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Background: Elucidating the association between heart rate variability (HRV)

metrics obtained through non-invasive methods and mental health symptoms

could provide an accessible approach to mental health monitoring. This study

explores the correlation between HRV, estimated using photoplethysmography

(PPG) signals, and self-reported symptoms of depression and anxiety.

Methods: A 4-week longitudinal study was conducted among 47 participants.

Time–domain and frequency–domain HRV metrics were derived from PPG

signals collected via smartwatches. Mental health symptoms were evaluated

using the Patient Health Questionnaire-9 (PHQ-9) and Generalized Anxiety

Disorder-7 (GAD-7) at baseline, week 2, and week 4.

Results: Among the investigated HRV metrics, RMSSD, SDNN, SDSD, LF, and the

LF/HF ratio were significantly associated with the PHQ-9 score, although the

number of significant correlations was relatively small. Furthermore, only SDNN,

SDSD and LF showed significant correlations with the GAD-7 score. All HRV

metrics showed negative correlations with self-reported clinical symptoms.

Conclusions: Our findings indicate the potential of PPG-derived HRV metrics in

monitoring mental health, thereby providing a foundation for further research.

Notably, parasympathetically biased HRV metrics showed weaker correlations

with depression and anxiety scores. Future studies should validate these findings

in clinically diagnosed patients.
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1 Introduction

Mental health disorders constitute a major global public health

concern, with an escalating number of patients requiring mental

health services with considerable social cost (1). Depression and

anxiety are the two most disabling mental disorders, ranked among

the top 25 leading causes of healthcare burden worldwide in 2019 (2).

In South Korea, the problem is severe, as the suicide rate has

consistently ranked first in the OECD for more than 10 years, with

around 25 people per 100,000 resorting to suicide each year (3). The

disease burden of mental and behavioral disorders was estimated to

account for 6.4% of the total disease burden in South Korea (4). The

importance of mental health services therefore cannot be overstated.

Traditionally, patients receive diagnoses through face-to-face

consultations with psychiatrists, which pave the way for various

treatments such as counseling, medication, and hospitalization.

However, this approach can render mental health services less

accessible in certain areas or under specific circumstances (5). For

instance, during the recent COVID-19 pandemic, the number of

patients with depression surged; however, providing appropriate

services proved challenging due to social distancing measures and

other factors (6). Even outside of pandemic conditions, it is

consistently reported that current mental health services are

unable to cope with the rapid increase in the number of

psychiatric patients (7). Furthermore, face-to-face consultations

have inherent limitations; they rely on individuals’ ability to

recollect their symptoms, which can introduce significant bias (8).

Given these limitations in the provision and access to adequate

mental health services under the current system, applications of

digital technologies are increasing (9–11). Digital technologies can

help overcome the issue of accessibility in providing mental health

services and can also alleviate recollection bias by offering real-time

physiological digital markers to both physicians and patients.

Commercialized services for some conditions, such as insomnia,

already exist. For instance, the Sleep Healthy Using the Internet

(SHUTi) service has been effective for insomnia and significantly

reduced depression and anxiety symptoms (12). Moreover, studies

on mobile intervention platforms for insomnia in South Korea have

emphasized the potential of wearable devices (13). The mobile and

wearable devices enable scalable sampling of the experiences and

feelings of a patient (14), thus facilitating well-being reports

collection systematically and objectively at scale (15). Wearable

devices not only address accessibility concerns in traditional

healthcare, but also enable healthcare providers to achieve more

precise diagnoses through continuous collection of real-time patient

biometrics, allowing physicians to analyze a patient’s condition over

a broader spectrum (16).

Nevertheless, the information that wearable devices can collect is

somewhat restricted in both quality and quantity compared with

medical devices. Therefore, clinically relevant mental health data of

the user is a priority for wearable devices. Research has subsequently

expanded to heart rate variability (HRV) (17), referring to the small

variations between heartbeat cycles. In a healthy human heart, a

dynamic relationship exists between the parasympathetic nervous

system (PNS) and the sympathetic nervous system, often referred to

as autonomic nervous system balance. Consequently, HRV is
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associated with numerous psychiatric symptoms. It has been

suggested that patients with depression exhibit lower HF power,

which indicate a diminished regulatory ability of the parasympathetic

nervous system and short-term flexibility of the autonomic nervous

system, respectively (18). In addition, a meta-analysis has revealed that

anxiety disorders are associated with significant reductions in both

high-frequency and time–domain HRV metrics. This reduction may

signify a failure of inhibition, characterized by a diminished capacity to

inhibit responses, leading to decreased vagal outflow and lower HRV

(19). Furthermore, it has been suggested that the LF/HF ratio, generally

indicative of autonomic balance, may reflect aspects of an individual’s

resilience profile (20).

However, HRV is traditionally measured using an

electrocardiogram, which is time-consuming and resource-intensive.

Therefore, various methods to measure HRV using scalable devices,

such as wearables, have been developed (21, 22). Among them, the

photoplethysmography (PPG)method is favored owing to its reliability

compared with the gold standard electrocardiogram method (23–25).

Therefore, in this study, we aimed to advance this exploration and

investigate whether HRV measured using wearable devices could be

applied to depression and anxiety. This study will elucidate whether

real-time signals measured through wearable devices correlate with

patient mental health. We therefore examined the association between

HRV metrics collected in real-time while wearing a smartwatch and

self-reported depression and anxiety in healthy adults.
2 Materials and methods

2.1 Study participants

The study initially recruited young adults who studied or worked at

the Korean Advanced Institute of Science and Technology (KAIST)

and the Institute for Basic Science. We excluded individuals with

comorbid medical or psychiatric conditions; therefore, those with a

formal diagnosis of depression or other psychiatric disorders were not

included in the study. However, participants with a certain level of

depressive or anxiety symptoms, which did not meet the diagnostic

criteria for psychiatric disorders such as major depressive disorder

(MDD), were still eligible. Additionally, we excluded individuals with

limited access to Wi-Fi and night or shift workers to avoid bias in

biomedical signal interpretation. This four-week experiment ran from

March 8th to April 4th, 2021. All of the data was anonymized prior to

the analysis. This study was approved by the Institutional Review Board

of KAIST (KH2020–027).
2.2 Psychiatric symptom assessment

Participants were requested to complete online assessments of

psychiatric symptoms, such as depression and anxiety. SurveyMonkey

(https://www.surveymonkey.com/), an online survey platform, was

utilized to formulate a questionnaire that evaluated symptoms of

depression and anxiety. Participants had to complete the survey

three times at a two-week interval: baseline, week 2, and week 4. For

depressive symptoms, the PHQ-9 questionnaire was used (26), while
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the GAD-7 questionnaire (27) was used to assess anxiety symptoms.

The PHQ-9 and GAD-7 are brief self-report questionnaires comprising

9 and 7 questions, respectively. Higher scores on these questionnaires

suggest more severe levels of depression and anxiety.
2.3 Collection and processing of
biomedical signals

We utilized the Samsung Galaxy Active 2 (Samsung Electronics,

Seoul, Korea) for the continuous collection of biomedical signals over a

four-week period. Participants were required to wear this device at all

times, enabling the uninterrupted gathering of signals. These signals

were automatically uploaded to a central web server every 30 minutes,

provided the device had Wi-Fi connectivity. On the server side, data

were stored in a MongoDB database instance. Among the various

signals gathered through wearable devices, this study predominantly

focused on collecting PPG signals to measure HRV. The PPG signal

was sampled every 100 ms (10 Hz), to enable continuous recordings

throughout the day while ensuring battery life. The continuous PPG

signal was segmented into consecutive 5-minute slices for later HRV

analysis. Each slice was passed through a bandpass filter to remove

frequency outliers not corresponding to human heart rates, based on

the Nyquist-Shannon theorem. Subsequently, we used the HeartPy

algorithm (28, 29) to identify RR intervals. From these intervals, we

calculated HRV parameters for each signal slice. Figure 1 presents the

processing pipeline for conducting HRV analysis on the raw PPG

signal. Further detail is described elsewhere (30, 31).
2.4 HRV metrics

Several metrics have been studied for HRV. This study analyzed

certain time–domain and frequency–domain measures by

referencing existing literature (32). Initially, we evaluated the root

mean square of successive differences (RMSSD) between normal

heartbeats, the standard deviation of the inter-beat interval of

normal sinus beats (SDNN), the standard deviation of successive
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differences between normal heartbeats (SDSD), and the percentage

of successive differences between normal heartbeats that differ from

each other by more than 50 ms (PNN50) as time–domain measures

to quantify the extent of variability. Next, we assessed the absolute

power of the low-frequency band (LF), the absolute power of the

high-frequency band (HF), and LF/HF ratio as frequency–domain

measures after dividing HRV into different frequency bands using a

Fast Fourier Transformation. Table 1 provides a detailed

description of each HRV metric.
2.5 Statistical analysis

The collected biomedical signals were analyzed at 2-week

increments. The HRV metric was split into the first 2 weeks and

the subsequent 2 weeks; the mean HRV metric was calculated for

each period. These variables were then correlated with the self-

reported depression and anxiety scores of each participant.

Considering the potential delay in the temporal relationship

between HRV and psychiatric symptoms, the mean HRV metrics

of the first 2 weeks were correlated with clinical measures at baseline,

and weeks 2 and 4, while the mean HRV metrics of the subsequent 2

weeks were correlated with clinical measures at weeks 2 and week 4.

Pearson correlation analysis was applied, and a p-value of < 0.05 was

considered statistically significant. Additionally, we performed

sensitivity analyses for each gender to account for differences in

cardiac electrophysiology (33), and psychiatric symptoms (34). All

statistical analyses were conducted using R version 4.1.3 (35).
3 Results

3.1 Characteristics of study participants

A total of 47 participants were included in the study, 24 males

and 23 females, with an average age of 28.7 (5.79) years. The average

height of the participants was 169.0 (6.38) cm, and the average

weight was 63.1 (11.5) kg. The study participants comprised 13
FIGURE 1

Diagram of the HRV extracting system architecture. Raw photoplethysmogram (PPG) signals extracted from a smartwatch are processed to compute
heart rate variability (HRV) metrics, which are then stored in the server database; adapted from Aitolkyn et al., 2023 (30).
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undergraduates, 17 graduate students, and 17 office workers. A total

of 25 participants (53.2%) had previously used a personal

smartwatch before the study. The mean PHQ-9 score of the study

participants taken via self-report questionnaires was 3.62 (3.69) at

baseline, 3.75 (3.69) at week 2, and 3.75 (3.78) at week 4. The mean

GAD-7 score was 3.02 (3.53) at baseline, 2.53 (2.91) at week 2, and

2.45 (2.69) at week 4. There were no reported physiological or

psychological adverse effects from wearing the watch throughout

the study period. Despite some participants occasionally forgetting

to wear the watch, all experiments were successfully completed with

the support and continuous monitoring provided by researchers

throughout the study period. The demographics and clinical

characteristics of study participants are presented in Table 2.
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3.2 Correlations between HRV
and depression

Regarding time–domain measures, the mean RMSSD for the

first 2 weeks did not significantly correlate with PHQ-9 scores at

any time point. However, the mean RMSSD for the subsequent 2

weeks significantly correlated with the PHQ-9 score measured at

week 2 (r = -0.329, p = 0.024). The mean SDNN for the first 2 weeks

significantly correlated with the PHQ-9 score measured at the initial

assessment (r = -0.310, p = 0.034), while the mean SDNN for the

subsequent 2 weeks correlated significantly with PHQ-9 scores

measured at weeks 2 and 4 assessments (r = -0.327, p = 0.025;

r =3-0.301, p = 0.040, respectively). Only the mean SDSD of the

subsequent 2 weeks showed a significant correlation with the PHQ-

9 score of week 2 (r = -0.356, p = 0.014).

Regarding frequency–domain measures, the mean LF for the

first 2 weeks significantly correlated with the PHQ-9 score at

the initial assessment (r = -0.369, p = 0.011). The mean LF for the

subsequent 2 weeks was significantly correlated with the PHQ-9

scores at weeks 2 and 4 (r = -0.355, p = 0.014; r = -0.341, p = 0.019,

respectively). The mean LF/HF ratio of the first 2 weeks significantly

correlated with the PHQ-9 score at the initial assessment (r = -0.363,

p = 0.012). However, no significant correlation was found between

the mean HF for any period and the measured PHQ-9 scores. The

correlations between HRV metrics and depressive symptoms

measured by PHQ-9 are presented in Table 3.
3.3 Correlations between HRV and anxiety

For time–domain measures, the mean RMSSD and PNN50

showed no significant correlations with GAD-7 scores at any time

point. The mean SDNN and SDSD showed statistically significant

correlations. Specifically, the mean SDNN for the first and the

subsequent 2 weeks showed significant correlations with the GAD-7

score measured at week 2 (r = -0.300, p = 0.040; r = -0.293, p =

0.046), and the mean SDSD of the first 2 weeks showed a significant

correlation with the GAD-7 score of week 2 (r = -0.310, p = 0.034).

For frequency–domain measures, the mean LF for the first 2

weeks significantly correlated with the GAD-7 score measured at

the initial assessment (r = -0.292, p = 0.047). The mean LF for the

subsequent 2 weeks also significantly correlated with the GAD-7

score measured at week 2 (r = -0.323, p = 0.027). However, neither

the mean HF nor the LF/HF ratio significantly correlated with

GAD-7 scores at any time point. The correlations between HRV

metrics and anxiety symptoms measured by GAD-7 are presented

in Table 4.
3.4 Sensitivity analyses

We performed sensitivity analyses for each gender. Overall, the

results remained consistent when correlations were evaluated

among males, females, or the group as a whole. However, when

analyzing correlations within a single gender, the number of
TABLE 2 Demographics and clinical characteristics of study participants.

Variables Value

Demographics

Sex (M:F) 24:23

Age (years) 28.7 (5.79)

Height (cm)1 169.0 (6.38)

Weight (kg)2 63.1 (11.5)

Job (n)
Undergraduate 13

Graduate 17
Office-worker 17

Prior smartwatch use (n)
Yes 25
No 22

Clinical variables

Initial PHQ-9 3.617 (3.692)

PHQ-9 at week 2 3.745 (3.686)

PHQ-9 at week 4 3.745 (3.779)

Initial GAD-7 3.021 (3.529)

GAD-7 at week 2 2.532 (2.911)

GAD-7 at week 4 2.447 (2.693)
Mean (Standard deviation); 19 missing data; 210 missing data.
TABLE 1 Overview of investigated HRV metrics.

Parameter Description

Time–domain measures

RMSSD (ms) Root mean square of successive RR interval differences

SDNN (ms) Standard deviation of NN intervals

SDSD (ms) Standard deviation of successive RR interval differences

PNN50 (%)
Percentage of successive RR intervals that differ by more than
50 ms

Frequency–domain measures

LF (ms2) Absolute power of the low-frequency band (0.04–0.15 Hz)

HF (ms2) Absolute power of the high-frequency band (0.15–0.4 Hz)

LF/HF Ratio of LF-to-HF power.
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significant correlations between HRV metrics and clinical measures

decreased. This might be attributed to an insufficient sample size,

reducing statistical power. The overall trend of correlation was the

same across genders, with only differences in the p-values. The sole

exception was observed in male participants, where the mean

SDNN for the first 2 weeks significantly correlated with the PHQ-

9 score measured at the final assessment (r = -0.452, p = 0.026).
4 Discussion

The association between HRV and psychiatric symptoms is

acknowledged in the literature (18–20, 36). From a physiological

perspective, the abnormal serotonergic system observed in

various psychiatric conditions may contribute to cardiovascular

dysregulation through alterations in endocrine and autonomic

functions (37). This relationship is thought to be partly

modulated by the hypothalamic-pituitary-adrenal (HPA) axis.

Furthermore, because the serotonin transporter is predominantly

found in platelets – where serotonin acts as a vasoconstrictor – a

potential pathogenic link between psychiatric conditions and

cardiovascular dysregulations may exist (38).

In line with previous literature, we found that some HRV

metrics were significantly correlated with clinical measures with

self-report questionnaires. What distinctly sets our findings apart

from previous studies is that we obtained HRV data from PPG

signals collected via a highly accessible wearable device, suggesting

its potential to monitor mental health across a wide demographic

range. Furthermore, we observed somewhat different patterns of

associations between HRV metrics and clinical measures. Previous

studies have suggested that HF is significantly associated with
Frontiers in Psychiatry 05
depression or anxiety, as lower HF power is linked to stress,

panic, or anxiety (39). The relationships between time–domain

measures and clinical measures are complex, yet multiple

correlations have been continuously reported (18, 19). In contrast,

our study results demonstrated correlations between LF and

depression or anxiety, rather than HF. Furthermore, the LF/HF

ratio showed only one significant correlation coefficient with

clinical measures. Moreover, only few correlations were observed

between time–domain measures, except for SDNN, and depression

or anxiety.

Nevertheless, our results are partially consistent with cardiac

electrophysiology. The LF band (0.04–0.15Hz), which predominantly

reflects baroreceptor activity under resting conditions (40), may

plausibly be associated with mental health conditions. For the LF/

HF ratio, while it is often thought to reflect the balance of sympathetic

and parasympathetic nervous systems, it has also been suggested that

this ratio does not always reflect autonomic balance (41). Regarding

time–domain measures, SDNN, generally considered the gold

standard for clinical HRV metrics and medical stratification of

cardiac risk (42), showed more than one correlations with clinical

measures. A Similar HRV metric, SDSD, also showed two significant

correlations with clinical measures. On the other hand, the RMSSD, a

measure of beat-to-beat variance in heart rate representing

vagal-mediated changes reflected in HRV and related to the

parasympathetic activity (43), showed only one significant

correlation. Similarly, PNN50, although recognized as a less

sensitive measure of the PNS, was not significantly correlated with

clinical measures in this study. These results suggested that HRV is

related to the balance of sympathetic and parasympathetic nervous

systems; however, metrics biased toward the parasympathetic region

are less likely to be associated with depression and anxiety.
TABLE 3 Correlations between HRV metrics and depressive symptoms measured by PHQ-9 scores.

Initial PHQ-9 PHQ-9 at week 2 PHQ-9 at week 4

r stat p r stat p r stat p

RMSSD-1 -0.145 -0.985 0.330 -0.157 -1.064 0.293 -0.098 -0.661 0.512

RMSSD-2 – – – -0.329 -2.337 0.024* -0.265 -1.847 0.071

SDNN-1 -0.310 -2.188 0.034* -0.225 -1.549 0.128 -0.199 -1.364 0.179

SDNN-2 – – – -0.327 -2.318 0.025* -0.301 -2.120 0.040*

SDSD-1 -0.165 -1.124 0.267 -0.214 -1.468 0.149 -0.104 -0.701 0.487

SDSD-2 – – – -0.356 -2.558 0.014* -0.285 -1.991 0.053

PNN50–1 -0.123 -0.833 0.409 -0.080 -0.536 0.594 -0.081 -0.546 0.588

PNN50–2 – – – -0.232 -1.600 0.117 -0.230 -1.583 0.121

LF-1 -0.369 -2.660 0.011* -0.233 -1.610 0.114 -0.228 -1.573 0.123

LF-2 – – – -0.355 -2.544 0.014* -0.341 -2.429 0.019*

HF-1 -0.176 -1.197 0.238 -0.123 -0.833 0.409 -0.110 -0.741 0.462

HF-2 – – – -0.270 -1.878 0.067 -0.254 -1.764 0.085

LF/HF-1 -0.363 -2.611 0.012* -0.246 -1.700 0.096 -0.220 -1.510 0.138

LF/HF-2 – – – -0.207 -1.419 0.163 -0.161 -1.096 0.279
Pearson correlation coefficient; The number after the HRV metric refers to the first or second half of the observation period, respectively. *Statistically significant p < 0.05.
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Among the significant associations between HRV metrics and

clinical measures, all metrics from the first two weeks were

associated only with clinical measures at baseline or week 2.

Similarly, HRV metrics from the following two weeks were

associated with clinical measures at weeks 2 or 4. This suggests

that HRV metrics may reflect temporal changes in psychiatric

symptoms. However, the inconsistency in statistical significance

across items, the relatively small number of overall participants

and their measured PPG signals, and the division of the

entire observation period into two halves create difficulty in

comprehensively interpreting the temporal association between

HRV and clinical symptoms based solely on the results of this study.

This study had several limitations. First, we recruited participants

from specific contexts, limiting the generalizability of our results. Our

study population consisted of well-educated young adults, not a

diverse demographic. This limits the scalability of our findings, as

groups such as the elderly – who have less access to digital

technologies – might display different characteristics. Moreover,

extending our results to children or adolescents should be done

with caution, as their cardiac electrophysiology differs from that of

adults (44). Second, most participants were asymptomatic or

exhibited mild symptoms, as indicated by mean scores around

three on the PHQ-9 and GAD-7. This necessitates cautious

statistical interpretation of the correlations due to potential bias. A

separate study with a different population is required to confirm

clinical utility. Third, all symptom assessments were self-reported,

which risks social desirability response bias (45) and may not

accurately reflect true symptoms. Furthermore, since the survey

was web-based, we cannot confirm that the actual respondents

were the intended participants. Meta-analyses have shown that
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clinician-rated depressive symptoms have a significantly larger

effect size than self-reported symptoms (46). Incorporating clinician

interviews or clinician-rated scales could yield more comprehensive

results. Fourth, although we excluded participants diagnosed with

any psychiatric comorbidity, including alcohol and other substance

use disorders, we could not rule out the use of substances like caffeine

or alcohol during the actual experiment period. Nevertheless,

considering our study’s aim to evaluate the utility of a smartwatch

as a real-time monitor for HRV as a digital biomarker of psychiatric

symptoms, the consumption of certain substances within daily intake

ranges should be considered part of our research. Lastly, the quality of

biomedical signals collected by smartwatches has been a subject of

ongoing debate. Specifically, PPG signals are argued to not accurately

represent HRV, especially under free-living conditions (47) or

without controls for breathing (48). Nevertheless, we did filter out

noise from the PPG signals throughout the processing pipeline (31).

This study has demonstrated that estimated HRV from PPG signals is

significantly correlated with ECG-measured HRV metrics, indicating

the reliability of our estimated HRV.

Despite these limitations, our study is significant because it

demonstrated that biomedical signals obtained through simple

methods, such as common smartwatches, are associated with

psychiatric symptoms such as depression and anxiety. Further

research should aim to highlight the existing shortage of mental

health services. Additionally, with the integration of digital

technology, these methods can provide more advanced mental health

services in conjunction with the digital platforms that have gained

substantial attention. We look forward to future research on a broader

range of mental health symptoms based on various biomedical signals,

not just PPGs, and research on a wider patient population.
TABLE 4 Correlations between HRV metrics and anxiety symptoms as measured by GAD-7 scores.

Initial GAD-7 GAD-7 at week 2 GAD-7 at week 4

r stat p r stat p r stat p

RMSSD-1 -0.136 -0.919 0.363 -0.268 -1.862 0.069 -0.033 -0.219 0.828

RMSSD-2 – – – -0.248 -1.714 0.093 -0.189 -1.289 0.204

SDNN-1 -0.268 -1.867 0.069 -0.300 -2.112 0.040* -0.066 -0.442 0.661

SDNN-2 – – – -0.293 -2.052 0.046* -0.202 -1.380 0.174

SDSD-1 -0.130 -0.878 0.385 -0.310 -2.189 0.034* -0.003 -0.019 0.985

SDSD-2 – – – -0.255 -1.773 0.083 -0.169 -1.147 0.257

PNN50–1 -0.143 -0.970 0.337 -0.209 -1.433 0.159 -0.058 -0.390 0.698

PNN50–2 – – – -0.234 -1.612 0.114 -0.204 -1.400 0.169

LF-1 -0.292 -2.045 0.047* -0.249 -1.722 0.092 -0.060 -0.403 0.689

LF-2 – – – -0.323 -2.291 0.027* -0.219 -1.506 0.139

HF-1 -0.175 -1.194 0.239 -0.238 -1.647 0.107 -0.057 -0.380 0.706

HF-2 – – – -0.272 -1.897 0.064 -0.212 -1.456 0.152

LF/HF-1 -0.249 -1.722 0.092 -0.101 -0.681 0.499 -0.063 -0.421 0.676

LF/HF-2 – – – -0.132 -0.890 0.378 -0.066 -0.445 0.658
Pearson correlation coefficient; The number after the HRV metric refers to the first or second half of the observation period, respectively. *Statistically significant p-value < 0.05.
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