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Objective:Depression is a common comorbidity in hypertensive older adults, yet

depression is more difficult to diagnose correctly. Our goal is to find predictive

models of depression in hypertensive patients using a combination of various

machine learning (ML) methods and metabolomics.

Methods: Methods We recruited 379 elderly people aged ≥65 years from the

Chinese community. Plasma samples were collected and assayed by gas

chromatography/liquid chromatography-mass spectrometry (GC/LC-MS).

Orthogonal partial least squares discriminant analysis (OPLS-DA), volcano

diagrams and thermograms were used to distinguish metabolites. The attribute

discriminators CfsSubsetEval combined with search method BestFirst in WEKA

software was used to find the best predicted metabolite combinations, and then

24 classification methods with 10-fold cross-validation were used for prediction.

Results: 34 individuals were considered hypertensive combined with depression

according to our criteria, and 34 subjects with hypertension only were matched

according to age and sex. 19 metabolites by GC-MS and 65 metabolites by LC-

MS contributed significantly to the differentiation between the depressed and

non-depressed cohorts, with a VIP value of more than 1 and a P value of less than

0.05. There were multiple metabolic pathway alterations. The metabolite

combinations screened with WEKA for optimal diagnostic value included 12

metabolites. The machine learning methods with AUC values greater than 0.9

were bayesNet and random forests, and their other evaluation measures are

also better.
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Conclusion: Altered metabolites and metabolic pathways are present in older

adults with hypertension combined with depression. Methods using

metabolomics and machine learning performed quite well in predicting

depression in hypertensive older adults, contributing to further clinical research.
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1 Introduction

Hypertension is a prevalent chronic disease, affecting every

third adult worldwide, and constitutes a significant global

contributor to disability (1). In China, nearly half of individuals

aged 35–75 experience hypertension, with the prevalence increasing

with age (2). Despite these alarming statistics, hypertensive patients

often grapple with psychological challenges stemming from the

prolonged use of antihypertensive medications, diminished quality

of life, and physical symptoms (3, 4). Among patients with chronic

diseases, depression emerges as the most prevalent mental health

disorder (5). In situations where hypertension and depression

coexist, the presence of depression can adversely impact

adherence to hypertension treatment and further worsen the

condition of hypertension (6). Conversely, patients with

hypertension combined with depression are more likely to

develop further depressive symptoms (7). Moreover, medications

used for depression treatment, such as ketamine, can affect the

cardiovascular system and increase blood pressure, making it more

difficult to treat depression (5, 6, 8). Hence, there is a pressing need

for heightened awareness and attention to cases involving the co-

occurrence of hypertension and depression. Currently, depression is

diagnosed using a scale (9). There are numerous depression

diagnostic scales with varying degrees of sensitivity and specificity

for diagnosis (10, 11). Therefore, the diagnosis of depression may be

misdiagnosed or missed. Consequently, there is an imperative need

for an objective and sensitive diagnostic method for depression.

Metabolomics is the study of all small molecule metabolites and

chemical processes in organisms and tissues, and is an important

tool for discovering changes in metabolic biomarkers in living

organisms (12). Metabolomics is widely applied to the study of

biomarkers and the study of physiological processes and phenotypic

changes associated with disease (13). At present, it has been found

through serum and plasma metabolomics that depression can affect

changes in metabolites such as blood lipids, amines,

neurotransmitters, and amino acids in the blood (14, 15).

Metabolic pathways such as glycerophospholipid metabolism,

purine metabolism, alanine, aspartic acid, and glutamate

metabolism are also affected (16). However, the metabolomics

raw data is complex and diverse and poses great challenges in

data analysis (13, 17). Therefore, the metabolomics community has
02
always been eager to adopt new mathematical and computational

tools to improve data analysis.

Machine learning (ML) can be used to develop models that can

handle large-scale data and solve complex problems through

learning (12). The application of ML transcends the limitations

posed by conventional statistical models, particularly in the realm of

metabolomics big data analysis, where the latter often proves

inadequate (18). Despite the remarkable potential inherent in the

amalgamation of machine learning and metabolomics, the

intersection of these domains has been relatively understudied. A

previous study has used support vector machine algorithms in

machine learning to find diagnostic biomarkers in some

indicators commonly measured in hospitals in older adults with

hypertensive depression (19). Currently, most of the studies, like the

ones mentioned above, ML is widely used to construct models in a

number of indicators that are common in hospitals, looking for

predictive models of potential biomarkers to diagnose diseases (18).

Consequently, the diagnostic capacity of these models may be

circumscribed, prompting the need for a more comprehensive

exploration of indicators to enhance diagnostic precision.

The goal of this paper is to advance the sensitivity and

specificity of the diagnosis of depression in hypertensive patients.

In this study, plasma samples were analyzed using gas

chromatography (GC) and liquid chromatography (LC) coupled

with mass spectrometry (MS), which was able to identify additional

plasma metabolites. Subsequently, machine learning techniques

were combined with metabolomics to determine the best

combination of metabolites and algorithms. This method helps to

detect the diagnosis of depression in hypertensive patients out.
2 Materials and methods

2.1 Study participants

This study recruited 379 participants aged ≥65 who were

residents of Shanghai and had participated in China’s nationwide

complimentary physical examination initiative (20, 21). A

comprehensive geriatric assessment and in-depth face-to-face

interviews were conducted. The 30-item Geriatric Depression

Scale (GDS) was employed during these interviews to evaluate the
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presence of depression (22). Simultaneously, we gathered

sociodemographic data, disease history, and medication

utilization through a meticulous inquiry. Sociodemographic

variables comprised age and gender, while chronic conditions

included diabetes, hypertension, hyperlipidemia, stroke, and heart

disease . Addit ional ly , anthropometr ic measurements ,

encompassing height and weight, were taken to calculate the

Body Mass Index (BMI). Furthermore, fasting plasma samples

were systematically collected from the participants for subsequent

metabolomics analyses. The following criteria were used to exclude

subjects: incomplete data for our requirements and use of

antidepressant medication (23). Nine subjects had incomplete

data and two were taking antidepressants. Ultimately, a total of

368 participants met the eligibility criteria and were included in our

study. This research received ethical approval from the Ethics

Committee at Shanghai University of Medicine and Health

Sciences, China, and adhered scrupulously to the principles

delineated in the Declaration of Helsinki. All participants

provided informed consent before their involvement in the study.
2.2 Determination of depression
and hypertension

Depression were assessed by the Chinese version of GDS, a

standardized self-report questionnaire containing 30 dichotomous

questions with good validity and reliability (22). There are 30 items

on the scale, either positive or negative. The sum of these 30 items

yields a score from 0 to 30, with scores greater than 11 defined as

depression (22). Hypertension was defined as a systolic blood

pressure of ≥140 mm Hg or diastolic blood pressure of ≥90 mm

Hg. The methodology used in this study to consider it as

hypertension is the subject’s self-report of having been diagnosed

with hypertension by a hospital doctor (24).
2.3 Metabolomics analyses

The plasma sample preparation along with LC-MS analysis have

been described in detail in our previous study (25). Each plasma

specimen was procured from the study participants during a fasting

state in the morning and subsequently stored at -80° until analytical

scrutiny. For LC-MS analysis, 150 ml of plasma was taken and 10 ml of
methanol-solubilized 2-chlorophenylalanine (0.3 mg/ml) was added as

an internal standard, along with 450 ml of methanol/acetonitrile (2/1).

Vortex for 60 seconds, then sonicate the extract for 10 minutes, let it

stand for 30 minutes and then centrifuge for 10 minutes (4°C, 13,000

rpm). 200 ml of supernatant was freeze-concentrated in a centrifugal

dryer and then redissolved in 300 ml methanol/water (1/4). The extract

was vortexed for 30 seconds, then sonicated for 3 minutes and

centrifuged for 10 minutes (4°C, 13,000 rpm). Subsequently, 150 ml
of the supernatant was filtered through a 0.22 mm microfilter and

transferred to LC vials.

For GC‐MS analysis, 150 ml of plasma was vortexed for 10 seconds

with 20 ml of 2-chlorophenylalanine (0.3 mg/ml) dissolved in

methanol. Then, 450 ml of ice-cold methanol/acetonitrile (2/1, v/v)
Frontiers in Psychiatry 03
was added and vortexed for 30 seconds. The extract was sonicated for

10 min, stored for 30 min (-20°C), and then centrifuged at 4°C for

10 min (13,000 rpm). 200 ml of the supernatant was loaded into a new

glass vial and dried in a freeze-concentration centrifuge, after which 80

mL of 15 mg/ml methoxyamine hydrochloride (in pyridine) was added.

The resulting mixture was vortexed for 2 minutes and then incubated

at 37°C for 90 minutes. 50-mL BSTFA (with 1% TMCS) and 20-mL
hexane were added to the bottle, which was then vigorously shaken for

2 minutes and derivatized at 70°C for 60 minutes. The samples were

placed at room temperature for 30 min before GC-MS.

LC-MS analysis was conducted utilizing the ACQUITY UPLC

I-Class system (Waters Corporation, Milford, USA) coupled with

the VION IMS QT high-resolution mass spectrometer (Waters

Corporation, Milford, USA). In both positive and negative modes,

an ACQUITY UPLC BEH C18 column (1.7mm, 2.1 × 100mm) was

employed. For GC-MS analysis, an Agilent 7890B gas

chromatography system coupled to an Agilent 5977A MSD

system (Agilent Technologies Inc, CA, USA) was utilized. The

separation of derivatives was achieved using a DB-5MSf fused-

silica capillary column (30m × 0.25mm × 0.25mm, Agilent J& W

Scientific, Folsom, CA, USA). Regardless of whether it is an LC-MS

or GC-MS analysis, QC samples are added regularly and analyzed

every ten samples.

The LC-MS and GC-MS data were initially in an unprocessed

form. The processing of LC-MS raw data has also been described in

detail in our previous article (25). The LC-MS dataset was processed

using Progenesis Qi software version 2.3 (Nonlinear Dynamics,

Newcastle, UK). Initially, the software conducted sophisticated data

mining, incorporating advanced procedures such as alignment,

peak selection, normalization, and retention time (RT) correction.

The resulting characteristic matrix encapsulates essential details

encompassing mass-to-charge ratio (m/z), RT, and peak intensities.

Subsequently, metabolite identification was undertaken by

leveraging precise m/z values, secondary fragments, and isotope

distribution. This process involved querying the Human

Metabolome Database (HMDB) (http://www.hmdb.ca/), Lipid

Maps (version 2.3) (http://www.lipidmaps.org/), METLIN (http://

metlin.scripps.edu/), and internally developed databases (EMDB)

for qualitative analysis.

The raw GC-MS data was converted using the software MS-

DIAL version 2.74. This software carried out peak detection, peak

identification, characterization, peak alignment, wave filtering, etc.

Metabolites were characterized using LUG database (Untargeted

database of GC–MS rom Lumingbio). The raw data matrix was

obtained from the raw data with a three-dimensional dataset,

including sample information, the name of the peak of each

substance, retention time, retention index, mass-to-charge ratio,

and signal intensity, after alignment with the Statistical Compare

component. The internal standards with RSD>0.3 were used to

segment and normalize all peak signal intensities in each sample,

and the segmented and normalized results were removed

redundancy and merged peak to obtain the data matrix.

Orthogonal partial least-squares discriminant analysis (OPLS-

DA) was used to visualize the differences in metabolites that differed

between groups. 200 Response Permutation Testing were used to

assess the model’s reliability. The variable importance in projection
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(VIP) generated in OPLS-DA represented differential metabolites

with biological significance. Furthermore, the significance of

differential metabolites was further verified by Student’s t test.

Variables with VIP > 1.0 and P< 0.05 were considered to be

differential metabolites. Metabolic pathway enrichment analysis

based on the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database (http://www.kegg.jp/kegg/pathway.html).
2.4 Machine learning models

Machine learning methodologies were executed utilizing the

WEKA Platform (version 3.9.6). A meticulous preprocessing of the

dataset was undertaken to generate a balanced sample set,

employing the attribute discriminators CfsSubsetEval in

conjunction with the BestFirst search method within the software.

This approach aimed to discern a subset of metabolites offering

optimal predictive capabilities (26). T Subsequently, the assessment

of model performance involved the utilization of K-Fold Cross

Validation as the testing methodology. Specifically, the dataset was

randomized and partitioned into K subsets, one serving as the test

set and the remaining as the training set. The learning process

entailed extracting features from the training set, while the test

machine was employed for prediction. This iterative operation was

performed K times to yield K results, and the average of these results

was deemed the conclusive outcome. The value of K was

deliberately set at 10 to ensure a robust and accurate estimation.

In order to find out the best classifiers, we have selected the 24 most

commonly used machine learning algorithms (27). Evaluation

metrics encompassed the classification true positive rate (TPR),

false positive rate (FPR), precision, recall, F-measure, Matthews

Correlation Coefficient (MCC), and the area under the receiver

operating characteristic curve (AUC).

TPR =
TP

TP + FN
� 100%

FPR =
FP

FP + TN
� 100%

Precision =
TP

TP + FP
� 100%

F −Measure =
2   *   Precision   *  Recall

Precision + Recall

Where, TPR: true positive rate; TP: true positive; FN: false

negative; FPR: false positive rate; FP: false positive; TN:

true negative.
3 Result

3.1 Characteristics of the study population

In our study, a total of 368 individuals were included,

comprising 235 subjects who self-reported a diagnosis of
Frontiers in Psychiatry 04
hypertension by a physician. Additionally, 49 individuals were

diagnosed with depression, out of which 34 were identified as

experiencing the coexistence of depression and hypertension.

Subjects with hypertension combined with depression served as

the HD group, and 34 subjects with hypertension only were

matched on the basis of age and sex as the HG group. As shown

in Table 1, there was no difference between the two groups in terms

of age, gender, BMI, and diseases history, except for GDS score.
3.2 Metabolomics results

The LC-MS analysis identified 1012 substances, while the GC-MS

analysis detected 446 substances. The difference in plasma metabolites

between the two groups of samples were evaluated using OPLS‐DA

model. The model showed separated and little superimposed between

the two groups (Figures 1A, B). 200 response permutation tests confirm

that the model is reliable (Figures 1C, D). Using the VIP value of the

first principal component of the OPLS-DA model>1.5 and the p-value

of the t-test<0.05 as screening criteria, 65 metabolites detected by LC-

MS were considered differential metabolites, while 19 metabolites

detected by GC-MS were considered differential metabolites. Table 2

shows the top 20 metabolites with VIP values. The volcano plots show

p-values and fold change values, thus demonstrating the validity of the
TABLE 1 Baseline sociodemographic variables of the matched
groups (N=68).

Characteristic HD (N=34) HC (N=34) P value

Age (years) 72.41 (± 5.23) 73.59 (± 4.75) 0.355

Sex (%) 0.431

Male 35.3 26.5

Female 64.7 73.5

BMI (kg/m2) 24.21 (± 3.18) 24.73 (± 3.74) 0.540

Number of diseases

Diabetes (%) 0.144

No 70.6 85.3

Yes 29.4 14.7

Hyperlipidemia (%) 0.69

No 91.2 88.2

Yes 8.8 11.8

Stroke (%) 0.209

No 55.9 70.6

Yes 44.1 29.4

Heart disease (%) 0.612

No 61.8 67.6

Yes 38.2 32.4

GDS score 14.38 (± 3.04) 4.79 (± 2.53) <0.001
HD, hypertension with depression groups; HC, hypertension controls; BMI, body mass index,
Geriatric Depression Scale score.
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differential metabolites (Figures 2A, B). Hierarchical clustering shows

the levels of these metabolites, where the color indicates higher (red) or

lower (blue) levels and the intensity reflects the corresponding

concentration (Figures 2C, D). The metabolic pathway enrichment

results indicated that a variety of pathways were altered, with the purine

metabolic pathway being the most affected, followed by taste

transduction. (Figure 3).
3.3 Machine learning results

The optimal diagnostic value metabolite combination screened

with WEKA included 12 metabolites, namely Dl-dopa, glycine,

hypoxanthine, 2’-deoxyguanosine 5’-monophosphate, 3’-AMP,

malonic semialdehyde, phytosphingosine, conicasterol D,

phytophthora mating hormone alpha1, uridine, isopimaric acid

and 7-oxo-11E-Tetradecenoic acid. Evaluating the performance of

various machine learning algorithms with this combination shows

that random forest and bayesnet gave the better results, with better

values for various evaluation metrics and ACU values greater than

0.9. The diagnostic performance of Random Forest is superior and

it has the best TPR and AUC values (Table 3).
4 Discussion

In this study, we used LC-MS and GC-MS to detect metabolites

in fasting plasma of subjects and to look for different metabolites of

depression in hypertensive subjects. Metabolic pathway enrichment
Frontiers in Psychiatry 05
was then used to look for altered metabolic pathways in depressed

patients. Using the Weka platform, we carefully selected a subset of

metabolites with the best predictive power. We then used this

carefully selected subset to identify the most effective machine

learning prediction algorithms. We used this combined

metabolomics and machine learning approach in order to

improve the sensitivity and specificity of the diagnosis of

depression in hypertensive patients.

This investigation delineated that random forest and bayesnet

emerged as the two cohorts of machine learning algorithms

demonstrating superior performance within our study. Both

exhibited commendable values, with AUC value surpassing 0.9

for each of the evaluation metrics employed. Presently, machine

learning, particularly exemplified by the random forest algorithm,

assumed a prominent role in constructing diverse models for

predicting disease risks and facilitating disease diagnoses (28). It

is worth noting that a previous study only used six machine learning

algorithms, among which SVM showed the best predictive

performance for depression in hypertensive population (29).This

research algorithm is relatively limited and may miss out on

algorithms that have good diagnostic effects on individuals with

hypertension and depression. Conversely, our findings align with

those of Mousavian et al. (30) and de Souza Filho et al. (31)

corroborating that Random Forests outperform SVM in

depression prediction. Bayesian networks, though, have not

consistently exhibited robust performance in antecedent studies,

thereby featuring less prominently in the studies (29, 32, 33). The

discrepancy may arise from our focus on predictors being

differential metabolites in metabolomics, whereas their studies
A B

DC

FIGURE 1

Multivariate date analysis of date from plasma between the hypertension with depression groups (HD) and hypertension controls (HC) base on GC/LC-MS.
(A, C) OPLS-DA score plots and statistical validation of the corresponding OPLS-DA model by permutation analysis based on the LC-MS. (B, D) OPLS-DA
score plots and statistical validation of the corresponding OPLS-DA model by permutation analysis based on the GC-MS. The two coordinate points are
relatively far away on the score map, indicating that there is a significant difference between the two samples, and vice versa. The elliptical region represents
a 95% confidence interval.
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used information from questionnaires, blood markers, or imaging

data. Compared to the previous results, we have higher AUC values

and better diagnostic performance.

In our study, the metabolites screened byWEKA software with the

best predictive value that were most involved in purine metabolism

included Hypoxanthine, 2’-Deoxyguanosine 5’-monophosphate and

3’-AMP. Meanwhile, purine metabolism was the most affected

pathway. The results of metabolic pathway enrichment showed

purine metabolism with Adenosine monophosphate, L-glutamine,

inosinic acid, guanosine monophosphate, adenine, hypoxanthine, 2’-

deoxyguanosine 5’-monophosphate, xanthine and 3’-AMP. Among

these metabolites, only the expression of L-glutamine was up-regulated,

while the expression of the remaining metabolites was down-regulated.

L-glutamine serves as an important nitrogen donor for de Novo

synthesis of both purine and pyrimidine nucleotides (34). In the

synthesis of the purine ring, the nitrogen at the 3rd and 9th

positions comes from the amide group with glutamine (35). Thus,

glutamine can be consumed as a substrate for the synthesis of

Adenosine monophosphate , inosinic acid , guanosine

monophosphate, adenine, hypoxanthine, 2’-deoxyguanosine 5’-

monophosphate, xanthine and 3’-AMP. Glutamine is a precursor of

gamma-aminobutyric acid that are important neurotransmitters in
Frontiers in Psychiatry 06
vivo (36), and affects the transmission of excitation. A previous study

found that glutamine was decreased in the prefrontal cortex,

hippocampus and amygdala in major depression (37). Ruixin He

et al. also found decreased circulating glutamine levels in depressed

patients (36).

The subsequent metabolic pathway in our investigation that

exhibited a pronounced impact was taste transduction. The

metabolites we identified as being involved in taste regulation

were AMP, IPM, GMP and L-Glutamate. These metabolites affect

the transmission of umami (38, 39). Corroborating our findings, a

parallel cross-sectional study conducted in the United States

identified an association between depression and discernible

alterations in taste (40). Noteworthy in this context is the

elucidation of the pathophysiological nexus between taste

dysfunction and depression, positing its potential implication in

the genesis of anorexia. The latter, being a cardinal symptom of

severe depression, manifests in rat models through a discernible

diminution in responsiveness to palatable foods. This intricate

interplay underscores the multifaceted relationships between

mood disorders, sensory perception, and physiological

manifestations, enriching our comprehension of the intricate

pathways implicated in depressive states (41).
TABLE 2 The metabolites with the top 20 VIP values.

Metabolites VIPa P-valueb log2 (FC) FCc Trendd Method

Hypoxanthine 11.928 <0.001 2.008 4.023 ↑ LC-MS

PC(P-18:0/20:4(5Z,8Z,11Z,14Z)) 8.964 0.031 -0.159 0.896 ↓ LC-MS

D-erythro-sphingosine 7.971 <0.001 -0.880 0.543 ↓ GC-MS

L-2-Amino-3-oxobutanoic acid 7.776 0.037 -0.189 0.877 ↓ LC-MS

Altrose 7.511 <0.001 -1.016 0.494 ↓ GC-MS

Phytosphingosine 7.177 <0.001 -0.897 0.537 ↓ GC-MS

D-mannose 7.147 <0.001 -0.921 0.528 ↓ GC-MS

Alpha-d-glucose 6.933 <0.001 -0.909 0.532 ↓ GC-MS

2’-Deoxyguanosine 5’-monophosphate 6.208 <0.001 2.069 4.197 ↑ LC-MS

Citraconic acid 4.819 0.020 -0.325 0.798 ↓ GC-MS

p-Toluenesulfonic acid 4.561 0.026 -0.726 0.605 ↓ LC-MS

(3R,5S)-1-pyrroline-3-hydroxy-5-carboxylic Acid 4.209 <0.001 1.427 2.689 ↑ LC-MS

3’-AMP 3.953 <0.001 2.036 4.100 ↑ LC-MS

L-lactic acid 3.818 <0.001 0.253 1.192 ↑ GC-MS

Adenosine monophosphate 3.686 <0.001 2.034 4.096 ↑ LC-MS

L-Carnitine 3.626 0.027 -0.220 0.858 ↓ LC-MS

Malonic semialdehyde 3.505 <0.001 1.560 2.949 ↑ LC-MS

Quercetin 3.434 <0.001 2.971 7.842 ↑ LC-MS

Sphingosine 1-phosphate 3.431 <0.001 -0.525 0.695 ↓ LC-MS

Epsilon-caprolactam 3.382 0.001 0.247 1.186 ↑ GC-MS
aCorrelation coefficient and VIP value were obtained from OPLS-DA analysis.
bP value determined from Student’s t-test.
cFold change between hypertension with depression groups and hypertension controls.
dRelative concentrations compared to healthy controls: ↑, upregulated, ↓, downregulated.
FC, fold change; VIP, variable importance for projection.
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Several studies have indicated alterations in the alanine, aspartate,

and glutamate metabolism among individuals with hypertension (42).

Intriguingly, our investigation demonstrated metabolic enrichment

highlighting alterations in the alanine, aspartate, and glutamate

metabolism among patients solely diagnosed with hypertension,

contrasting with those presenting both hypertension and depression.
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The alanine, aspartate, and glutamate metabolism serves as a link

between hypertension and depression. Hence, this pathway presents

significant potential for elucidating the causal relationship between

hypertension and depression, as well as for devising treatment

strategies for patients suffering from both conditions. This suggests a

potential avenue for treating refractory depression.
A B

D

C

FIGURE 2

Volcano plot and hierarchical clustering based on the LC/GC-MS of serum metabolites obtained from the depression groups (HD) and hypertension
controls (HC). (A) Volcano plot based on LC-MS. (B) Volcano plot based on GC-MS. (C) Hierarchical clustering based on LC-MS. (D) Hierarchical
Clustering based on GC-MS. In (A, B), the blue dot represents metabolite with a downward trend, red represents metabolites with an upward trend,
and the gray origin represents that the change of metabolites is not obvious. The area size of the point is related to the VIP value. In (C, D), the color
from blue to red illustrates that metabolites’ expression abundance is low to high in hierarchical clustering.
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A B

FIGURE 3

Bubble plots show metabolic pathway enrichment results. (A) Metabolic pathway analysis based on LC-MS. (B) Metabolic pathway analysis based on GC-MS.
TABLE 3 Performance of various algorithms for machine learning.

Classification Algorithm TPR FPR Precision Recall F-
Measure

MCC AUC

Bayes Bayesnet 0.853 0.147 0.874 0.853 0.851 0.726 0.913

Naive Bayes 0.794 0.206 0.811 0.794 0.791 0.605 0.860

NaiveBayesMultinomial 0.750 0.250 0.756 0.750 0.749 0.505 0.804

functions Logistic 0.691 0.309 0.693 0.691 0.691 0.384 0.770

MultilayerPerceptron 0.794 0.206 0.798 0.794 0.793 0.592 0.849

SGD 0.809 0.191 0.822 0.809 0.807 0.631 0.809

SimpleLogistic 0.750 0.250 0.769 0.750 0.746 0.518 0.798

SVM 0.809 0.191 0.832 0.809 0.805 0.640 0.809

Lazy Ibk 0.750 0.250 0.752 0.750 0.750 0.502 0.735

KStar 0.853 0.147 0.864 0.853 0.852 0.717 0.818

LWL 0.779 0.221 0.812 0.779 0.773 0.591 0.738

Mate AdaBoostM1 0.824 0.176 0.834 0.824 0.822 0.657 0.881

Bagging 0.809 0.191 0.822 0.809 0.807 0.631 0.886

LogitBoost 0.794 0.206 0.795 0.794 0.794 0.589 0.884

FilteredClassifier 0.794 0.206 0.794 0.794 0.794 0.588 0.801

IterativeClassifierOptimizer 0.794 0.206 0.795 0.794 0.794 0.589 0.834

rules DecisionTable 0.779 0.221 0.782 0.779 0.779 0.561 0.792

PART 0.750 0.250 0.750 0.750 0.750 0.500 0.762

Tree DecisionStump 0.779 0.221 0.812 0.779 0.773 0.591 0.715

HoeffdingTree 0.794 0.206 0.811 0.794 0.791 0.605 0.861

J48 0.750 0.250 0.752 0.750 0.750 0.502 0.733

RandomForest 0.853 0.147 0.864 0.853 0.852 0.717 0.932

RandomTree 0.721 0.279 0.721 0.721 0.721 0.441 0.721

LMT 0.750 0.250 0.761 0.750 0.747 0.511 0.824
F
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TPR, true positive rate; FPR, false positive rate; MCC, Matthews Correlation Coefficient; AUC, the area under the receiver operating characteristic curve (AUC).
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5 Limitations

While our investigation has yielded valuable insights into

advancing the diagnosis of depression and elucidating underlying

mechanisms, it is imperative to acknowledge certain limitations. It

is well documented that metabolomics studies have a sample size of

no less than 20 per group (43). We had 34 individuals in each group,

for a total sample size of 68, which meets the needs of metabolomics

studies. However, with a larger sample size, more interesting

features may be found. Our study population was drawn only

from older adults aged 65 years and older with a mono-dietary

pattern in Chongming, Shanghai, which limits the applicability of

our findings to a wider population. In order to enhance the

reliability and generalisability of our study and to reduce bias due

to small sample size, we are recruiting more subjects in multiple

locations to participate in our study. A secondary constraint

pertains to the absence of direct validation of our results,

notwithstanding corroboration gleaned from extant literature.

This methodological refinement aligns with our commitment to

methodological rigor and the fortification of the scientific

foundation underpinning our investigative endeavors. In future

studies, we increase the validation group, and we also conduct

animal experiments or cellular experiments to discover the

pathogenesis of depression.
6 Conclusion

This study demonstrates that metabolites and metabolic

pathways are altered in older adults with hypertension combined

with depression compared to older adults with hypertension alone.

Methods using metabolomics and machine learning excelled in

predicting depression in hypertensive older adults. This approach

helps in diagnosing depression in hypertensive patients.
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