF) and interstitial fluid (ISF) exchange, e.g.,

by influencing the perfusion and respective pressure dynamics.

Thus, any variation in these parameters can significantly impact

the rate of cerebrospinal fluid (CSF) and interstitial fluid (ISF)

exchange, e.g., by influencing the perfusion and respective pressure

dynamics (64–66).

The first dynamic-Gd studies used DCE MRI in a preclinical

setting, and the acquired data were usually evaluated using semi-

quantitative methods, such as assessing signal change relative to the

baseline (52–54, 57). These studies were followed by human DCE

MRI studies (67, 68) and studies utilizing tracer kinetic models for

analyzing the DCEMRI data (53, 69). In the pre-clinical studies, the

Gd-contrast agent was administered intrathecally with intra-

cisterna magna injection, which offers a direct and accurate

assessment of the glymphatic system. In the human studies,

intravenous and intrathecal injection was used. To our

knowledge, intra-cisterna magna injection, which is more invasive

than intravenous intrathecal injection, has not been used in human

ND research. Since Gd-contrast agents are not FDA-approved for

intrathecal administration in humans, some studies have instead

used intravenous contrast agent administration (70–74). Figure 2

shows an example from one of these studies. Several methods have

been developed to measure intravenous Gd-contrast-induced signal

changes in the CSF (i.e., as reviewed by Verheggen et al., 2021) (76).

In addition, it has also been shown that it is possible to measure Gd-

induced signal changes in both the blood and lymphatic vessels in

the human brain using DSC in a single scan (56).

Two important caveats should be noted when using Gd-based

methods to investigate the glymphatic system. First, depending on

the pulse sequence and imaging parameters applied,

hyperintensities or high post-Gd signal changes do not always

correspond to higher Gd concentration (55, 77). Second,

substantial partial volume effects from the blood compartment

should be considered when interpreting the Gd-induced signal

changes in the brain. Based on previous work, T2-weighted spin

echo sequences with a very long TE (> 600 ms) may be the best

choice to minimize these confounding effects by selecting CSF

signal only (55, 56).

One of the predominant diseases for which Gd-based contrast

agents are used to study the glymphatic system is AD. Harrison

et al. (78) compared DCEMRI in mice with tauopathy with controls

and found that CSF-ISF exchange and clearance became impaired

in the caudal cortex of the tauopathy mice. Ben-Nejma et al., used

DCE to study mice with amyloid-beta deposition (79), revealing

significantly reduced glymphatic flow in the diseased mice

compared to the controls, which was interpreted in terms of

reduced and redirected flow. DCE MRI studies have also been
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FIGURE 2

Dynamic gadolinium (Gd)-induced signal changes in the cerebrospinal
fluid (CSF) detected by dynamic susceptibility contrast in CSF
magnetic resonance imaging (cDSC-MRI) in a 51-year-old healthy
volunteer. The signal changes were measured in a small region of
interest (ROI) in the brain close to the basal part of the skull, which is
considered a major CSF drainage route from the brain and may
contain cerebral lymphatic vessels. (A) The 3D fluid-attenuated
inversion recovery (FLAIR) image is shown as a reference. Relative
signal changes (DS/S) detected with the 3D FLAIR sequence in the ROI
overlaid on the corresponding FLAIR image are shown on the right.
(B) The cDSC image is shown on the left. Relative signal changes (DS/
S) detected with cDSC MRI in the ROI overlaid on the corresponding
cDSC image are shown on the left. (C) The average time course
detected using cDSC MRI from the ROI is shown on the left. The error
bars indicate standard deviations. The vertical dashed lines indicate the
time when Gd is injected. The right panel shows a magnified view of
the FLAIR image in the ROI and four maps of the following
parameters extracted from the dynamic time courses detected in
cDSC overlaid on the FLAIR image: Tonset, onset time; Tpeak, time to
peak, absolute value of relative signal change |DS/S| between pre- and
post-Gd, [Gd] = concentration of Gd. The color bars indicate the
corresponding scales of each parameter. (D) Additional cDSC and
TOF-MRA (time-of-flight magnetic resonance angiography) images
(coronal view on the bottom left and axial views on the right) are
shown to confirm the anatomical location of the ROI. The yellow
arrow indicates the location of the highlighted and expanded voxels.
The red arrow points to the petrous internal carotid canal with a high
flow signal on the TOF sequence within the petrous internal carotid
artery (ICA). The posterior portion of the petrous ICA makes a ~90°
inferior turn to exit the petrous carotid canal at the inferior skull base.
The carotid foramen (which is a bone structure and should appear
dark on both cDSC and TOF images) is located at the posterior end of
the petrous ICA, which can be identified on the TOF images (blue
arrow). Although the jugular foramen (also a bone structure that
should appear dark on both cDSC and TOF images) cannot be directly
identified in the current images, it should be located immediately
posterior to the carotid foramen. Therefore, the highlighted voxels in
the ROI in (C) should be located above the carotid foramen and
jugular foramen inside the skull (75).
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performed to study the effects of treatment. Alghanimy et al.

observed that glymphatic transport was significantly enhanced in

healthy rats when an AQP4 facilitator was used (80). Other

dementias have also been investigated. In a study by Ringstad

et al., patients with normal pressure hydrocephalus (iNPH)-

related dementia were compared to HCs using DCE MRI (67). It

was revealed that the patients with iNPH-associated dementia had a

delayed clearance compared to the healthy controls (67).

It has been suggested that meningeal lymphatic vessels facilitate

the drainage of CSF and ISF, acting as an exit route for the

glymphatic flow. Thus, an impairment of the meningeal

lymphatic drainage may aggravate a-syn pathology and

exacerbate glymphatic clearance deficits in PD (81). The study by

Ding et al. found that patients with idiopathic PD had significantly

reduced flow through the meningeal lymphatic vessels along the

superior sagittal sinus and sigmoid sinus compared to patients with

atypical Parkinsonian disorders (PwAP) (82). DCE MRI may thus

be used to differentiate PwPD from PwAP, which is often

challenging, especially in the early stages of these diseases (83). In

summary, dynamic Gd approaches are still considered the gold

standard for studying the glymphatic system in humans. Intrathecal

administration of the Gd contrast can provide a direct assessment of

CSF circulation in the brain. Nevertheless, the intrathecal procedure

is more invasive and is not FDA-approved for human use.

Therefore, although they are invasive and have relatively long

acquisition times, methods based on intravenous Gd injection

may have more translational value for routine clinical use.
2.3 Dynamic glucose-enhanced methods

Dynamic glucose-enhanced (DGE) MRI is a relatively new

contrast-enhanced imaging technique that uses natural sugar (D-

glucose) or sugar analogues together with dynamic Chemical

Exchange Saturation Transfer (CEST) imaging to obtain

information about glucose delivery, tissue transport, and

metabolism (84). When selectively radiofrequency-labeling the

hydroxyl protons in D-glucose, the continuous exchange with

unsaturated water protons will create a measurable reduction of

the MRI water signal (85, 86). Thus, using the CEST technique, the

millimolar concentration of D-glucose can be detected through a

reduction (saturation) of the signal from water (present at molar

concentration), facilitating an approach called glucoCEST (87–94).

The advantage of D-glucose as a contrast agent is that it is affordable

and has widespread availability. It is also a regulatory-approved

biocompatible substance already used in glucose tolerance testing of

diabetics in the clinic. However, DGE imaging produces a small

effect size (a few percent, i.e., on the order of functional MRI signal

changes), especially at clinical magnetic field strengths (1.5T and

3T) and long scan durations (>10 min) are required due to the large

amount of D-glucose solution needed. This makes the technique

vulnerable to patient motion, which can produce signal changes of

the same order of magnitude as the true CEST signals, so-called

pseudo-CEST effects (95, 96). Similar to DSC- and DCE-MRI,

DGE-MRI also measures a dynamic tissue response curve. While

continuously saturating OH protons at one chosen frequency offset,
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signals are acquired dynamically at baseline, during and after

infusion. The D-glucose is injected intravenously after a pre-set

time (a few minutes), i.e., when sufficient baseline images have been

acquired. The resulting DGE tissue response curve is then obtained

by subtracting the average of pre-injection scans from the post-

injection scans at each time point. The resulting DGE MRI curve

provides insights into the changes in D-glucose concentration

within tissues.

The high concentrations of glucose transporters in brain

capillary endothelial cells result in D-glucose traversing both the

BBB and the blood-CSF barrier (BCSFB). This unique characteristic

allows the DGE method to investigate the integrity of BBB and the

CSF exchange process with parenchyma, i.e., the CSF-ISF exchange.

Studies by Huang et al. and Chen et al. demonstrate that DGE MRI

can concurrently assess glucose transporter and glymphatic system

functioning in AD (97, 98). Both studies used DGE to detect glucose

in the CSF and parenchyma. The study by Chen et al. scanned a

mouse model with tauopathy at 7–8 months of age at 11.7T. It was

found that D-glucose uptake in parenchyma and CSF was reduced

compared toWTmice. Additionally, a slower D-glucose uptake rate

was observed in the CSF of the tau mice in comparison to their WT

counterparts, indicating the presence of impaired glucose

transporters at both the BBB and the BCSFB in these tau mice

(97). In the paper by Huang et al., AD mice with amyloid plaques

(APP/PS1) were age-matched with wild-type (WT) mice and

scanned at 3T. The D-glucose uptake and clearance in CSF of the

APP group are illustrated in Figure 3. D-glucose clearance was

threefold lower in the young (6-month-old) AD mice than in WT

mice. Old mice (16 months old) also showed reduced clearance.

Further, compared to young AD mice, the maximum signal of D-

glucose uptake was lower in old AD mice. The findings in this study

indicate that DGE MRI can identify changes in both glucose uptake

and clearance in AD, even at an early stage of the disease (98). A

very recent study used DGE to measure D-glucose clearance from

CSF in an HD mouse model (Q175 knock-in with abnormal

accumulation of mHTT: mutant toxic Huntingtin protein),

showing impaired clearance already in premanifest mice and

worsening as the disease progressed (16). Interestingly, these

investigators also studied the expression of the AQP4 channels in

the perivascular compartment, which was significantly diminished

in the HD mouse brain. Due to the novelty of DGE MRI, no studies

on PwNDs have been published yet. In summary, the dynamic

glucose-enhanced method seems to have potential when assessing

the glymphatic system in humans. However, further work is

merited, especially when moving towards patient studies. For

example, the small effect size should be addressed together with

the confounding effects that appear due to motion. In addition,

studies on other neurodegenerative diseases are warranted.
2.4 Other methods

This review has focused on some of the MRI-based

methodologies currently being applied for the study of PD, HD,

and AD. However, the field is young, and other MRI-based

approaches with the potential to image the glymphatic system
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and its properties continue to be developed. This includes methods

such as Phase Contrast MRI (99), Spatial modulation of

magnetization (SPAMM) (100), Time-spatial labeling inversion

pulse (Time-SLIP) (101), arterial spin labeling (ASL) (102), and

ultra-fast magnetic resonance encephalography (103). These

noninvasive approaches can be added easily to a clinical MRI

exam and will no doubt be applied to ND in the near future.
3 Conclusion

In recent years, exploring the glymphatic system using

advanced MRI techniques has provided valuable insights into its

role in NDs. This narrative review has focused on three critical

MRI-based methodologies: intravoxel-incoherent motion, DCE/

DSC, and DGE methods, shedding light on the exciting progress

in understanding the glymphatic system’s involvement in these

diseases. The accumulating evidence from both preclinical models

and clinical studies strongly supports the hypothesis that

glymphatic dysfunction plays a pivotal role in the pathogenesis of

NDs, including AD, PD, and HD. The glymphatic system’s function

in clearing toxic proteins is paramount, as impaired clearance

mechanisms may contribute to their accumulation. Therefore,

understanding the glymphatic system’s role in these disorders

opens new possibilities for establishing novel progression

markers, a crucial prerequisite for conceptualizing clinical trials

investigating the disease-modifying properties of drug candidates.

The non-invasive nature of these MRI techniques allows for

longitudinal studies in both preclinical models and human

subjects, enabling researchers to track changes in glymphatic

function over time. In addition, pharmacologically enhancing

glymphatic clearance represents a novel approach to mitigating

the progression of NDs. By promoting the efficient removal of toxic
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proteins and waste products from the brain, we may be able to slow

down or even halt the neurodegenerative processes. Future research

should focus on developing and testing compounds that can

modulate glymphatic function safely and effectively. Treatment

monitoring using the proposed neuroimaging methods will

inform noninvasively on the success or failure of these endeavors,

likely speeding up the development of new drugs.

As we look to the future, several important avenues for research

become evident. Firstly, further studies are needed to elucidate the

mechan i sms unde r ly ing g lympha t i c dys func t ion in

neurodegenerative disorders. It would be crucial to enhance the

interpretability of IVIM-based methods or refocus on the other

proposed methods. Here, DGE could provide future insights while

relying on a well-tolerated and FDA-approved D-glucose infusion.

However, studies in PwNDs are currently sparse, and real-world

evidence is needed to validate this method in a clinical setting.

Moreover, expanding the application of advanced neuroimaging

techniques to more extensive and diverse patient populations will

provide a broader understanding of the glymphatic system’s role in

different stages and subtypes of neurodegenerative diseases.

Additionally, developing more sensitive and specific imaging

markers for glymphatic function could improve the accuracy of

diagnosis and monitoring of these disorders.

In conclusion, the glymphatic system is a fascinating and

essential component of brain health, and its dysfunction appears

to be intricately linked to the pathogenesis of NDs. Developing

advanced neuroimaging techniques has been instrumental in

advancing our knowledge in this field. With continued research

and collaboration, we can harness this understanding to develop

innovative therapies that target the glymphatic system, potentially

changing the trajectory of PwND. The future holds promise for

unlocking the full therapeutic potential of the glymphatic system

and ushering in a new era of individualized treatments for PwNDs.
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FIGURE 3

Dynamic glucose-enhanced magnetic resonance imaging (DGE-MRI) results for the cerebrospinal fluid (CSF) in both an Alzheimer’s disease mice model
(APP/PS1) and wild-type (WT) mice. Dynamic difference images before and after infusion for WT (A) and APP/PS1 (B) mice at 6 months (6M). (C) Experimental
(solid line) and fitted (dashed line) CSF DGE curves for WT (6M, n=5) and APP/PS1 (6M, n=5) mice. Comparison of fitted uptake and clearance rates min
(D) mout (E) between WT and APP/PS1 mice for two age groups (6M and 16M). *: p<0.05. Reproduced with permission from J. Xu (98). .
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