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Nicotine and fluoxetine alter
adolescent dopamine-mediated
behaviors via 5-HT1A
receptor activation
Menglu Yuan* and Frances M. Leslie

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences,
University of California Irvine (UCI), Irvine, CA, United States
Introduction: Abuse or misuse of tobacco, e-cigarettes, or antidepressants may

have serious clinical consequences during adolescence, a sensitive period during

brain development when the distinct neurobiology of adolescent serotonin (5-

HT) and dopamine (DA) systems create unique behavioral vulnerabilities to drugs

of abuse.

Methods: Using a pharmacological approach, we modeled the behavioral and

neurochemical effects of subchronic (4-day) nicotine (60µg/kg, i.v.) or fluoxetine

(1mg/kg, i.v.) exposure in adolescent and adult male rats.

Results: Nicotine and fluoxetine significantly enhance quinpirole-induced

locomotor activity and initial cocaine self-administration in adolescents, but

not adults. These effects were blocked by serotonin 5-HT1A receptor

antagonists, WAY-100,635 (100 µg/kg, i.v.) or S-15535 (300 µg/kg, i.v.).

Neurochemical and anatomical autoradiographic analysis of 8-OH-DPAT-

stimulated [35S]GTPgS reveal that prior exposure to nicotine and fluoxetine

results in both overlapping and distinct effects on regional 5-HT1A receptor

activity. Both fluoxetine and nicotine enhance adolescent 5-HT1A receptor

activity in the primary motor cortex (M1), whereas fluoxetine alone targets

prefrontal cortical neurocircuitry and nicotine alone targets the amygdala.

Discussion: Given their different pharmacological profiles, comparison between

WAY-100,635 and S-15535 indicates that postsynaptic 5-HT1A receptors mediate

the behavioral effects of prior nicotine and fluoxetine exposure. In addition,

within the adolescent M1, maladaptive changes in 5-HT signaling and 5-HT1A
activity after nicotine or fluoxetine exposure may potentiate hyper-

responsiveness to dopaminergic drugs and prime adolescent vulnerability for

future substance abuse.
KEYWORDS

adolescence, age-dependent, nicotine, fluoxetine, cocaine, behavioral acquisition,
self-administration
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1 Introduction

Adolescence is a period of brain development during which

neurotransmitter systems are actively maturing, with dopamine

(DA) exhibiting particularly dynamic changes (1–3). These

neurochemical changes not only underlie executive, cognitive, and

emotional maturation, but also mark adolescence as a vulnerable

transition period when the initiation of substance abuse and onset

of psychiatric disorders typically emerge (4, 5).

Among teenagers, recreational use of electronic nicotine

delivery systems (e-cigarettes) has escalated exponentially (6, 7).

Originally marketed as a smoking cessation aid, recreational e-

cigarette use, or vaping, is currently more prevalent than

combustible cigarette use among young people (8). Furthermore,

teenagers who vape are more likely to smoke, and e-cigarettes may

be a “gateway” to future tobacco abuse (9). Consequently, the

emerging popularity of e-cigarettes poses an urgent threat for

adolescent health, as tobacco remains the leading cause of disease

and death worldwide and the negative health effects of e-cigarette

use has yet to be fully understood.

Initiation of smoking typically occurs during adolescence, with

approximately 90% of adult smokers starting before age 18 (10).

Furthermore, adolescent nicotine and tobacco use are associated

with disproportionately higher rates of future substance abuse (11–

14) and depression compared to their nonsmoking peers (15). To

treat teen depression, fluoxetine (Prozac), a selective serotonin

reuptake inhibitor (SSRI), is commonly prescribed as an

antidepressant (16). Although beneficial, SSRIs can increase

suicidal thoughts and behaviors, agitation, anxiety, and lead to

further depression in teenagers (17–19).

Adolescent rodents, conservatively defined as between postnatal

day (P) 28 and 42 (20), demonstrate unique responses to both SSRIs

and nicotine. Chronic SSRI treatment upregulates hippocampal

neurotrophic factors in adult rats, but pro-apoptotic factors in

adolescents (21). Fluoxetine also enhances cell proliferation in adult

rats, with little change in adolescents (22). Compared to adults,

adolescent rats associate a greater rewarding effect with nicotine in

conditioned place preference and self-administration studies (23–28).

In contrast, adolescents display both less aversion (25, 28, 29) and

blunted withdrawal symptoms to nicotine compared to adults (30,

31). Nicotine induces inflammatory markers in adolescent brain, in

contrast to the anti-inflammatory effect observed in adults (32).

Nicotine also exerts unique effects on adolescent DA and 5-HT

systems; specifically, receptor activation of both DA and 5-HT

receptor subtypes underlies nicotine-induced increases of drug

reinforcement in adolescents, but not adults (32, 33).

In adolescent rodents, but not adults, brief exposure to nicotine

enhances cocaine locomotor sensitization, conditioned place

preference, and self-administration as well as quinpirole-induced

activity (33–37). Not only does nicotine selectively increase 5-HT

content and transporter binding in adolescent forebrain regions, but

several unique behavioral effects of adolescent nicotine exposure are

blocked by co-administration of a 5-HT1A receptor (5-HT1AR)

antagonist (33). Together, these findings suggest that age-specific

alterations in 5-HT and 5-HT1AR signaling during adolescence may
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underlie enhanced behavioral sensitivity to DA drugs after

nicotine exposure.

We have now used a behavioral pharmacology approach to test

whether direct changes to endogenous 5-HT signaling with

fluoxetine in adolescence can also potentiate DA-mediated

behaviors, including cocaine self-administration and ambulatory

activity induced by quinpirole, a D2 receptor agonist. In addition,

we have characterized the possible role of 5-HT1ARs, using the

antagonist WAY-100,635 and the partial agonist S-15535, in the

effects of nicotine and fluoxetine on the adolescent brain.

Furthermore, through [35S]GTPgS binding, an in vitro approach

to examine receptor-G protein coupling, we have shown unique

effects of adolescent fluoxetine and nicotine exposure on 5-

HT1AR function.
2 Materials and methods

2.1 Animals

Male Sprague-Dawley rats (Charles River Labs, Hollister, CA)

arrived at P17 with dams or at P75. Rats were group-housed in an

AAALAC-accredited vivarium on a 12 hr light/dark cycle with

unlimited access to food and water. Pups were weaned on P21. All

experiments were performed during the light cycle and carried out

in accordance with the Institutional Animal Care and Use

Committee at the University of California, Irvine.
2.2 Drugs

Fluoxetine HCl (Sigma, St. Louis, MO) was dissolved in sterile

water. Nicotine hydrogen tartrate (Sigma, St. Louis, MO) was

dissolved in sterile saline and adjusted to pH 7.2 – 7.4; doses were

calculated as free base. Cocaine HCl (Sigma, St. Louis, MO)

(–),-quinpirole HCl (Tocris Bioscience, Bristol, UK), and WAY-

100,635 (Sigma, St. Louis, MO) were dissolved in sterile saline. S-

15535 (Sigma, St. Louis, MO) was dissolved in sterile saline that was

acidified with lactic acid, and pH was adjusted to as close to

neutrality as possible (pH > 5.0). L-741,626 (Tocris Bioscience,

Bristol, UK) was dissolved in 50% ethanol/saline. Propofol was

purchased from Abbot Laboratories (Chicago, IL).
2.3 Catheter Implantation

Rats, aged P24 or P82, were anesthetized with equithesin

(0.0035 ml/g) and surgically implanted with an indwelling

catheter in their jugular vein (37). During 3 days of recovery,

catheters were flushed daily with heparinized saline solution

(1000 units heparin per 30 ml bacteriostatic saline) to maintain

patency. Catheter patency was verified by testing with propofol (5

mg/kg, i.v.) after drug pretreatment, and only animals showing

rapid anesthesia were included in analyses.
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2.4 Pretreatment

Adolescent (P28–31) and adult (P86–89) rats received a drug

pretreatment for 4 consecutive days (32). Daily intravenous injections

offluoxetine (1mg/kg),WAY-100,635 (100µg/kg),fluoxetine+WAY-

100,635, nicotine (60 µg/kg), or saline were administered during

adolescence or adulthood. Behavioral testing was conducted the

following day on either P32 or P90 (Supplementary Figure 1).
2.5 Locomotor Behavior

One day after pretreatment, at P32 for adolescents and P90 for

adults, locomotor activity was recorded in an open field chamber

(43.2 × 43.2 × 30.5 cm3) by 16 photobeams along the sides of each

wall (MED Associates, Inc., St. Albans, VT). Following 30 min of

habituation in the test chamber, rats received an injection of either

quinpirole (0.4 mg/kg, i.p.), a selective D2 and D3 receptor agonist,

or vehicle and returned for 30 min monitoring of horizontal

activity. For acute 5-HT1AR antagonist studies, rats were given a

single infusion of WAY-100,635 (100 µg/kg, i.v.), S-15535 (300 µg/

kg, i.v.), or vehicle 20 min prior to locomotor testing.
2.6 Cocaine Self-Administration

One day after pretreatment, at P32 for adolescents and P90 for

adults, acquisition of cocaine self-administration was evaluated in

an operant chamber containing two nose poke holes (MED

Associates, Inc., St. Albans, VT). Rats self-administered cocaine

(0.5 mg/kg, i.v., 20 µl, 1.1s) in a single 1 hr session on a fixed ratio 1

(FR1) schedule. During each infusion, the cue light above the

reinforced hole was illuminated; afterward the house light shut off

for a 20 sec timeout where responses were counted but had no effect.

To control for nonspecific activity, responses for the non-reinforced

hole were recorded but had no programmed consequences. For

acute 5-HT1AR antagonist studies, rats were given a single infusion

of WAY-100,635 (100 µg/kg, i.v.), L-741,626 (2 mg/kg, i.p.), or

vehicle 20 min prior to self-administration testing.
2.7 Tissue Preparation

On P32 or P90, 24 hrs after the last pretreatment infusion,

brains were collected, rapidly frozen, and stored at -70°C until

processing. Coronal sections of 20 µm thickness were cut in a

cryostat maintained at -20°C. Sections were mounted onto ice-cold,

gelatin-coated glass slides (Fisher Scientific, Waltham, MA). Slides

were air dried for 30 min at room temperature and processed for 8-

OH-DPAT-stimulated [35S]GTPgS binding.
2.8 [35S]GTPgS Autoradiography

8-OH-DPAT-stimulated [35S]GTPgS (Perkin Elmer, Boston,

MA) autoradiography was as described by Hensler et al. (2007)
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(38) with slight modification. Slide-mounted sections were

equilibrated in assay buffer (50 mM HEPES; 3 mM magnesium

perchlorate; 0.2 mM EGTA; 100 mM NaCl; and 0.2 mM

dithiothreitol; pH 7.4) for 10 min at room temperature. Sections

were pre-incubated in 5’-guanylate diphosphate (2 mM GDP) for

15 min at room temperature, and then incubated for 60 min in

HEPES buffer containing GDP (2 mM) and [35S]GTPgS (40 pM),

with or without 8-OH-DPAT (1 µM). Basal [35S]GTPgS binding

was determined in the absence of 8-OH-DPAT. Nonspecific [35S]

GTPgS binding was determined in the presence of unlabeled GTPgS
(10 µM). The incubation was stopped by two 5 min washes in ice-

cold HEPES buffer (50 mM, pH 7.4), followed by a brief rinse in ice-

cold deionized water. Sections were air dried at room temperature

for 1 hr and exposed to Kodak Biomax MR film for 48 hrs.
2.9 Anatomical Analysis

Digitized autoradiograms were quantified with a MicroComputer

Imaging Device (MCID Imaging Research, St. Catherine, Ontario,

Canada; Supplementary Figure 2). Autoradiograms of 8-OH-DPAT-

stimulated [35S]GTPgS bindingwere simultaneously exposedwith [14C]

standards (39). Standard calibration curves were generated from [14C]

standards of optical density against radioligand concentration (dpm/mg

tissue) and used to transform regional density values into relative

radioactivity measures. Nonspecific binding of [35S]GTPgS was

subtracted from basal binding and from specific, agonist-stimulated,

binding. Specific binding was expressed as percent change from basal.

Areas that were analyzed included subregions of the cortex (prelimbic,

infralimbic, ventrolateral orbital, cingulate, agranular insular, primary

motor, and secondary motor); amygdala (basolateral, central, and

medial); striatum (caudate putamen, nucleus accumbens shell

and core); hypothalamus (paraventricular nucleus and lateral); dorsal

and ventral hippocampus; dorsal and median raphe; bed nucleus of the

stria terminalis; periventricular thalamus; and ventral tegmental area.
2.10 Sample size and randomization

No statistical methods were used to predetermine sample sizes.

Sample sizes usedwere similar to those reported inpreviouspublications

(32–36). Analysis of digitized autoradiograms were performed blind.
2.11 Data Analysis

Locomotor activity data are expressed as mean ± SEM and were

analyzed by 3-wayANOVAcomparingAge × Pretreatment ×Drug or

2-way ANOVA comparing Pretreatment × Drug. All significant main

effects were further analyzed by one-way ANOVA with Bonferroni

post hoc comparisons. For acquisition of cocaine or sucrose self-

administration, reinforced (R) and non-reinforced (NR) response

data are expressed as mean ± SEM and were analyzed by 2-way

ANOVA for Pretreatment ×R/NRResponses, with repeatedmeasures

on Responses. Significant effects of reinforcement were analyzed by

Bonferroni-corrected paired t-tests for each pretreatment group.
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Anatomical data for each brain region are expressed as mean ± SEM

and were analyzed separately using 2-way ANOVA comparing

Pretreatment × Age. Any significant main effects were further

compared using Dunnett’s post hoc test. All analyses were completed

using SPSS Statistics software. Outliers (≥2 SD from groupmean)were

removed prior to analysis.
3 Results

3.1 Fluoxetine pretreatment increases
adolescent quinpirole-induced locomotion
via 5-HT1A receptors

As shown in Figure 1 fluoxetine pretreatment of adolescents, but

not adults, increased quinpirole-induced locomotor activity via a 5-

HT1AR mechanism. Overall effects of Age (F1,126 = 96.189, p < 0.001),

Pretreatment (F3,126 = 3.255, p < 0.05), and Drug (F1,126 = 111.913, p <

0.001) were seen, as well as significant interactions of Age ×
Frontiers in Psychiatry 04
Pretreatment (F3,126 = 4.696, p < 0.01), Age × Drug (F1,126 = 88.538,

p < 0.001), Pretreatment × Drug (F3,126 = 4.301, p < 0.01], and Age ×

Pretreatment × Drug (F3,126 = 4.937, p < 0.01). Quinpirole induced

significant locomotor activity in adolescents (p < 0.001; Figure 1A),

which was enhanced by fluoxetine pretreatment (p < 0.01). Co-

administration of the 5-HT1A receptor antagonist, WAY-100,635,

during pretreatment blocked fluoxetine enhancement of quinpirole-

induced locomotion in adolescents (p < 0.001). As has been shown

previously (33), quinpirole did not induce significant locomotor

activity in adults; nor did fluoxetine or WAY-100,635 pretreatment

influence locomotor activity in this age group (Figure 1B).
3.2 Fluoxetine pretreatment enhances
adolescent acquisition of cocaine
self-administration via 5-HT1A receptors

To examine the role of endogenous 5-HT in drug

reinforcement, we evaluated the effect of fluoxetine pretreatment
A

B

FIGURE 1

Age differences in the effect of fluoxetine and WAY-100,635 pretreatment on quinpirole-induced locomotion. (A) Quinpirole (0.4 mg/kg, i.p.)
significantly induced locomotion in adolescents (***p < 0.001 vs. vehicle). Fluoxetine (1mg/kg, i.v.)-pretreated adolescents showed enhanced
locomotor activity following administration of quinpirole (++p < 0.01 vs. saline), an effect that was blocked by pretreatment with WAY-100,635 (100
µg/kg, i.v.; +++p = 0.001 vs. FLX+WAY). WAY-100,635 pretreatment alone did not alter quinpirole-induced locomotor activity (n = 9 saline-vehicle,
9 saline-quinpriole, 10 FLX-vehicle, 10 FLX-quinpirole, 9 WAY-vehicle, 9 WAY-quinpirole, 11 FLX+WAY-vehicle, 9 FLX+WAY-quinpirole). (B) In adults,
there were no significant effects of pretreatment or quinpirole on locomotor activity across groups (n = 9 saline-vehicle, 8 saline-quinpriole, 9 FLX-
vehicle, 8 FLX-quinpirole, 8 WAY-vehicle, 8 WAY-quinpirole, 8 FLX+WAY-vehicle, 8 FLX+WAY-quinpirole). Data analyzed with analyzed by 3-way
ANOVA, with Bonferroni post hoc tests. Bars represent mean ± SEM.
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on subsequent cocaine self-administration in adolescents (Figure 2). A

significant effect of Response (F1,47 = 23.095, p < 0.001) and a Response

x Pretreatment interaction (F3,47 = 14.912, p < 0.001) were observed.

Whereas saline-pretreated adolescent rats did not discriminate

between reinforced and non-reinforced nosepokes in a novel self-

administration chamber, those pretreated with fluoxetine exhibited

significantly higher preference for the reinforced hole (p < 0.001) and

higher reinforced responses than saline-pretreatedcontrols (p<0.001).

Enhancement of cocaine reinforcement by fluoxetine treatment was

blocked by co-administration of WAY-100,635, indicating that the

effect was mediated by 5-HT1A receptors. In contrast, fluoxetine

pretreatment had no effect on initial cocaine self-administration in

adults (Supplementary Figure 3).
3.3 Enhanced 5-HT1AR signaling persists
after adolescent pretreatment with
nicotine or fluoxetine

Adolescent treatment with fluoxetine or nicotine induces

persistent alteration in 5-HT1A receptor signaling, even after drug

pretreatment has ended. Following adolescent pretreatment with

either drug, enhanced quinpirole-induced locomotor activity is

observed which is blocked by acute administration of the 5-HT1A

receptor antagonist, WAY-100,635, or partial agonist, S-15535

(Figure 3). A significant overall effect of Antagonist (F2,131 = 10.195,

p < 0.001) and a Pretreatment x Antagonist interaction (F4,131 = 4.488,

p < 0.01) were observed. Pretreatment with nicotine or fluoxetine

significantly enhanced quinpirole-induced locomotion in controls

(p < 0.001), but not in animals treated acutely with WAY-100,635 or

S-15535 (Figure 3).

Following nicotine or fluoxetine pretreatment, enhanced

acquisition of cocaine self-administration is seen in adolescent rats,

with a significant effect of Pretreatment (F2,62 = 5.748, p < 0.01),
Frontiers in Psychiatry 05
Response (F1,62 = 47.807, p < 0.001), and a Response x Pretreatment

interaction (F2,62 = 10.882, p < 0.001). Both nicotine and fluoxetine

pretreatment significantly increased reinforced responses and

preference for the reinforced hole compared to saline-pretreated

controls (p < 0.001; Figure 4A). These pretreatment effects on

acquisition of cocaine self-administration were no longer present

following acute blockade of 5-HT1A receptors with WAY-100,635

(Figure 4B) or acute blockade of D2 receptors with L-741,626

(Figure 4C). In contrast, pretreatment had no effect on initial sucrose

self-administration in adolescents (Supplementary Figure 4).
3.4 Nicotine and fluoxetine alter regional
5-HT1AR activity in adolescent rats

Given behavioral evidence of changes in 5-HT1A receptor activity

following pretreatment with fluoxetine or nicotine in adolescents, we

used a neuroanatomical approach to assess the regional specificity of

these functional effects (Supplementary Table 1). With both

pretreatments, drug- and region-specific changes were observed in

subsequent acute stimulation of [35S]GTPgS binding to G proteins by

the 5-HT1A receptor agonist, 8-OH-DPAT. In the infralimbic cortex

(IL), adolescent fluoxetine pretreatment enhanced 5-HT1A receptor

activity, with a significant overall effect of Pretreatment [F2,52 = 3.754,

p<0.05] and an Age × Pretreatment interaction [F2,52 = 4.630, p<0.05].

Post hocanalysis showed that adolescent ratspretreatedwithfluoxetine

had significantly greater 8-OH-DPAT stimulated [35S]GTPgS binding
in the IL compared to saline-pretreated rats (p<0.01; Table 1). These

effects were not seen in adolescents pretreated with nicotine or

in adults.

Adolescent nicotine pretreatment enhanced 5-HT1A receptor

activity in the medial amygdala, with significant overall effects of

Pretreatment [F2,55 = 6.389, p<0.01] and Age [F1,55 = 5.547, p<0.05].

Post hoc analysis showed that adolescent rats pretreated with
FIGURE 2

Fluoxetine pretreatment during adolescence enhanced cocaine self-administration, an effect blocked by co-administration of WAY-100,635.
Fluoxetine (1mg/kg, i.v.)-pretreated adolescents had significantly higher reinforced responses for cocaine (0.5 mg/kg/inf, i.v.) compared to non-
reinforced responses (***p < 0.001). Fluoxetine-pretreated adolescents also had greater total reinforced responses for cocaine compared to other
pretreatment groups (+++p < 0.001 vs. saline, +p < 0.05 vs. WAY and FLX+WAY). WAY-100,635 (100 µg/kg, i.v.) alone did not alter cocaine self-
administration. Data were analyzed by 2-way ANOVA, with repeated measures on Responses. Significant effects of reinforcement were analyzed by
Bonferroni-corrected paired t-tests for each pretreatment group. Bars represent mean ± SEM. n = 13 saline, 14 FLX, 13 WAY, 11 FLX + WAY.
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nicotine had significantly greater 8-OH-DPAT stimulated [35S]

GTPgS binding in this region compared to saline-pretreated rats

(p<0.05; Table 1). These effects were not seen in adolescents

pretreated with fluoxetine or in adults.

The primary motor cortex was the only region to show

significant enhancement of 5-HT1A receptor activity following

adolescent pretreatment with either fluoxetine or nicotine, with a

significant overall Age × Pretreatment interaction [F2,54 = 4.919,

p<0.05]. Post hoc analysis showed that both nicotine- and

fluoxetine-pretreated adolescent rats had significantly higher 8-

OH-DPAT stimulated [35S]GTPgS binding than saline-pretreated

controls (p<0.05; Table 1). Drug pretreatment had no significant

effects on 5-HT1A receptor activity in adult.
4 Discussion

Consistent with a growing literature (3, 20, 40), we have shown

that adolescents and adults respond quite differently to commonly

used drugs, including nicotine and the SSRI, fluoxetine. Both drugs

act via the 5-HT system to induce age-dependent changes in 5-

HT1AR and D2 receptor activity. During adolescence, it is widely

accepted that DA systems actively mature, whereas 5-HT systems

exhibit comparatively low developmental activity since 5-HT

neurons are among the first to mature during early brain

development (41–43). In contrast, our present findings suggest

that there are unique 5HT-DA interactions that occur during

adolescence that influence the maturation of brain reward systems.
4.1 Serotonin signaling through 5-HT1ARs
regulates adolescent DA-
mediated behaviors

Brief nicotine pretreatment during early adolescence has been

shown to uniquely enhance DA-mediated behaviors, including
Frontiers in Psychiatry 06
cocaine self-administration, conditioned place preference, and

locomotor sensitization as well as ambulatory activity induced by

the D2 receptor agonist, quinpirole
,32–36. We have previously shown

that adolescent nicotine enhancement of quinpirole locomotion and

cocaine self-administration is both mediated by 5-HT release and

blocked by co-administration of selective 5-HT1AR antagonists

(33). These findings are consistent with prior reports of unique

activation of raphe by adolescent nicotine treatment (44). We now

demonstrate that increased 5-HT activation of 5-HT1ARs, resulting

from fluoxetine blockade of transporter function, also increases

quinpirole-induced locomotor activity and cocaine self-

administration in adolescents but not adults. In the absence of a

drug pretreatment, there are no age differences in the acquisition of

cocaine self-administration (44), which indicates that endogenous

5-HT signaling regulates adolescent behavioral sensitivity

to cocaine.

Treatment with 5-HT1AR antagonists during behavioral testing

eliminates fluoxetine and nicotine pretreatment effects on

quinpirole locomotion and cocaine reinforcement. This finding

indicates that persistent enhancement of 5-HT1AR function

mediates the behavioral effects of prior adolescent nicotine and

fluoxetine exposure even after discontinuation of drug treatment.

Since 5-HT1ARs are located both pre- and post-synaptically (45), we

compared the behavioral effects of two antagonists with differing

pharmacological profiles to determine which 5-HT1ARs mediated

adolescent fluoxetine and nicotine effects. As an antagonist, WAY-

100,635 is equally effective at pre- and post-synaptic 5-HT1ARs. In

contrast, S-15535 is a partial 5-HT1AR agonist, which acts

functionally as an antagonist at postsynaptic receptors, but as an

agonist at presynaptic autoreceptors (46). As with WAY-100635,

acute administration of S-15535 immediately before behavioral

testing blocked nicotine and fluoxetine enhancement of

quinpirole-induced locomotion, indicating an involvement of

postsynaptic 5-HT1ARs.

Prior studies have shown that chronic fluoxetine leads to

increased 5-HT system responsiveness after drug cessation,
FIGURE 3

Acute 5-HT1A receptor antagonism blocks enhancement of quinpirole-induced locomotion in nicotine- and fluoxetine-pretreated adolescent rats.
Nicotine and fluoxetine pretreatment enhance quinpirole-induced locomotor activity (+++p < 0.001 vs. saline pretreatment). Acute administration of
WAY-100,635 (100 µg/kg, i.v.) or S-15535 (300 µg/kg, i.v.) blocks the enhancement of quinpirole-induced locomotion in adolescents pretreated with
nicotine (60 µg/kg, i.v.) or fluoxetine (1mg/kg, i.v.) (**p < 0.01 vs vehicle). Data analyzed with analyzed by 2-way ANOVA, with Bonferroni post hoc
tests. Bars represent mean ± SEM. n = 25 saline-vehicle, 23 saline-WAY, 12 saline-S-15535, 28 nicotine-vehicle, 14 nicotine-WAY, 12 nicotine-S-
15535, 12 fluoxetine-vehicle, 12 fluoxetine-WAY, 12 fluoxetine-S-15535.
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possibly because of 5-HT1AR autoreceptor desensitization (47).

However, this effect is seen in both adolescents and adults, and

does not result in changes in baseline monoamine levels. It is

therefore unlikely to explain the increased postsynaptic 5-HT1AR

sensitivity that we have observed following subchronic fluoxetine

treatment in adolescents. Furthermore, using an in vitro approach

to examine receptor-G protein coupling, we have shown unique

effects of adolescent fluoxetine and nicotine exposure on 5-

HT1AR function.

Fluoxetine enhanced 5-HT1AR activity in the IL, a prefrontal

cortical region important for emotional learning and habit behavior

(48, 49). 5-HT1ARs in this region have been implicated in

modulating emotional response to stressful situations (50). In

contrast, nicotine enhanced 5-HT1AR activity in the medial

amygdala, a region of the amygdala implicated in control of

sexual and social behaviors (51, 52). 5-HT1ARs in this region have

been implicated in innate fear modulation (53). However, both

fluoxetine and nicotine both enhanced 5-HT1AR activity only in the

M1, a cortical motor region that experiences continuous growth in

serotoninergic innervation until late adolescence (54). The M1 is

actively engaged during initial motor consolidation and plays a

critical role in acquisition of skill learning (55). 5-HT1ARs within

M1 decrease corticostriatal activity (56) and modulate DA-

mediated motor function (57). Since both fluoxetine and nicotine

enhanced 5-HT1ARs activity within this region, it is possible that

M1 may be the site of action of these drugs in enhancing adolescent

DA-mediated behaviors.
4.2 Adolescent fluoxetine and nicotine
enhance function of D2
dopamine receptors

The induction of locomotor activity by quinpirole in

adolescents is mediated by D2 receptors and is age-specific (36).

As confirmed in the present study, adults do not show a locomotor

response to quinpirole (33, 58), a finding that is consistent with the

maturation of DA systems and D2 receptor function that occurs

during adolescence (1, 3, 5). We have previously shown that

adolescent nicotine pretreatment enhances quinpirole-induced

locomotor activity via a 5-HT1AR mechanism and increases D2

receptor expression and functional activity in the striatum (32, 33).

Involvement of the D2 receptor is further indicated by the finding

that D2 receptor blockade or knockdown during nicotine

pretreatment of adolescents blocks subsequent enhancement of

cocaine self-administration via a microglia-specific mechanism

(33). We now show that fluoxetine pretreatment enhances

adolescent locomotor response to quinpirole, indicating that

increased serotonergic signaling during pretreatment potentiates

subsequent D2 receptor function in this age group. Adolescent

nicotine and fluoxetine enhancement of cocaine self-administration

is also mediated by increased functional activity of D2 receptors,

since the effect is blocked by treatment with a D2-specific
A

B

C

FIGURE 4

Post-treatment 5-HT1A and D2 receptor activation mediate
enhancement of cocaine self-administration after nicotine and
fluoxetine pretreatment. (A) Adolescent rats pretreated with nicotine
(60 µg/kg, i.v.) or fluoxetine (2 mg/kg, i.v.) had significantly greater
reinforced responses compared to non-reinforced responses (***p
< 0.001) and higher reinforced responses for cocaine (+++p < 0.001
vs. saline) (n = 21 saline-veh, 21 nicotine-veh, 23 fluoxetine-veh).
Enhancements of cocaine self-administration are no longer present
after (B) acute 5-HT1A receptor antagonism with WAY-100,635 (100
µg/kg, i.v.) (n = 8 saline-WAY, 7 nicotine-WAY, 8 fluoxetine-WAY) or
(C) acute D2 receptor antagonism with L-741,626 (2 mg/kg, i.p.) (n =
12 saline-L-741626, 11 nicotine- L-741626, 11 fluoxetine- L-741626).
Data were analyzed by 2-way ANOVA, with repeated measures on
Responses. Significant effects of reinforcement were analyzed by
Bonferroni-corrected paired t-tests for each pretreatment group.
Bars represent mean ± SEM.
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antagonist, L-741,626, during self-administration testing. The

finding that cocaine self-administration in adolescents is mediated

by D2 receptors is in marked contrast to adults, where D1 receptors

mediate cocaine reinforcement (59). Indeed, D2 receptors do not

mediate cocaine self-administration in adults but are, instead,

involved in mechanisms that limit intake of high-dose cocaine (60).

As shown in the present study, fluoxetine and nicotine

enhancement of DA-mediated behaviors in adolescents are mediated

by functional sensitization of both 5-HT1AR and D2 receptors.

Enhanced behavioral response following pretreatment with either

drug is eliminated by administration of either 5-HT1AR or D2

receptor antagonists immediately prior to testing. This suggests that

there is a close interaction of 5-HT1AR and D2 receptors in adolescent

brain that modulates reward circuitry. The mechanisms underlying

such coupling of receptor activity are presently unknown but may

either involve direct receptor interaction or a circuit based mechanism.

Further studies will be required to evaluate the exact nature of this

linked receptor response.
4.3 Limitations

The findings in this report are subject to at least three

limitations. First, this study was conducted in males since we

have previously shown that adolescent nicotine enhancement of

cocaine self-administration is seen in both males and females (32,

33). However, further studies will be required to determine whether

this is also the case for fluoxetine in females. Second, pretreatment

with nicotine does not fully capture the myriad of other

psychoactive constituents that are present in tobacco leaves,
Frontiers in Psychiatry 08
combustible tobacco products, or e-cigarette vaping liquids, and

further investigations are needed in order to characterize how these

other psychoactive constituents interact with nicotine and

fluoxetine. Finally, since adolescent and adult rats received

pretreatment for 4 consecutive days and behavioral testing was

conducted the following day, our study is limited to the short-term

effects of drug exposure and acute pharmacological interventions.

Additional studies exploring the long-term consequences of drug

exposure during adolescence could better inform the effectiveness of

pharmacological interventions on behavior later in adulthood.
4.4 Clinical Implications

With increasing evidence that aberrant activation of 5-HT

systems during adolescence triggers lasting changes in neuronal

signaling, use of drugs such as tobacco, e-cigarettes, and

antidepressants may permanently alter the course of adolescent

brain maturation and neurotransmitter signaling. Although teen

smoking is declining, teen vaping has increased greatly in recent

years (6, 7) and has been suggested to be a gateway to future tobacco

use (61, 62). We have now shown that nicotine disrupts normative

limbic development and sensitizes the adolescent brain to DA drugs

such as cocaine. Thus, as with tobacco, e-cigarettes may prime

behavioral susceptibility to drugs of abuse in teenagers with lifelong

consequences for mental health.

Treatments for mental health disorders in teens also pose

serious safety concerns. Even though fluoxetine is FDA approved

to treat teen depression, the majority of testing regarding its

effectiveness and safety has been conducted in adults (63, 64). In
TABLE 1 Nicotine and fluoxetine age-specifically and region-specifically alters 5-HT1AR activity in the infralimbic cortex (IL), medial amygdala (MeA),
and primary motor cortex (M1).

Adolescent Adult

Saline Nicotine Fluoxetine Saline Nicotine Fluoxetine

M
o
to
r 
C
o
rt
ex

M1 0.80 ± 6.19 47.80 ± 12.21* 46.48 ± 19.87* 47.02 ± 22.66 13.80 ± 7.88 22.60 ± 6.91

M2 21.42 ± 10.83 41.91 ± 8.30 54.92 ± 18.54 44.38 ± 10.28 29.33 ± 9.87 32.84 ± 7.67

P
re
fr
o
nt
al
 C

o
rt
ex

Cg1 19.66 ± 8.47 65.26 ± 13.06 71.83 ± 21.65 46.94 ± 13.02 14.88 ± 6.99 45.06 ± 15.93

PrL 26.88 ± 11.00 41.47 ± 4.56 47.70 ± 16.70 53.37 ± 14.77 31.18 ± 6.70 30.37 ± 5.83

IL 20.31 ± 7.02 40.59 ± 7.83 73.97 ± 17.97** 38.53 ± 7.51 21.35 ± 4.30 33.30 ± 7.55

AI 8.17 ± 5.57 24.07 ± 4.63 27.74 ± 11.39 30.34 ± 7.63 23.91 ± 5.60 16.19 ± 4.61

VLO 9.63 ± 4.56 11.45 ± 6.13 39.32 ± 11.95 19.86 ± 5.52 11.39 ± 6.65 16.87 ± 5.35

A
m
yg

d
al
a BLA 7.87 ± 5.43 5.69 ± 4.22 6.82 ± 4.14 11.81 ± 3.92 9.01 ± 4.61 -5.92 ± 6.62

CeA 3.49 ± 4.66 3.97 ± 3.90 3.28 ± 5.14 9.74 ± 4.48 2.40 ± 3.23 -13.03 ± 5.61

MeA 7.79 ± 5.57 32.06 ± 9.49* 9.26 ± 4.23 9.57 ± 2.32 11.54 ± 3.35 -2.81 ± 2.93
In the IL, adolescent fluoxetine pretreatment (1 mg/kg, i.v.) induced greater 8-OH-DPAT stimulated [35S]GTPgS binding compared to saline controls in the IL (* p ≤ 0.05, ** p < 0.01 vs. saline). In
the MeA, adolescents nicotine pretreatment (60 ug/kg, i.v.) induced greater 8-OH-DPAT stimulated [35S]GTPgS binding compared to controls (* p < 0.05 vs. saline). In the M1, adolescents
nicotine (60 µg/kg, i.v.) or fluoxetine (1 mg/kg, i.v.) pretreatment induced greater 8-OH-DPAT stimulated [35S]GTPgS binding compared to controls (* p < 0.05 vs. saline pretreatment). Across all
adult regions, no significant effects of pretreatment on 8-OH-DPAT stimulated [35S]GTPgS binding were observed. Data were analyzed separately using 2-way ANOVA, with Dunnett’s post hoc
tests. Data represent mean + SEM. n = 9–11/group.
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addition, fluoxetine’s antidepressant effects require chronic

administration in order to be therapeutic, suggesting postsynaptic

neuroadaptations in 5-HT receptor signaling (65). However, we

have demonstrated that changes in adolescent behavior after

nicotine or fluoxetine exposure can be blocked with an acute

treatment of a 5-HT1AR antagonist or partial agonist.

Prior studies have shown that 5-HT1AR antagonists are safe for

clinical use. The delayed antidepressant effects of SSRIs can be

reduced by co-treatment of pindolol, a nonselective beta blocker

with 5-HT1AR antagonist activity (66, 67). The 5-HT1AR partial

agonist busipirone – which has long been used to treat anxiety –

also demonstrates clinical efficacy when given in combination with

SSRIs (68). Recently, vilazodone, which has combined SSRI and 5-

HT1AR partial agonist properties, has been approved for treatment

of major depressive disorder in adults (69). Since we have shown

that 5-HT1AR antagonists and partial agonists attenuate adverse

behavioral responses to antidepressants in adolescents, treatment

for teen depression should take into consideration potential drug

therapies with 5-HT1AR antagonist activity to improve

antidepressant efficacy, particularly during the initial period when

adolescents are most vulnerable to the confounding effects of SSRI

treatment. Furthermore, this body of work indicates that 5-HT1ARs

are also viable drug targets for the treatment of adverse health

consequences after adolescent exposure to tobacco, e-cigarettes,

and antidepressants.
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saline pretreatment.
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Nicotine and fluoxetine pretreatments did not alter cocaine self-
administration during adulthood. There were no significant differences in

responses between pretreatment groups during cocaine self-administration
in adult rats. n = 8-10/group.

SUPPLEMENTARY FIGURE 4

Nicotine and fluoxetine pretreatments did not alter sucrose self-

administration during adolescence. There were no significant differences in
responses between pretreatment groups during sucrose self-administration

in adolescent rats. n = 6/group.
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