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Introduction: Reduced sleep health has been consistently linked with increased

negative emotion in children. While sleep characteristics have been associated

with neural function in adults and adolescents, much less is known about these

associations in childrenwhile considering socioeconomic context. In this study, we

examined the associations among socioeconomic factors, sleep duration and

timing, and resting-state functional connectivity (rsFC) of the amygdala in children.

Methods: Participants were typically-developing 5- to 9-year-olds from

socioeconomically diverse families (61% female; N = 94). Parents reported on

children’s weekday and weekend bedtimes and wake-up times, which were used

to compute sleep duration and midpoint. Analyses focused on amygdala-

anterior cingulate cortex (ACC) connectivity followed by amygdala-whole

brain connectivity.

Results: Lower family income-to-needs ratio and parental education were

significantly associated with later weekday and weekend sleep timing and

shorter weekday sleep duration. Shorter weekday sleep duration was associated

with decreased amygdala-ACC and amygdala-insula connectivity. Later weekend

sleepmidpoint was associated with decreased amygdala-paracingulate cortex and

amygdala-postcentral gyrus connectivity. Socioeconomic factors were indirectly

associated with connectivity in these circuits via sleep duration and timing.

Discussion: These results suggest that socioeconomic disadvantage may

interfere with both sleep duration and timing, in turn possibly altering

amygdala connectivity in emotion processing and regulation circuits in

children. Effective strategies supporting family economic conditions may have

benefits for sleep health and brain development in children.
KEYWORDS

socioeconomic disadvantage, sleep health, amygdala, functional magnetic resonance
imaging, children
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Introduction

Socioeconomic disadvantage during childhood is prevalent and

linked with increased risk for mental health difficulties across the

lifespan (1). Socioeconomic factors, such as family income and

parental education, exert their effects on health and development

through multiple mediating mechanisms (2), which are not fully

understood. Altered sleep health during childhood likely plays a

role in these mechanisms. Sleep health is a multifaceted construct

encompassing multiple sleep parameters, such as sleep quantity,

quality, and timing (3). Socioeconomic disadvantage has been

repeatedly associated with shorter sleep durations and lower sleep

quality in children (4–9). And, research using both experimental

and correlational designs has linked disrupted sleep with an

increased risk for mental health difficulties and altered emotion

processing and regulation (10–13).

At the neural level, emotion processing and regulation,

transdiagnostic factors underlying multiple psychiatric disorders

(14), rely on neural networks involving the amygdala (15). In

functional magnetic resonance imaging (fMRI) research, sleep

duration and quality have been repeatedly linked with amygdala

activation and functional connectivity in adults (16–19). Yet, far

fewer studies have examined these associations in children.

Previously, we proposed that socioeconomic disadvantage may

lead to reduced sleep health in children, which may alter brain

development in ways that increase risk for mental health problems

(20). In the present study, we tested these ideas by examining the

associations among socioeconomic factors, sleep duration and

timing, and functional connectivity of the amygdala in children.
Socioeconomic disparities in sleep duration
and timing

In studies using actigraphy and parent-report sleep measures,

socioeconomic disadvantage has been repeatedly associated with

shorter sleep durations in children (4–9). Sleep timing refers to when

sleep occurs and is often measured using bedtime, wake-up time, or the

midpoint between sleep onset and wake-up. Later sleep timing has

been related to delayed circadian functioning and sleep problems (21).

Socioeconomic disadvantage has been frequently associated with later

bedtimes in children (4, 22–26). Fewer studies have focused on sleep

midpoint, which captures variability in both bedtime and wake-up

time. In one study, socioeconomic disadvantage was associated with

later sleep timing composite scores, which included sleep midpoint,

during early childhood (27). In addition, preliminary correlations in

two studies suggest that socioeconomic disadvantage may also be

associated with later sleep midpoint in older children (28, 29).

Researchers have recommended considering sleep parameters

jointly and on weekdays and weekends separately (30, 31). On

weekdays, due to constraints on when children need to wake-up for

school, later bedtimes often lead to shorter sleep durations. On

weekends, children who go to bed later may be able to sleep in later,

and in this way, get enough sleep; yet, their sleep timing is still later.

While some previous studies have distinguished between weekday and

weekend sleep timing (4, 22, 28), others have not (27, 29). Overall, few
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studies have considered sleep duration and timing simultaneously

while distinguishing between weekdays and weekends. Thus,

additional research is needed to gain a complete picture of how

socioeconomic context may influence sleep health during childhood.
Sleep duration and timing and
emotional functioning

In clinical studies, insufficient sleep has been consistently

associated with increased risk for anxiety and depressive disorders

(10, 12, 13). These effects are likely due in part to the effects of

disrupted sleep on multiple more specific, interrelated emotional

processes, such as emotional reactivity and regulation (12, 32, 33).

Experimental sleep restriction studies show that shorter sleep

duration increases negative emotions and threat perception in

adolescents and adults (32, 34–39). In a meta-review, shorter

sleep duration was consistently associated with worse emotion

regulation in children and adolescents (12).

Later sleep timing has also been linked with anxiety and

depression in adults and adolescents (13, 40, 41) and with

emotion regulation difficulties in children and adolescents (42).

Yet, the associations of sleep duration and timing with neural

function in emotion processing and regulation circuitry in

children are not well understood.
Sleep duration and timing and
amygdala function

The amygdala is a subcortical structure in the limbic system that

plays a crucial role in emotion processing and regulation, including

threat detection and fear learning (15, 43, 44). Shorter sleep duration

has been consistently associated with altered amygdala function in

adults (11, 17, 32). More specifically, task-based fMRI studies have

linked shorter sleep duration with increased amygdala reactivity to

negative emotional stimuli in adults (19, 45) and children (46), and

with greater amygdala activity during fear acquisition in adults (47).

These results could stem in part from reduced prefrontal cortex (PFC)-

mediated top-down control over the amygdala. Indeed, connections

between medial PFC (mPFC) regions, such as the anterior cingulate

cortex (ACC), and the amygdala have been found to support the

downregulation of negative affect (15). Sleep deprivation has been

associated with reduced amygdala functional connectivity with mPFC

regions when viewing negative emotional stimuli (19, 32, 45, 48, 49). In

addition, late chronotype, which is strongly associated with later sleep

timing, has been associated with greater amygdala reactivity to fear

faces compared to happy faces and reduced amygdala-dorsal ACC

(dACC) task-based functional connectivity in adults (50).
Sleep duration and timing and amygdala
resting-state functional connectivity

Resting-state functional connectivity (rsFC) refers to the

statistical association between time series of blood-oxygen-level
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dependent (BOLD) signal in distinct brain regions while a person is

“at rest” or not performing a task (51, 52). In experimental studies,

sleep deprivation and restriction have been associated with

decreased rsFC between the amygdala and mPFC regions in

adults (37, 53). In another study, shorter sleep duration the

previous night was associated with increased amygdala rsFC with

the ventromedial PFC in adults (18). Fewer studies of sleep duration

and amygdala rsFC have focused on children. In one study, shorter

self-reported weekend sleep duration was associated with lower

rsFC between the amygdala and the superior temporal gyrus,

ventral ACC, and precentral gyrus in children and adolescents (54).

Few studies have examined the associations between sleep

timing and rsFC of the amygdala. In one study, later weekend

sleep midpoint was associated with altered amygdala rsFC with the

insula, dorsomedial PFC/dACC, supramarginal gyrus, postcentral

gyrus, and superior frontal gyrus in children and adolescents (54).

Changes to amygdala rsFC in these circuits may partially

explain the associations of shorter sleep duration and later sleep

timing with emotional difficulties. Altered rsFC between the

amygdala and mPFC has been linked to increased anxiety and

depression symptoms and emotion regulation difficulties in

children (55, 56). Understanding how sleep duration and timing

may influence amygdala rsFC is essential to developing targeted and

effective interventions that bolster mental health in children.
Previous study

This study builds on our previous study of socioeconomic

factors, sleep duration, and brain structure in the same sample of

children. In that study, lower family income-to-needs ratio and

parental education were significantly associated with shorter

weekday sleep duration, which was significantly associated with

reduced thickness in the middle temporal, postcentral, and superior

frontal cortices and with smaller amygdala volumes (20). Here, we

extend our previous work and make novel contributions to the

literature by considering the role of multiple sleep factors and

focusing on rsFC of the amygdala in children. This investigation

builds upon the previous study by examining two indicators of sleep

health – duration and timing – simultaneously, as recommended

(30). In addition, our previous study used structural MRI (high-

resolution T1-weighted MRI), whereas this study uses resting-state

fMRI. Different MRI modalities offer complementary information

about the brain’s organization (57).
Current study

The goal of the current study was to investigate the associations

among socioeconomic factors, sleep duration and timing, and rsFC

of the amygdala in children. Participants were typically-developing

5‐ to 9‐year‐olds from socioeconomically diverse families. Parents

reported on children’s weekday and weekend bedtimes and wake-

up times, which were used to compute sleep duration and midpoint.

Family income-to-needs ratio and parental education were
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children’s environments that have distinct effects on development

(58) and sleep health (7, 59).

Based on prior findings (12, 16, 54) and the role of amygdala-

ACC connectivity in emotion regulation (15), we hypothesized that

shorter sleep durations and later sleep timing would be associated

with altered connectivity between the amygdala and ACC in

children. We also hypothesized that sleep duration and timing

would mediate the associations between socioeconomic factors and

amygdala-ACC connectivity in children. In addition, we examined

whether sleep duration and timing were associated with

connectivity between the amygdala and the rest of the brain,

consistent with previous analytic approaches (37, 60, 61). Finally,

we expected that sleep timing would be associated with amygdala

rsFC independent of sleep duration.
Methods

Participants

Families were recruited through posting flyers, outreach, and

local community events in New York, New York. Inclusionary

criteria required families to be primarily English-speaking and

children to be between 5 and 9 years of age and born from a

singleton pregnancy with no history of premature birth, medical, or

psychiatric issues. Families were excluded from the MRI portion of

the study if children had contraindications for MRI scanning.

Children ranged from 5.06 to 9.87 years of age (N = 94; 61%

female). Fifty percent were reported to be Hispanic/Latinx; 31%

African American, non-Hispanic/Latinx; and 14% European

American, non-Hispanic/Latinx. Parental educational attainment

ranged from 6.50 to 20.00 years, and family income-to-needs ratio

ranged from.17 to 15.21, with family income ranging from $2,880

to $350,000.

Of the 48 children who participated in a resting-state fMRI

scan, 41 had usable data, as described below. This fMRI subsample

(n = 41) did not differ significantly in socioeconomic background

from those without fMRI data.
Procedure

Parents and their children made two visits to the lab within one

month. During the first visit, parents provided written informed

consent and then completed questionnaires asking about

socioeconomic factors and their child’s weekday and weekend

bedtime and wake-up time. Most families were invited to

participate in the MRI portion of the study, which included a mock

scan to acclimate children to the scanning environment. Full details

of the MRI procedures for this study are provided in Merz et al. (62).

During the second visit, children participated in an MRI scanning

session which included a resting-state fMRI scan. The Institutional

Review Boards at Teachers College, Columbia University and the

New York State Psychiatric Institute approved this study.
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Measures

Socioeconomic factors
Parental educational attainment was computed as the average

number of years of education across parents. Family income-to-

needs ratio was calculated by dividing household income by the U.S.

federal poverty line for the household size in the year of their

participation in the study (63). To address positive skew, family

income-to-needs ratio was log-transformed. Parental education and

family income-to-needs ratio were significantly correlated (r = .68,

p <.001; Supplementary Table S1).
Sleep duration and timing
Parents reported on their children’s bedtimes and wake-up

times for a typical weekday and weekend day in the previous two

weeks. Questions included “What is your child’s weekday bedtime?”

and “When does your child wake up on weekdays?” Child sleep

duration was computed separately for weekdays and weekends by

calculating the time between bedtime and wake-up time (8, 64, 65).

Sleep midpoint was calculated separately for weekdays and

weekends as the point in time halfway between bedtime and

wake-up time. Clock time was decimalized for these calculations

(e.g., 8:30 PM = 8.5). Bedtime and wake-up time were not available

for two children; therefore, the total sample size for sleep midpoint

was 92. Following from our previous publication (20), only weekday

(not weekend) sleep duration was analyzed in the current study;

both weekday and weekend sleep midpoints were analyzed.
Parental anxiety and depression symptoms
Parental depressive symptoms were measured using the nine-

item Patient Health Questionnaire (PHQ-9) (66), a self-report

measure based on the diagnostic criteria for major depressive

disorder. Parents indicated how often in the past two weeks they

had depressive symptoms using a 4-point scale ranging from 0 (not

at all) to 3 (nearly every day). Responses were summed to create a

total score, with higher scores indicating greater depressive

symptoms (a = .84). The PHQ-9 has well-established internal

consistency, test–retest reliability, and validity (66, 67).

Parental anxiety symptoms were measured using the Beck

Anxiety Inventory (BAI) (68), a 21-item self-report measure of

physiological and cognitive anxiety symptoms. Parents indicated

how much in the past week they were bothered by anxiety

symptoms using a 4-point scale ranging from 0 (not at all) to 3

(severely). Responses were summed to create a total score, with

higher scores indicating greater anxiety symptoms (a = .91). The

BAI has strong internal consistency, test–retest reliability, and

concurrent validity (68). A parental anxiety/depression composite

score was created to use as a covariate in analyses by standardizing

and averaging the PHQ-9 and BAI scores.
Image acquisition

Imaging data were collected using a General Electric (GE)

MR750 3T scanner with a 32-channel head coil. A 5-minute echo
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planar imaging (EPI) sequence was collected with the following

parameters: repetition time (TR) = 2200 ms, echo time

(TE) = 30 ms, flip angle = 90°, voxel size = 3.5×3.75×3.75 mm,

matrix size = 64 × 64, 140 volumes, 6 dummy scans, FOV = 24 x

24 cm, 34 axial slices. The children received instructions to stay

awake and keep their eyes open throughout the scanning session,

and a fixation cross was displayed on the screen. When scheduling

permitted, a second resting-state scan was obtained, resulting in a

second scan for 38 of the 48 children who participated in a resting-

state scan. A high‐resolution, T1‐weighted fast spoiled gradient

echo scan was also acquired (sagittal acquisition; TR = 7.1 ms;

TE = min full; inversion time [TI] = 500 ms; flip angle = 11°; 176

slices; 1.0 mm slice thickness; FOV 25 cm; inplane resolution = 1.0

by 1.0 mm).
Image processing

Standard image preprocessing and first-level analyses were

conducted using the CONN Toolbox (69). Functional data were

realigned, unwarped, slice-time corrected, and scrubbed. Scans that

were outliers based on head motion were detected using Artifact

Detection Tools (ART) (integrated in the CONN Toolbox) based on

a framewise displacement (FD) threshold above.9 mm or global

BOLD signal changes above 5 standard deviations from the mean.

Participants were subsequently excluded if they had more than 25%

outlier scans. This process resulted in 7 participants with unusable

data due to excessive motion and a final sample of 41 participants

with usable resting-state fMRI data.

Functional MRI data were first co-registered to the T1 image

using the Statistical Parametric Mapping version 12 (SPM12) co-

registration procedure, and the T1 image was normalized into

Montreal Neurological Institute (MNI) space and segmented into

gray matter, white matter, and cerebrospinal fluid tissue classes

using the SPM12 unified segmentation and normalization

procedure (70). A Gaussian kernel of 8 mm full width at half

maximum (FWHM) was used for smoothing. Six head motion

parameters were used as regressors of no interest in the first-level

analyses, and denoising was performed using the anatomical

CompCor (aCompCor) method (71) to account for potential

confounding physiological or motion effects in the BOLD signal.

Data were then band-pass filtered (0.01–0.10 Hz) to minimize the

influence of head-motion and low-frequency drift. Mean FD, an

average of the 6 different motion parameters (three planes, and

three rotations), was averaged over the time course of the scan and

used as a covariate in second-level analyses. Mean FD was not

significantly associated with sleep duration or midpoint. ROI masks

for the left and right amygdala and ACC were generated using the

Automated Anatomical Labelling atlas (72).
Statistical analyses

Multiple linear regression analyses were conducted in R

(version 4.1.1) to examine the associations of family-income-to-

needs ratio and parental education with weekday and weekend sleep
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midpoint. Covariates in these analyses were child age and sex. Effect

sizes (hp
2) are presented, with values of.01,.06, and.14 indicating

small, medium, and large effects, respectively (73).
Seed-to-seed analyses (ROI-to-ROI analyses)
The BOLD time series of each ROI (amygdala, ACC) was

computed as the average of the time series of all its component

voxels. Resting-state FC between two ROIs was calculated as the

Fisher z-transformed correlation coefficient of their time series, and

these values were extracted. Multiple linear regression analyses were

then conducted in R with left/right amygdala-left/right ACC

connectivity (4 connections total) as the dependent variables and

weekday sleep duration and weekday/weekend sleep midpoint as

the independent variables. To account for multiple comparisons,

false discovery rate (FDR) corrections were applied to analyses

using the p.adjust function in R (74).
Seed-to-whole-brain analyses
For each participant, Pearson’s correlation coefficients were

calculated between the left/right amygdala time course and the

time course of all other voxels in the brain. These subject-level maps

were then Fisher z-transformed and used in a whole-brain linear

regression as the dependent variable. Weekday sleep duration and

weekday/weekend sleep midpoint were the independent variables.

A threshold of voxel-wise p < 0.005 (uncorrected) and cluster-level

p < 0.05 using FDR and family-wise error (FWE) corrections were

used. Covariates in all rsFC analyses (both seed-to-seed and seed-

to-whole brain analyses) were age, sex, parental education, and

mean FD (75). Given that shorter weekday sleep duration was

associated with smaller amygdala volume (20), we also examined

whether associations of sleep duration and midpoint with amygdala

rsFC remained significant after additionally controlling for

amygdala volume.
Mediation model
We examined whether sleep duration and midpoint mediated

the associations between socioeconomic factors and amygdala

rsFC (Supplementary Figure S1). Mediation analyses were

performed using the “mediation” package in R (76). First, two

regression models were specified: the mediator model in which the

mediator (sleep duration or midpoint) was regressed on the

independent variable (parental education or family income‐to‐

needs ratio) and the outcome model in which the outcome

(amygdala rsFC) was regressed on the independent variable and

mediator. The outputs of these two regression models served as

the main inputs to the “mediate” function that computes the

direct, indirect, and total effects of the mediation model. The

significance of the mediated or indirect effect was tested using

nonparametric bootstrapping methods (with 10,000 random

samples) and 95% confidence intervals. Mediation was only

tested when there was evidence of significant a and b paths

(Supplementary Figure S1). For the b path, mediation was only

tested if there were significant associations of sleep duration or

midpoint with amygdala rsFC. Age, sex, and mean FD were

included as covariates in these analyses.
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Results

Descriptive statistics

Descriptive statistics are presented in Table 1, and zero-order

correlations are presented in Supplementary Table S1. In the full

sample, the average weekday sleep midpoint was 1:43 AM (range:

12:30 – 3:45 AM) and weekend sleep midpoint was 3:04 AM (range:

12:30 – 6:00 AM). Very similar patterns were observed in the fMRI

subsample; the average weekday sleep midpoint was 1:48 AM

(range: 12:30 – 3:00 AM) and weekend sleep midpoint was 3:08

AM (range: 12:45 – 6:00 AM). On average, children were within the

recommended range of sleep duration for their age for both

weekdays and weekends (Table 1) (77).

Approximately 30% of families in the sample had their sleep

data collected during the summer. Time of year (summer vs. school

year) was not associated with weekday or weekend sleep duration

(p = .50-.52) or weekday or weekend sleep midpoint (p = .33-.79)

while controlling for child age and sex. Of note, older age was

significantly associated with reduced weekday (b = -.29, p = .004)

and weekend sleep duration (b = -.30, p = .004), but age was not

significantly associated with weekday (b = .03, p = .78) or weekend

sleep midpoint (b = .13, p = .12) while controlling for child sex and

parental education.
Amygdala connectivity patterns

Supplementary Figure S2 presents the results of whole-brain

one-sample t tests examining left and right amygdala connectivity.

Similar to patterns previously reported for children in this age range

(78), the left and right amygdala showed widespread positive

functional connectivity with subcortical regions, including the

contralateral amygdala, bilateral hippocampus, thalamus, and

with cortical regions including the insula, somatosensory regions,

temporal regions, ventromedial and orbitofrontal cortex, and ACC.

Negative connectivity was found with occipital regions, superior

parietal regions, posterior cingulate, and clusters in the dorsolateral

PFC. Patterns of connectivity for the left and right amygdala were

very similar.
TABLE 1 Descriptive statistics for sleep duration and timing (N = 92).

M SD Range

Weekday bedtime (decimalized time) 8.65 .72 7.00–11.00

Weekday wake-up time (decimalized time) 6.76 .63 5.00–9.50

Weekday sleep midpoint (decimalized time) 1.71 .54 .50–3.75

Weekday sleep duration (hours) 10.11 .80 8.00–12.50

Weekend bedtime (decimalized time) 9.95 1.24 7.00–12.00

Weekend wake-up time (decimalized time) 8.19 1.50 6.00–12.00

Weekend sleep midpoint (decimalized time) 3.07 1.21 .50–6.00

Weekend sleep duration (hours) 10.24 1.29 7.50–13.50
fro
M, mean; SD, standard deviation.
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Socioeconomic factors and sleep midpoint

Lower family income-to-needs ratio and parental education were

significantly associated with later weekday (b = -.28, p = .009, hp2 =
.08; b = -.28, p = .009, hp2 = .09, respectively) and weekend sleep

midpoints (b = -.37, p <.001, hp2 = .12; b = -.61, p <.001, hp2 = .35,

respectively) (Figure 1). Socioeconomic disadvantage was also

significantly associated with shorter weekday sleep duration but not

associated with weekend sleep duration, as reported previously (20).
Sleep duration and midpoint and
amygdala-ACC connectivity

Weekday sleep duration was significantly positively associated

with connectivity between the left amygdala and left ACC (b = .08,

FDR-corrected p = .017) (Figure 2), and this association remained

significant after additionally controlling for weekday sleep midpoint

and amygdala volume. Neither weekday nor weekend sleep

midpoint was associated with amygdala-ACC connectivity.
Sleep duration and midpoint and amygdala
whole-brain connectivity

Shorter weekday sleep duration was significantly associated with

decreased connectivity between the left amygdala and left insula (b =

.07, FDR-corrected p = .048), and this association remained significant
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after additionally controlling for weekday sleepmidpoint and amygdala

volume (Table 2 and Figure 3). In addition, weekend sleep midpoint

was significantly inversely associated with connectivity between the left

amygdala and right paracingulate gyrus (b = -.06, FDR-corrected p =

.042) and the left amygdala and right postcentral gyrus (b = -.07, FDR-

corrected p = .042) (Table 2 and Figure 4), and these associations

remained significant after additionally controlling for weekend sleep

duration and amygdala volume. Weekday sleep midpoint was not

significantly associated with amygdala whole-brain connectivity.
Socioeconomic factors, sleep duration and
midpoint, and functional connectivity

Parental education was indirectly associated with connectivity

between the left amygdala and left ACC (indirect or ab effect = .009,

p = .02) and between the left amygdala and left insula (indirect or ab

effect = .01, p = .02) via weekday sleep duration in children

(SupplementaryFigure S3). These indirect effects were not

significant for family income-to-needs ratio.

Parental education was indirectly associated with connectivity

between the left amygdala and right paracingulate cortex (indirect

or ab effect = .02, p <.001) and between the left amygdala and right

postcentral gyrus (indirect or ab effect = .02, p <.001) via weekend

sleep midpoint in children (Supplementary Figure S4). Similarly,

family income-to-needs ratio was indirectly associated with

connectivity between the left amygdala and right paracingulate

cortex (indirect or ab effect = .07, p = .037) and between the left
B

A

FIGURE 1

Lower family income-to-needs ratio (log-transformed) (A) and lower parental education (B) were significantly associated with later weekday and
weekend sleep midpoints. Weekday and weekend sleep midpoint are shown in decimalized time.
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amygdala and right postcentral gyrus (indirect or ab = .07, p = .046)

via weekend sleep midpoint.
Sensitivity analyses

To further account for head motion (75, 79, 80), analyses were

re-run using stricter thresholds for mean FD (81). Specifically,

analyses were conducted after excluding children with mean FD >

1 mm (n = 5) and then excluding those with mean FD > 0.5 mm (n

= 9). All results remained significant.

There was some variability in the time between sessions, with

eight children who completed their MRI scan more than one month

after their sleep data were collected. Thus, analyses were conducted to

examine if the associations of sleep duration and midpoint with

amygdala rsFC remained significant while additionally controlling for

the time between sessions. All results remained significant (p = .02-
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.04). In addition, analyses were conducted to examine whether these

associations remained significant after additionally controlling for

parental anxiety and depression symptoms, similar to our previous

publication (20). All results remained significant (p = .01-.04).
Discussion

The goal of this study was to investigate the associations among

socioeconomic factors, sleep duration and timing, and rsFC of the

amygdala in 5- to 9-year-old children. Socioeconomic disadvantage

was significantly associated with later sleep timing on both weekdays

and weekends and, as reported previously (20), with shorter weekday

sleep duration in children. Shorter sleep duration and later sleep

timing were uniquely associated with altered amygdala connectivity

in circuits associated with emotion processing and regulation.

Socioeconomic disadvantage was indirectly associated with altered

amygdala connectivity in these circuits via shorter weekday sleep

duration and later sleep timing.
Socioeconomic disadvantage is associated
with later sleep timing in children

Lower family income-to-needs ratio and parental education were

associated with later weekday and weekend sleep midpoints in

children. These findings are consistent with those of previous studies

linking socioeconomic disadvantage with later bedtimes in children (4,

22–26). Later sleep midpoint may suggest that sleep timing is

misaligned with optimal functioning of the circadian system (28).

Together with our previous findings (20), these results suggest

that socioeconomic disadvantage may interfere with both sleep

timing and duration, with distinct patterns of effects on weekdays

compared to weekends. Socioeconomic disadvantage may lead to

later sleep timing across weekdays and weekends but shorter sleep

duration only on weekdays. On weekdays, later bedtimes often lead

to shorter sleep durations whereas on weekends, children may be

able to compensate for later bedtimes by sleeping in later and

consequently get enough sleep. The combination of frequently

reduced sleep duration and later sleep timing during childhood
TABLE 2 Clusters that differed in their connectivity with the left amygdala as a function of sleep duration and midpoint.

Cluster
MNI coordinates

Size p-FWE p-FDR Regions
x y z

Weekday sleep duration

1 -28 +20 -8 80 .007 .048 Left insula, left frontal orbital cortex

Weekend sleep midpoint

1 +12 +10 +56 197 .007 .042 Right paracingulate gyrus, right
supplementary motor cortex, right
postcentral gyrus

2 +16 -30 +50 167 .012 .042 Right postcentral gyrus, right
precentral gyrus
FWE, family-wise error; MNI, Montreal Neurological Institute; FDR, false discovery rate. MNI coordinates are provided for the peak voxel, and cluster size indicates the number of voxels in
the cluster.
FIGURE 2

Weekday sleep duration was significantly positively associated with
connectivity between the left amygdala and left anterior cingulate
cortex (ACC) in children.
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could have negative effects on health and cognitive development.

Both shorter sleep duration and later sleep timing have been

associated with increased anxiety and depression (12, 40).

Socioeconomic disadvantage may lead to later sleep timing and

shorter sleep duration in children because of lower-quality sleep

environments (e.g., high noise levels, crowding, excess light,

uncomfortable temperatures), greater stress, fewer routines, and

more unpredictability (e.g., changes in parental work schedules) (6,

20, 82). Lower-quality sleep environments and inconsistent bedtime

routines may lead to later bedtimes and difficulty falling asleep.

Although our study focused on family socioeconomic factors, these

associations may be due to both family- and neighborhood-level

disadvantage. Previous work suggests that neighborhood factors may

play an important role in sleep duration and timing (9, 25), and future

research should disentangle the unique influences of family and

neighborhood socioeconomic factors on children’s sleep characteristics.
Sleep duration is associated with amygdala
resting-state connectivity in children

Shorter weekday sleep duration was associated with decreased

positive connectivity between the amygdala and ACC, independent

of sleep timing. This result is consistent with previous studies of

adults (37, 53) and children and adolescents (54). Developmentally,

amygdala-mPFC rsFC may become increasingly positive across

childhood (83). Increasingly positive amygdala-mPFC rsFC has

been associated with stronger emotion regulation (55) and

reduced aggressive behavior and attention problems in children

(78). Thus, insufficient sleep duration may lead to patterns of

amygdala-mPFC connectivity that make self-regulation more

difficult for children.

Whole-brain analyses indicated that shorter weekday sleep

duration was associated with reduced positive amygdala-insula

connectivity, independent of sleep timing. The insula is critical for

emotion generation and interoception (84). The amygdala has been

found to show a normative pattern of positive rsFC with the insula in
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children (83). Although directionality varies, resting-state amygdala-

insula connectivity has been associated with emotion regulation,

anxiety and depression in children and adolescents (85–87). The

anterior insula is a primary hub in the salience network (88), which is

responsible for detecting and orienting to salient stimuli and

coordinating neural resources, and the amygdala is also often

included as part of this network (89, 90). Altered salience network

function is thought to play a key role in the mechanisms underlying

the effects of sleep deprivation on emotion processing (16, 32). Thus,

these findings are consistent with previous work linking sleep

duration with salience network connectivity. Decreased sleep

duration may lead to functional uncoupling in circuits that

facilitate emotion regulation and salience detection.
Sleep timing is associated with amygdala
resting-state connectivity in children

Later weekend sleep midpoint was associated with reduced

connectivity between the amygdala and paracingulate cortex and

between the amygdala and postcentral gyrus, independent of sleep

duration. To our knowledge, only one resting-state fMRI study of

the amygdala has considered sleep timing. In this study, similar to

our own findings, weekend sleep midpoint was associated with

altered connectivity between the amygdala and postcentral gyrus in

children and adolescents (54). The postcentral gyrus is associated

with processing somatosensory input (91). Though directionality

varies, amygdala-postcentral gyrus connectivity has been associated

with emotion regulation and externalizing symptoms (56). The

paracingulate gyrus has previously been associated with response

selection. Altered connections between this region and the

amygdala could suggest that there are motor control differences

in responses involving emotion for children with later sleep timing.

Later sleep timing may indicate that sleep timing is out of

synchrony with circadian rhythms in children. Initiating sleep later

than the optimal circadian phase, regardless of sleep duration, has

been linked with increased risk for negative health outcomes in
BA

FIGURE 3

(A) Shorter weekday sleep duration was significantly associated with reduced connectivity between the left amygdala and left insula in children.
(B) Sagittal, coronal, and axial views of the significant cluster in the insula.
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adults (92) and children (28). These associations may be because

circadian phase shifts reduce sleep quality and lead to sleep

problems (e.g., longer sleep onset latencies).
Socioeconomic factors, sleep duration and
timing, and amygdala connectivity

Socioeconomic disadvantage was indirectly associated with

altered amygdala connectivity in these circuits via shorter weekday

sleep duration and later weekend sleep midpoint. Socioeconomic

context is theorized to be a distal factor that influences children’s

health and development throughmultiple mediating mechanisms (2).

Findings from this study provide some support for our proposal that

sleep factors play a role in these mechanisms (20). Reduced sleep

health may be part of the processes linking socioeconomic

disadvantage with altered amygdala rsFC and in turn altered

emotional functioning in children.

Prevention and intervention programs targeting sleep health during

childhood may support brain development and emotional well-being.

Components of effective interventions may include promoting

recommended sleep hygiene practices to families and providing

material resources to improve children’s sleep environments (93, 94).
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Sleep midpoint may be shifted earlier by implementing earlier bedtimes.

This change may reduce misalignment between the child’s bedtime and

circadian phase (21), whichmay support brain development. Advocating

for cash supplements to families and neighborhood and housing policies

that facilitate more optimal sleeping environments (e.g., reduced noise

levels, light exposure, crowding) would help ensure that children across a

range of socioeconomic backgrounds have support for sleep health (95).
Strengths and limitations

Among this study’s strengths are its socioeconomically diverse

sample, rigorous fMRI methods and control for head motion, and

focus on multiple sleep parameters. In fMRI research, excessive

motion can introduce significant noise and artifacts, making it

difficult to distinguish genuine neural signal from confounds (75,

79). Children tend to exhibit greater motion compared to adults,

emphasizing the necessity of motion correction to ensure the validity

and interpretability of neuroimaging results in pediatric populations

(80). Our sensitivity analyses confirmed the robustness of the results

even when using strict exclusionary criteria for head motion.

This study also has limitations that should be considered when

interpreting the results. First, parent reports were used to measure
B

A

FIGURE 4

Weekend sleep midpoint was significantly negatively associated with connectivity (A) between the left amygdala and right paracingulate cortex and
(B) between the left amygdala and right postcentral gyrus. Scatterplots are shown on the left, and sagittal, axial, and coronal views of the significant
clusters are shown on the right. Weekend sleep midpoint is shown in decimalized time.
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children’s sleep timing and duration. Although subjective

assessment of sleep has strengths as a method, it can be biased

(31, 96, 97). It would be valuable to replicate these findings using

objective sleep measures, such as actigraphy, coupled with sleep

diaries. Second, given the cross-sectional and correlational study

design, it is not possible to infer causality. We also cannot rule out

genetic influences on circadian preference. Bidirectional

associations between sleep health and rsFC of the amygdala

should be investigated in future longitudinal studies. Also, due to

the cross-sectional design, the results of the mediation models

should be interpreted with some caution (98). Third, the sample

size was small, as many childhood fMRI samples are, and

replication with a larger sample size would strengthen these

findings. A crucial future direction is to examine the effects of

exposure to racial/ethnic discrimination on sleep health in children

(30). Exposure to racial/ethnic discrimination may increase stress,

which interferes with sleep, and research is needed that disentangles

the unique effects of socioeconomic disadvantage and racial/ethnic

discrimination on children’s sleep health (99).
Conclusion

To date, few studies of sleep and neural function have been

equipped to address the role of socioeconomic context during

childhood, which may reflect an important source of environmental

influence on sleep quantity and quality. This study contributes to filling

this gap in the literature. Findings indicated that socioeconomic

disadvantage was associated with shorter sleep duration and later

sleep timing, which made unique contributions to amygdala

connectivity in emotion processing and regulation circuitry.

Socioeconomic disadvantage in childhood can exert effects on mental

health that persist into adulthood, and these effects may derive in part

from how socioeconomic disadvantage interferes with sleep health

during childhood. Insufficient sleep duration and quality during

childhood may impact amygdala connectivity during sensitive

periods of brain development, leading to enduring effects on mental

health. Prevention and intervention strategies may need to evaluate and

target children’s sleep sufficiency to support brain development more

effectively. Bolstering neighborhood and family economic conditions

could improve family routines and sleeping environments for children,

helping to ensure that children across the socioeconomic spectrum

have support for sleep health.
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