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Exome functional risk score and
brain connectivity can predict
social adaptability outcome of
children with autism spectrum
disorder in 4 years’ follow up
Tingting Luo †, Manxue Zhang †, Sixun Li, Mingjing Situ, Pei Liu,
Meiwen Wang, Yujie Tao, Shengnan Zhao, Zhuo Wang,
Yanping Yang and Yi Huang*

Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
Introduction: Autism Spectrum Disorder (ASD) is a common neurodevelopmental

disorder emerging in early childhood, with heterogeneous clinical outcomes

across individuals. This study aims to recognize neuroimaging genetic factors

associated with outcomes of ASD after a 4-year follow-up.

Methods: A total of 104 ASD children were included in this study; they underwent

clinical assessments, MRI data acquisition, and the whole exome sequencing

(WES). Exome functional risk score (EFRS) was calculated based on WES; and two

modalities of brain connectivity were constructed based on MRI data, that is

functional connectivity (FC) for functional MRI (fMRI), and individual differential

structural covariance network (IDSCN) for structural MRI (sMRI), to explore the

neuroimaging genetic biomarker of outcomes of ASD children.

Results: Regression analysis found EFRS predicts social adaptability at the 4-year

follow-up (Y = -0.013X + 9.29, p = 0.003). We identified 19 pairs of FC associated

with autism symptoms severity at follow-up, 10 pairs of FC and 4 pairs of IDSCN

associated with social adaptability at follow-up, and 10 pairs of FC associated

with ASD EFRS by support vector regression (SVR). Related brain regions with

prognostic predictive effects are mainly distributed in superior frontal gyrus,

occipital cortex, temporal cortex, parietal cortex, paracentral lobule, pallidum,

and amygdala for FC, and temporal cortex, thalamus, and hippocampus for

IDSCN. Mediation model showed that ASD EFRS affects the social

communication of ASD children through the mediation of FC between left

middle occipital gyrus and left pallidum (RMSEA=0.126, CMIN=80.66, DF=42,

p< 0.001, CFI=0.867, AIC=152).
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Discussion: Our findings underscore that both EFRS and brain connectivity can

predict social adaptability, and that brain connectivity serving as mediator in the

relationship of EFRS and behaviors of ASD, suggesting the intervention targets in

the future clinical application.
KEYWORDS

autism spectrum disorder (ASD), exome functional risk score (EFRS), brain connectivity,
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1 Introduction

Autism SpectrumDisorder (ASD) is a common neurodevelopmental

disorder that has its onset in early childhood, characterized by social

communication deficits and restricted, repetitive behavior patterns, which

severely affect individual’s daily function and can bring tremendous

burden to families and society (1–3). The globally estimated prevalence

of ASD is 1%, showing a growing trend by year (4). Recently, the Autism

and Developmental Disabilities Monitoring (ADDM) Network reported

that 1 in every 36 (2.8%) 8-year-old children in US were found to have

ASD (5).

The outcomes of ASD show a broad spectrum of

characteristics. Traditionally, ASD has been regarded as a

neurodevelopmental disorder whose impact can be profound,

severely affecting the quality of life; few of them live alone, have

close friends, or permanent employment; the majority require

lifelong management and support (6–8), 74% of ASD adults

having severe social difficulties (6), 58% having poor outcome

(7). However, evidence also suggests that 0–37% of adults or

children with ASD have stable sociability, and even no longer

meet the diagnostic criteria for ASD (9–13). Predictors of recovery

include relatively high intelligence, receptive language, verbal and

motor imitation, adaptive skills, and earlier age of diagnosis and

treatment (10–12). The heterogeneity of outcomes implies

heterogeneity of biological underpinnings of prognosis in ASD,

and identifying specific biological markers that affect the outcomes

of ASD thus to implement targeted intervention in early days is

crucial for ASD.

ASD is a highly heritable disorder, rare variants of large effect

size as well as small effect common gene variants all contributing to

ASD risk (14–16). Polygenic risk score (PRS) (17) is a statistical tool

used in genetic research to estimate an individual’s genetic risk for a

particular trait especially for complex disorders such as ASD. It is

calculated by summing up the weighted contributions of multiple

genetic variants across the genome (18). Its application in

psychiatric disorder research has facilitated the identification of

individuals at higher genetic risk for developing conditions such as

schizophrenia (19, 20), ASD (21–23), attention deficit hyperactivity

disorder (24, 25) and major depressive disorder (26). Furthermore,

PRS can also provide prediction value on the outcome of ASD, for
02
example, researchers found burden of PRS is significantly high in

adult ASD patients with sustained need for specialist care (27).

However, few studies have investigated the social adaptation ability

of ASD using PRS in the longitudinal study design. In this study, we

aimed to employ exome-based functional risk score, calculating a

polygenic risk score by using information from exons in the

genome, to explore the relationship between gene and social

adaptability of children with ASD.

Magnetic resonance imaging (MRI) can facilitate understanding of

how the brain structurally and functionally develops differently in

people with ASD, although, to date, MRI results in ASD are not

conclusive (28). Evidences suggested abnormal growth in the cortical

surface between 6 and 12 months of age and greater brain volume

between 12 and 24 months of age in children who were later diagnosed

with ASD, compared with those not diagnosed with ASD (29).

Emerson (30) demonstrated that FCs of 6-moth-old infants with a

high familial risk for ASD could predict the diagnosis of ASD at 24

months of age. Moreover, neuroimaging data can also provide

prediction value for outcome of ASD, for example, in our previous

study (31), we compared the baseline brain white matter differences

among ASD with different outcomes in a 4-year followed up design,

and found that ASD with optimal outcome exhibited lower fractional

anisotropy (FA) in the left superior thalamic radiation (STR.L) than

those with negative outcome, indicating that FA value of the STR.L was

a significant predictor for outcome of ASD. However, knowledge about

the relationship between the brain connectivity in fMRI and sMRI

modalities and outcome situations in children with ASD is yet unclear.

Collectively, these studies suggest that ASD share disrupted neural

pathways which occurred even before the emergence of behavioral

symptoms and might provide clues about the outcome of disorder.

However, due to the methodology difficulty in processing

massive amounts of data, evidence is still lacking on combined

prediction of neuroimaging information with genetic data on the

prognosis of ASD. Machine learning (ML) approaches have their

unique advantages in dealing with massive amounts of data,

especially by integrating neuroimaging data with multiple

modalities. As the most widely used ML approach in the

detection of ASD, support vector machine (SVM) has presented

summary sensitivity and specificity estimates above 76% (32).

Support vector regression (SVR), as the extended algorithm of
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SVM, offers an opportunity to assess the value of brain imaging for

predicting ASD behaviors dimensionally. However, study about the

outcome prediction of ASD using SVM or SVR is limited at present.

In this 4-year followed up study, we acquired polygenic risk

scores, brain connectivity, and outcomes of children with ASD,

aiming to: (1) explore the relationship between genetic risk and

outcomes of ASD; (2) exam brain regions with predictive effects,

identifying reliable indicators for the outcomes of ASD; (3)

elucidate the relationships among EFRS, brain and behaviors

of ASD.
2 Materials and methods

2.1 Study design

Participants were recruited, screened, and assessed at West

China Hospital of Sichuan University. The research protocol was

approved by the Medical Ethical Committee of West China

Hospital of Sichuan University, and parents provided written

informed consent after receiving a detailed description of the

study. Data were used for research purposes only.

182 individuals with ASD were included in this study, all of

whom diagnosed by one professional child psychiatrist based on the

Diagnostic and Statistical Manual of Mental Disorders, Fifth

Edition (DSM-5)(1). Participants were excluded if they met any

of the following criteria: (1) neurological disorders, such as epilepsy,

encephalitis; (2) intelligence quotient< 70; (3) history of

craniocerebral injury; (4) monogenetic diseases, such as fragile X

syndrome, tuberous sclerosis, and Rett syndrome; (5) taking
Frontiers in Psychiatry 03
psychiatric medications during assessment. The common

comorbid disorders such as attention deficit hyperactivity

disorder, tic disorders and emotional disorders are not the

exclusion criteria. After excluding ineligible subjects, 104

participants remained. Details of participants enrolled in this

study and the study process had also been described in our

previous published paper (31).

After recruitment, a parent interview and a child assessment

were conducted using the autism diagnostic interview-revised

(ADI-R) (33) and the autism diagnostic observation schedule

(ADOS) (34) respectively to confirm ASD diagnosis. At baseline

(time 1), all participants were required to take an intelligence

quotient (IQ) test and have an MRI scan after receiving their

diagnoses, if available, collecting blood of participants and their

family members. In this study, 59 blood samples of ASD were

collected. Around 4 years after enrollment (time 2), participants

were requested to take part in a follow-up assessment. In this study,

90 children with ASD completed the follow-up assessment,

according to ADOS total score, 30 participants achieving optimal

outcomes (ADOS total score< 7) (labeled as ASD-), other 60

participants achieving poor outcomes (ADOS total score ≥ 7)

(labeled as ASD+). See Figure 1 for the flowchart of the

participant recruitment.
2.2 Instruments

ADI-R, developed and revised by Le Couteur et al. (33), is a

standardized, structured interview instrument to evaluate autism

symptoms. It consists of four subscales: communication, social
FIGURE 1

Flowchart for the participant recruitment. ASD−, ASD with optimal outcome; ASD+, ASD with poor outcome; WES, whole exome sequencing.
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interactions, restricted and repetitive behaviors (RRB) and evidence

of early developmental abnormalities (35). ADOS, revised by Lord

et al. (34), is a standardized structured interactive autism symptom

rating tool revised. Individuals were assessed by observing the ASD-

related symptoms during the game interaction. It consists of 4

subscales: communication, social interaction, imagination/

creativity, and RRB. The total score greater than or equal to 7 is

the diagnostic threshold. It is the most used “gold standards” for the

diagnosis of ASD in clinical and scientific research, which was also

used as a criterion for the severity of symptoms in follow-up

assessment of ASD children in this study.

The Chinese-Wechsler Intelligence Scale for Children (C-

WISC) (36) was used to assess the intellectual development. The

full-scale intelligence scale includes 11 sub-tests. In this study we

employed 4-in-1 short version recommended in the appendix of the

manual, including knowledge, comprehension, picture completion,

and block drawing.

Infants-Junior Middle School Students’ Social-Life Abilities

Scale (S-M) (37) and overall social outcome (OSO) ratings (6, 7)

were used to evaluate the social adaptability of participants. The S-

M scale consists of 132 questions in six domains. After the

completion of the questionnaire, a standardized score based on

age was obtained. Standard scores ranged from 5 to 13, and the

lower the scores, the worse the social adaptability. The OSO scoring

system was derived from Rutter’s non-specific scoring criteria for

the outcome of psychiatric disorders (38), which introduced

operational scoring rules and focused on the domains of

independent living, friendship and career (6, 7). Finally, the social

adaptability of individuals was graded trichotomy as very good/

good, average, and poor/very poor.
2.3 Blood collection and the whole
exome sequencing

Peripheral blood of 59 ASD subjects and their parents was

collected, stored in the refrigerator at -20°C, and regularly sent to

the laboratory for DNA extraction. The extracted DNA was stored

in a refrigerator at -80°C and sent for the whole exome

sequencing (WES).

The main steps of sequencing were as follows: 1) Quality

inspection: The quality of DNA samples was tested to detect

whether there was obvious DNA degradation and whether there

was RNA and protein contamination; 2) Library construction: DNA

samples with content above 0.6ug of Agilent SureSelect Human All

Exon V6 liquid capture system were effectively enriched to create

sequence libraries; 3) Sequencing: high-throughput and deep

sequencing was performed on the Illumina HiSeq 4000 platform

(Illumina, Inc., San Diego, CA, USA). The preprocessing steps of

WES data included extraction, quality control and typing

annotation. Details are shown in Supplementary Materials. We

focused on the polygenic risk of rare mutations, so only mutations

with minor allele frequency (MAF)< 0.01, according to the east

Asians from the 1000 Genomes Project database (N=504) (39) and
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the Exome Aggregation Consortium (ExAC) database (N ~= 3000)

(40), were retained for subsequent analysis.
2.4 Exome functional risk score

Polygenic risk score is a comprehensive assessment of the

cumulative effects of multiple variants with weak effects on

related diseases to evaluate the genetic risk of developing a

disease (41). According to the procedure recommended by

PRSice-2, the additive model was used to calculate the exome

score (42). We followed the approach developed by Chiara Fabbri

(43) to calculate ASD EFRS based on the WES data, and to obtain

the load scores of the whole exome rare variants. The EFRS is

calculated using the following formula:

o
n

1
vall ∗ws ∗wf

where n is the number of genetic variants within the whole

exome, vall is the number of alternative alleles, ws is the corresponding

functional score of the gene variant, and wf is the frequency weight for

that variant. By weighting function and frequency simultaneously,

EFRS does not depend on the presence of individual variants which

could not be observed in some of the tested samples, and thus keeps

the final score stable and reliable (44). Different sources (LRT,

Mutation Assessor, Polyphen-2, SIFT and CADD (45–48), see

Supplementary Materials) were tested in this study, to determine

the damaging of mutations for functional scores (ws). The frequency

weighting (wf) was determined based on the mean frequency of east

Asian populations in the 1000 Genomes Project (https://

www.internationalgenome.org/) and ExAc databases (http://

exac.broadinstitute.org). The alternative alleles (vall) were

determined based on the mutation sites of ASD identified in a

WES study of 175 trios published in Nature in 2012 (49).
2.5 Image acquisition

All MRI data were collected on a 3T scanner (Philips, Achieva,

TX, Best, The Netherlands) at the Tibet Chengban Branch of

Sichuan University West China Hospital. Two modalities

[structural MRI (sMRI) and resting state fMRI (rs-fMRI)] images

were acquired.

sMRI (T1 weighted) images were scanned using a three-

dimensional spoiled gradient recalled echoing planar imaging

sequence. Detailed scan parameters are described as follows:

repetition time, 8.2 msec; echo time, 3.8 msec; flip angle, 7°; slice

thickness, 1 mm; field of view, 256 mm × 256 mm; matrix size, 256 ×

256; voxel size, 1 × 1 × 1 mm3. Bold signals from the rs-fMRI modality

were acquired using a single-excitation gradient echo planar imaging

(EPI) sequence with scanning parameters described as follows: echo

time, 30ms; repeat time, 2000ms; flip Angle, 90°; FOV =

240mm×240mm; slice thickness, 4mm; gap, 0mm. Each time point

was scanned continuously, and a total of 240 time points were acquired.
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2.6 MRI data preprocessing and brain
connectivity network construction

Raw data acquired from the MRI scanner (DICOM files) were

converted from raw DICOM files into analyzable NIfTI images using

dcm2niigui software. Use the SPM software package in MATLAB

R2013b platform (https://www.fil.ion.ucl.ac.uk/spm/software/spm12/),

FreeSurfer package (https://www.freesurfer.net/) and FSL software

(http://surfer.nmr.mgh.harvard.edu/fswiki/Fsl) to analyze imaging

data processing.

The whole brain functional connectivity (FC) analysis method

based on correlation analysis proposed by Salvador (2005) was used

for the construction of FC network (50). Individual differential

structural covariance network (IDSCN) was constructed to analyze

the common structural changes among the brain regions. Details of

data preprocessing and description of the construction of the

connectivity networks are provided in the Supplementary Materials.
2.7 Statistical analysis

Firstly, through simple logistic regression analysis, we examined

the relationship between EFRS and outcomes situations (autism

symptoms severity and social adaptability). Then, based on the

brain connectivity networks, we used ML method SVR to identify
Frontiers in Psychiatry 05
the brain regions related to the outcomes of ASD. And then, we

explored the relationships among EFRS, brain and outcomes,

through multivariate logistic regression analysis with post hoc

Bonferroni correction, significance level 0.05. Finally, taking the

targeted brain regions as a mediator, we constructed a mediation

model of “gene-brain-behavioral” to analyze how EFRS affects the

behavior of ASD patients through the interaction of brain

connectivity. At the same time, imaging genetic biomarkers

related to the outcomes of ASD were screened and confirmed.
3 Results

3.1 Demographic information
of participants

After excluding ineligible individuals, there were 104 children with

ASD enrolled. The demographic information is shown in Table 1. The

average age is 8.01(SD = 3.25) years. Four years later after enrollment,

90 individuals were followed up for clinical diagnostic assessment

(evaluated by ADOS) and social adaptability (S-M and OSO). Among

the 90 individuals, 30 of them (33.33%) showed optimal outcome

(labeled as ASD-), whose ADOS total scores less than 7, losing the

diagnoses of ASD; while the other 60 subjects’ diagnoses of ASD

persistent (labeled as ASD+). Independent sample t test was employed
TABLE 1 Demographics and clinical characteristics of the participants with different outcomes at baseline and 4 years later.

ASD Time 1 Time 2

N = 104 ASD- N=30 ASD+ N=60 t/c2 p value ASD- N=30 ASD+ N=60 t/c2 p value

Age (years) 7.62 ± 3.60 8.00 ± 4.18 7.46 ± 3.34 0.66 0.511 12.37 ± 4.19 11.48 ± 3.38 1.12 0.103

IQ 85.50 ± 20.80 87.93± 20.16 87.34± 19.24 0.14 0.893 99.45 ± 15.72 85.16 ± 17.87 3.72 <0.001***

Gender(M/F) 92/12 29/1 52/8 2.22 0.136 29/1 52/8 2.22 0.136

ADI-R

Communication 13.38 ± 5.04 11.48 ± 3.64 14.14 ± 5.50 -2.14 0.036* – – – –

Social Interaction 16.91 ± 5.78 14.74 ± 4.30 17.78 ± 6.09 -2.18 0.032* – – – –

RRB 4.54 ± 2.71 4.00 ± 2.45 4.76 ± 2.78 -1.14 0.258 – – – –

development 2.56 ± 1.67 1.87 ± 1.63 2.83 ± 1.62 -2.39 0.019* – – – –

total 37.40 ± 12.08 32.09 ± 8.56 39.5 ± 12.67 -2.58 0.012* – – – –

ADOS

communication 5.72 ± 2.46 5.60 ± 2.61 5.87 ± 2.15 -0.52 0.607 0.43 ± 0.68 3.97 ± 2.20 -8.57 <0.001***

Social Interaction 9.57 ± 2.66 9.30 ± 3.09 9.82 ± 2.83 -0.79 0.431 0.97 ± 1.35 8.03 ± 3.38 -11.00 <0.001***

Imagine 1.51 ± 1.11 1.33 ± 1.30 1.70 ± 1.20 -1.33 0.186 0.07 ± 0.25 0.83 ± 0.81 -5.07 <0.001***

RRB 1.73 ± 1.38 1.30 ± 1.09 1.80 ± 1.35 -1.76 0.082 0.37 ± 0.72 1.95 ± 1.76 -4.72 <0.001***

Total 18.23 ± 5.31 17.53 ± 6.19 19.18 ± 5.26 -1.32 0.190 1.83 ± 2.07 14.78 ± 6.62 10.44 <0.001***

S-M – – – – – 9.37 ± 1.27 8.22 ± 1.42 3.75 <0.001***

OSO – – – – – 1.43 ± 1.14 5.63 ± 1.47 13.71 <0.001***
fro
*p< 0.05, ***p< 0.001. “-” means no available data. ASD, autism spectrum disorder; IQ, intelligence quotient; ADI-R, autism diagnostic interview-revised; ADOS, autism diagnostic observation
schedule; RRB, restricted and repetitive behaviors; S-M, infants-junior middle school students’ social-life abilities scale; OSO, overall social outcome ratings; ASD-, ASD with optimal outcome;
ASD+, ASD with poor outcome; Time 1, baseline assessment; Time 2, 4-year follow up assessment.
ntiersin.org

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.freesurfer.net/
http://surfer.nmr.mgh.harvard.edu/fswiki/Fsl
https://doi.org/10.3389/fpsyt.2024.1384134
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Luo et al. 10.3389/fpsyt.2024.1384134
to identify the clinical differences between ASD- group and ASD+

group at baseline (Time 1), and the results showed that there is no

difference in age, IQ, gender and ADOS scores (all p > 0.05). While at

follow-up (Time 2), significant differences are found in IQ, ADOS, S-M

and OSO between ASD- group and ASD+ group (all p< 0.001)

(see Table 1).
3.2 Association between EFRS and the
outcomes of ASD children

We calculated the EFRS of the 59 ASD children according to

Chiara Fabbri’s method (43), to explore the genetic liability of the

outcomes of ASD children. The EFRS values are shown in

Supplementary Table 1. Among the 59 individuals with WES

data, 50 of them achieved follow-up: 15 individuals (30%) had

optimal outcome (ASD-), ADOS total score less than 7; the

remaining 35 (70%) had ASD diagnoses persistent with poor

outcome (ASD+).

Simple regression analysis showed that EFRS could predict social

adaptability of ASD children after 4 years later. When taking social

adaptability (evaluated by S-M) as the dependent variable and EFRS as

the independent variable, the results demonstrated that EFRS could act

as an independent predictor of the social adaptability (Y = -0.013*X +

9.29, p = 0.003) (see Figure 2A). However, EFRS could not be an

independent predictor of the severity of autism symptoms (Y =

-0.0008*X + 0.95, p = 0.914) (see Figure 2B). EFRS was not

significantly associated with the total score of ADOS neither at

baseline (r = -0.108, p = 0.538) nor at follow-up (r = 0.065, p =

0.653) (see Supplementary Figure 1).
3.3 Association between brain connectivity
and outcomes of ASD children

We built SVR models based on structurally and functionally

brain connectivity, IDSCN for structural MRI and FC for functional

MRI, to precisely identify the outcome predictors of ASD children.
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Two candidate indexes were included in the SVR models: 1)

symptoms severity: ADOS total score at time 2, and the outcome

grouping (ASD+ vs ASD-); 2) social adaptability: S-M standard

score and OSO grade at time 2.

SVR models for ADOS total scores shown that FC could predict

ADOS total scores (the prediction function: Y = 0.30X + 7.67, R2 =

0.13, MSE = 79.25, p = 0.08) (see Supplementary Figure 2). There

are totally 19 pairs of FC with predictive effects; 10 pairs of those

show negative weight, predicting a decrease in ADOS scores; while

the other 9 pairs show positive weight, predicting an increase in the

ADOS total scores (see Figure 3A). Details of the 19 pairs of FCs are

shown in Table 2. IDSCN has no predictive effect on ADOS

total scores.

SVR models for social adaptability of ASD children showed that

both FC (fMRI) and IDSCN (sMRI) have good predictive effects.

The predictive function of FC for the S-M standard score is: Y =

0.42*X + 4.94, R2 = 0.13, MSE = 2.33, p = 0.03 (see Supplementary

Figure 2). A total of 10 pairs of FC were identified to have predictive

effects, of which 4 pairs of FCs have positive weight values,

indicating that increased FC of these brain regions could predict

better social adaptability after 4 years; the other 6 pairs of FC have

negative weight values, suggesting that increased FC of these brain

regions might predict worse social adaptability after 4 years (see

Figure 3B, Table 3). The predictive function of sMRI for the S-M

standard score is: Y = 0.30*X + 5.97, R2 = 0.17, MSE = 2.66, p = 0.06

(see Supplementary Figure 2). A total of 4 pairs of IDSCN were

found to have predictive effects with positive weight values (see

Figure 3C, Table 3).
3.4 Relationships of EFRS, brain
connectivity and outcomes of ASD children

We further tested the extent to which EFRS and brain

connectivity identified above analysis could predict outcomes of

ASD when taking them together as independent variables. The

brain connectivity associated with outcomes found by the SVR

models (see Tables 2, 3) and EFRS were included in the multiple
A B

FIGURE 2

Relationships between EFRS and outcomes of ASD. (A) Simple linear regression analysis shows EFRS could predict the social adaptability of ASD children (Y=
-0.013*X+ 9.29, p = 0.003); (B) Simple logistic regression analysis shows EFRS could not predict the outcome grouping (Y= -0.0008*X+ 0.95, p = 0.914).
The solid line shows the distribution trend of the values; The dashed line represents the 95% confidence interval. EFRS, exome functional risk scores; S-M,
the infants-junior middle school students’ social-life abilities scale; ASD-, ASD with optimal outcome; ASD+, ASD with poor outcome.
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regression model to analyze the joint predictive value of the baseline

genetic risk and brain imaging characteristics on the outcomes

of ASD.

In the analysis of the autism symptom severity (outcome

grouping based on ADOS scores) at follow-up, 19 pairs of FC

identified by SVR based on ADOS total score (see Figure 3A,

Table 2) and EFRS were included as predictive variables. The

analyses of multiple logistic regression did not identify any brain

connectivity that could predict the outcome grouping of ASD

children at 4-year follow-up (see Figure 3A); In the analysis of

social adaptability (OSO grade) at follow-up, the brain connectivity

characteristics determined by SVR based on S-M (see Figure 3B,

Table 3) and EFRS were included. The results of the predicting

effects of both fMRI (FCs) and sMRI (IDSCN) on social adaptability

were verified. As shown in Figures 4A, B, 3 of the 4 pairs of IDSCN

perform predictive effects, as predictors of poor outcome; 7 of the 10

pairs of FC perform predictive effect, 3 pairs of those as predictors of

poor outcome, the other 4 pairs as predictors of good outcome. In

conclusion, both FC and IDSCN, the two modalities of brain

connectivity could predict the social adaptability of ASD children.

The characteristic brain regions mostly located in superior frontal

gyrus, occipital cortex, temporal cortex, parietal cortex, paracentral
Frontiers in Psychiatry 07
lobule, pallidum, and amygdala for functional brain connectivity,

and temporal cortex, thalamus, and hippocampus for structural

brain connectivity.

In addition, we employed SVR to identify the characteristic brain

regions related to ASD EFRS, to explore the relationship between brain

connectivity and EFRS. The SVR models based on FC (fMRI) and

IDSCN (sMRI) were constructed taking EFRS as a predictor variable.

SVR model construction based on fMRI modality succeeded

(regression function: Y = -1.64*X + 154.7, p = 0.05, R = -0.32, MSE

= 3168.80), meaning that ASD EFRS has significantly predictive effects

on the values of FC; while SVRmodel based on sMRI failed (regression

function: Y = -0.09X + 64.34, p = 0.636) (see Supplementary Figure 3).

There are 10 pairs of FC identified that are associated with EFRS, as

shown in Table 4.

To further explore the relationship of ASD EFRS and brain

regions identified above, and the outcomes of ASD children. We took

OSO grade and outcome grouping as dependent variables

respectively, and characteristic brain regions related to EFRS (see

Table 4) as independent variables in the multiple logistic regression

analysis, and the results showed that FC of left middle occipital gyrus

(MOG.L) and right paracentral lobule (PCL.R) (OR = 7.08, 95%CI =

5.32 - 12.03) is a risk factor for social adaptability of ASD children
A

B C

FIGURE 3

Brain connectivity with predictive effects. (A) SVR model for ADOS total scores results based on FC (fMRI); the left displays the 19 pairs of congruent
brain regions; the right shows circle diagram of the identified congruent brain regions, red represents positive weight and blue represents negative
weight; (B) SVR model for social adaptability results based on FC (fMRI), 10 pairs of congruent brain regions displayed; (C) SVR model for social
adaptability results based on IDSCN (sMRI), 4 pairs of congruent brain regions displayed. SVR, support Vector Regression; ADOS, autism diagnostic
observation schedule; FC, functional connectivity; IDSCN, individual differential structural covariance network; fMRI, functional MRI; sMRI,
structural MRI.
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TABLE 2 19 pairs of FC associated with autism symptoms severity.

abbreviation brain regions abbreviation brain regions weight

ORBinf.L inferior frontal gyrus, orbital part HIP.R right hippocampus -2.49

INS.L left insula PUT.R right putamen -2.40

SMA.R right supplementary motor area INS.L left insula -1.82

LING.L left lingual gyrus MTG.R right middle temporal gyrus -1.78

CUN.L left cuneus STG.R right superior temporal gyrus -1.75

CAL.L left calcarine sulcus STG.R right superior temporal gyrus -1.16

PHG.R right parahippocampal gyrus CUN.L left cuneus -1.04

ROL.L left Rolandic operculum PUT.R right putamen -0.97

PUT.R right putamen STG.L left superior temporal gyrus -0.60

ROL.L left Rolandic operculum PAL.R right pallidum -0.44

PHG.R right parahippocampal gyrus CAU.R right caudate nucleus 2.65

MOG.L left middle occipital gyrus SMG.L left supramarginal gyrus 2.49

SMA.R right supramarginal gyrus TPOmid.R temporal pole: middle temporal gyrus 2.04

SFGdor.L left superior frontal gyrus, dorsolateral ROL.L left Rolandic operculum 1.88

SMG.R right supramarginal gyrus MTG.R right middle temporal gyrus 1.38

IFGoperc.L inferior frontal gyrus, opercular part INS.L left insula 1.24

STG.L left superior temporal gyrus ITG.L left inferior temporal gyrus 0.91

MFG.L left middle frontal gyrus ORBsupmed.L left superior frontal gyrus, medial orbital 0.77

SFGdor.L left superior frontal gyrus, dorsolateral IFGoperc.L left inferior frontal gyrus, opercular part 0.49
F
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ranking by weight values.
TABLE 3 Brain connectivity associated with social adaptability of ASD children.

abbreviation brain regions abbreviation brain regions weight

fMRI

IOG.R right inferior occipital gyrus ANG.L left angular gyrus 1.16

IOG.R right inferior occipital gyrus SPG.L left superior parietal gyrus 0.33

ORBsupmed.L left superior frontal gyrus, medial orbital PCL.L left paracentral lobule 0.10

IFGtriang.L left inferior frontal gyrus, triangular part DCG.L left median cingulate and paracingulate gyri 0.03

AMYG.R right amygdala STG.L left superior temporal gyrus -1.18

ANG.L left angular gyrus PCUN.L left precuneus -0.72

PreCG.L left precental gyrus SFGdor.L left superior frontal gyrus, dorsolateral -0.68

ANG.L left angular gyrus PCL.L left paracentral lobule -0.67

MOG.L left middle occipital gyrus TPOmid.L left middle temporal gyrus -0.48

HES.R right Heschl gyrus MTG.R right middle temporal gyrus -0.45

sMRI

THA.L left thalamus THA.R right thalamus 0.17

ANG.L left angular gyrus FFG.L left fusiform gyrus 0.15

PAL.R right pallidum PAL.L left pallidum 0.11

THA.L left thalamus HIP.R right hippocampus 0.09
ranking by weight values.
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(see Figure 4C). The logistic regression model taking outcome

grouping as the dependent variable was not fitted successfully.
3.5 Mediation model of EFRS, brain
connectivity and behaviors of children
with ASD

To further explore the relationships of EFRS, brain connectivity,

and symptoms of ASD children, we constructed a mediation model

using structural equation modeling. The results show that EFRS

mediates the communication (ADIR subscale) through the FC of

left middle occipital gyrus (MOG.L) and left pallidum (PAL.L)

(CMIN = 80.66, DF = 42, p< 0.001, CFI = 0.867, AIC = 152), as

shown in Figure 5. There is no direct effect between EFRS and the

communication (r = -0.10, p = 0.462), but an indirect effect (r =

0.17, p = 0.03).
4 Discussion

This is a 4-year prospective follow-up study of children with

ASD, adopted multimodality data like EFRS, brain imaging, and

behaviors of baseline and follow up. Firstly, we examined the

relationships between EFRS and outcome situations of children

with ASD, relationships between brain connectivity and the

outcome situations of children with ASD, and relationships
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between EFRS and brain connectivity, by SVR models,

respectively. We built outcome prediction models of ASD

children based on EFRS and brain connectivity (FC for fMRI and

IDSCN for sMRI), identifying genetic neuroimaging biomarkers of

outcomes for ASD children. Finally, we examined the relationships

among EFRS, brain connectivity and behaviors of ASD, finding out

the way how they interact. In summary, this study found that both

EFRS and brain connectivity especially FC show prognostic

prediction effects on ASD children, and that EFRS, brain

connectivity, and autism symptoms interact, frequently brain

connectivity serving as mediator. This study identified candidate

brain regions that related to the outcomes of ASD, and found the

pathway of which brain mediates the relationship between EFRS

and behaviors of ASD children, laying a solid foundation for finding

genetic neuroimaging biomarkers for predicting the outcomes

of ASD.

Our study has some strengths compared to previous similar

studies. First, this is a longitudinal follow-up study, following the

outcome situations of children with ASD. Second, we employed EFRS

to measure the genetic risk of ASD. Although many ASD-associated

de novo mutations have been identified through WES, few studies

have used exome risk score in ASD. Third, we included two

modalities of brain connectivity, IDSCN (sMRI) and FC (fMRI),

making the results more credible. In addition, we explored the

relationships of polygenic genetic risk, brain imaging, and

behaviors of children with ASD, identified the role of brain

connectivity; while previous studies mostly examined relationships
A B C

FIGURE 4

Multiple logistic regression analysis results of outcomes of ASD children. (A) Multiple logistic regression results of the symptoms severity (outcome grouping).
There is no significant predictive effect of the 19 pairs of FC nor EFRS on symptoms severity of ASD children at 4-year follow-up. (B) Multiple logistic
regression results of social adaptability (OSO). Risk factors for social adaptability include 3 pairs of IDSCN that is bilateral thalamus, left thalamus (THA.L) to
right hippocampus (HIP.R), and left angular gyrus (ANG.L) to left fusiform gyrus (FFG.L), and 3 pairs of FC, that is right Heschl gyrus (HES.R) to right middle
temporal gyrus (MTG.R), left angular gyrus (ANG.L) to left paracentral lobule (PCL.L), and left angular gyrus (ANG.L) to right inferior occipital gyrus (IOG.R);
protective factors for social adaptability include 4 pairs of FC, that is left superior temporal gyrus (STG.L) to right amygdala (AMYG.R), left paracentral lobule
(PCL.L) to medial orbital of left superior frontal gyrus (ORBsupmed.L), left precuneus (PCUN.L) to left angular gyrus (ANG,L), and left superior parietal gyrus
(SPG.L) to right inferior occipital gyrus (IOG.R). (C) Multiple logistic regression results of social adaptability based on FC associated with EFRS. FC of left middle
occipital gyrus (MOG.L) and right paracentral lobule (PCL.R) is a risk factor for outcomes (OR=7.08, 95%CI=5.32 - 12.03). Red represents OR > 1, which is a
risk factor for poor outcome; Green represents OR< 1, which is a protective factor for good outcome; Black represents no predictive value; Cut-off values
represent OR values much larger than 5. The results are adjusted by post hoc Bonferroni correction, and significant p-value is 0.05. IDSCN, individual
differential structural covariance network; FC, functional connectivity; EFRS, exome functional risk score; ROI, region of interest.
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of two of them. Finally, we adopted SVR algorithm in this study with

the consideration that SVR has advantages in dealing with massive

amounts of data, thus effectively identifying the genetic imaging

factors related to the outcomes of children with ASD.
4.1 Outcome situations of children
with ASD

In this study, 33.33% of children with ASD achieve optimal

outcome, losing the diagnosis for ASD. The rate of recovery is in the

range of 0–37% mentioned above (9–13), consistent with the results

of previous studies. However, we exclude these ASD children with

IQ< 70 and comorbid other neuropsychiatric disorders, meaning

that the truly rate of recovery is much lower than 33.33%, thus

requiring larger samples to replicate. Children with optimal

outcome (ASD- group) also perform better social adaptability

than those with poor outcome (ASD+ group), which is consistent

with the results of Harstad’ study that 37% of the children who were

clinically diagnosed with ASD at 12 to 36 months did not continue

to meet diagnostic criteria for ASD at 5 to 7 years of age, and

emphasized that the most related factor with the nonpersistent ASD

was adaptive skills (12).

We found that ASD EFRS could predict social adaptability of

children with ASD 4 years later, suggesting that outcome conditions

of ASD children are affected by genetic regulation. A large

population-based study from the UK Biobank found that social-

isolation polygenic risk score (PRS) predicted friendship at 18 years

old, demonstrating that the genetic factors are able to predict related

social traits (51), which is agreement with our results. Social

adaptability is an important prognostic indicator. A previous

study has demonstrated that PRS could predict the severity of
TABLE 4 ASD EFRS associated with 10 pairs of FC.

abbreviation
brain
regions

abbreviation brain regions

MOG.L left middle
occipital
gyrus

PAL.L left pallidum

MOG.L left middle
occipital
gyrus

PCL.R right
paracentral lobule

PCUN.L left
precuneus

SFGmed.L left superior frontal
gyrus, medial

PCUN.L left
precuneus

SFGmed.R right superior
frontal
gyrus, medial

IPL.R right inferior
parietal
lobule

SOG.L left superior
occipital gyrus

FFG.L left
fusiform
gyrus

SFGmed.R right superior
frontal
gyrus, medial

FFG.L left
fusiform
gyrus

MFG.R right middle
frontal gyrus

IOG.R right inferior
occipital
gyrus

IOG.L left inferior
occipital gyrus

ACG.R right anterior
cingulate
gyrus

ORBsup.L left superior frontal
gyrus, orbital part

REC.L left
gyrus rectus

IFGoperc.R right inferior
frontal gyrus,
opercular part
FC, functional connectivity; EFRS, exome functional risk score.
FIGURE 5

Mediation model of EFRS, brain connectivity and behaviors of children with ASD. EFRS has a direct effect on the FC of MOG.L and PAL.L (r - -0.47, p< 0.001);
FC of MOG.L and PAL.L has a direct effect on communication symptom (r - -0.36, p = 0.009); EFRS has no direct effect on the communication (r = -0.10, p
= 0.462), but an indirect effect (r = 0.17, p=0.03), through the mediation of FC of MOG.L and PAL.L (CMIN = 80.66, DF = 42, p< 0.001, CFI = 0.867, AIC =
152). The black solid line indicates direct effect; the black dashed line indicates the path without significance; the green solid line indicates indirect effect. r is
the path weight; EFRS, exome functional risk score; MOG.L- PAL.L, functional connectivity between left middle occipital gyrus and left pallidum; ADI-R
communication: communication subscale of the autism diagnostic interview-revised (ADI-R).
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ASD (27), while in our study, we failed to draw this conclusion; Our

results shown that exome risk score could not predict the severity of

autism symptoms, which could be due to the small cohort size of

this study.
4.2 Relationships between brain
connectivity and the outcomes of children
with ASD

We identified 19 pairs of FC associated with autism symptoms

severity at follow-up (Table 2), 10 pairs of FC and 4 pairs of IDSCN

associated with social adaptability at follow-up (Table 3), and 10 pairs of

FC associated with ASD EFRS (Table 4) by SVR models. Associated

brain regions with prognostic predictive effects are mainly distributed in

the extensive cortex regions and pallidum and amygdala of subcortical

regions for FC, and the temporal cortex, thalamus, and hippocampus

for IDSCN. The big differences between FC and IDSCNmay stem from

the limited cohort size, while in the other hand, which might reflect the

intrinsically heterology in brain connectivity revealed by FC and

IDSCN. In our study, FC obtained more significant results than

IDSCN, which supports the results of Traut who claimed that

functional MRI was more important for prediction than structural

MRI (52). One of the reason is that FC reflects the organization and

inter-relationship of spatially separated brain regions (53), alteration in

brain FC is expected to provide potential biomarkers for classifying or

predicting brain disorders. Previously, Guo identified two ASD subtypes

based on the inter-individual deviation of FC patterns, which could

predict the severity of social communication impairments and the

severity of restricted and repetitive behaviors in ASD (54). Buch

identified three latent dimensions of functional brain network

connectivity that predicted individual differences in ASD behaviors

(55). Our results provide further evidence that FC could predict social

adaptability of ASD children at 4 years’ follow-up, involved brain

regions including occipital cortex, paracentral lobule, temporal cortex,

amygdala, superior frontal gyrus, parietal cortex (Figures 4B, C).

Structural covariance network (SCN) was introduced to explore the

network level alterations (56), representing the covariance of

morphological characteristics between regions, reflecting anatomical

correlations in brain structure between brain regions (56–58). Previous

researches about SCN based on gray matter density manifested that

ASD showed greater covariance between right posterior cingulate

cortex and right temporal compared with typically developmental

controls (56, 59). In this study, we introduced individualized

differential SCN (IDSCN), aiming to explore the heterogeneity of

ASD from a structural perspective using SCN constructed at the

individual level. Research mapped IDSCN based on Autism Brain

Imaging Data Exchange (ABIDE) database to identify structural

covariances, and found that IDSCN of ASD differed significantly

from controls mainly involved frontal and subcortical regions (60).

However, the research about relationship of the IDSCN and outcomes

of ASD is few, our study fills this gap. In this study, we found IDSCN

could also predict social adaptability of ASD children at follow-up,

mainly involved thalamus, hippocampus, temporal cortex (Figure 4B).

Further studies are needed to investigate the underlying mechanisms

by which the brain predicts social adaptability of ASD.
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4.3 Neuroimaging genetics findings on the
outcomes of children with ASD

We explored the relationship of EFRS, brain connectivity and

behaviors of ASD children, and found that ASD EFRS could not

independently affect autism symptoms, but through the mediation of

the FC of middle occipital gyrus (MOG) and pallidum (PAL) (see

Figure 5), indicating that FC of MOG and PAL may be involved the

neuroimaging mechanism of social communication symptoms of ASD

caused by polygenic genetic risk. Previous brain imaging studies have

also revealed evidence for genetic variations in brain activities

underlying behavior, for example, it has been found that both local

network metrics of the right hippocampus and its functional

connectivity with the basal ganglia and thalamus mediated the

relationship between the oxytocin receptor gene and interdependence

(61); our results provide additional evidence of mediation role of the FC

of MOG and pallidum in the genetics of ASD. Likewise, our findings

further suggest a pathway from EFRS to behaviors of ASD, mediated by

the FC from MOG to the pallidum. This result indicates that FC of the

MOG and pallidum has a genetic basis and that theMOG and pallidum

are crucial to the predictive prognosis of children with ASD.

Due to rapid developments in genomics and imaging

technologies, neuroimaging genetics studies of ASD have developed

in the last few years. Neuroimaging genetics helps to identify ASD-

risk genes that contribute to structural and functional variations in

brain of ASD patients (55, 62, 63), providing a better understanding

of the disorder’s neuropsychiatry, and helping identify targets for

therapeutic intervention that could be useful for the clinical

management of ASD patients. Approaches of integrating

neuroimaging and genetics to link gene pathways to

neurobiological and phenotypic heterogeneity can reveal subtype-

specific gene-brain-behavior associations (64). Recent research

leveraged this method to identify three robust dimensional

biomarkers, that was gene, brain and behaviors, to parse

heterogeneity in ASD into 4 subgroups (55, 65). Within each

subgroup, ASD-related FC was explained by regional differences in

the expression of distinct ASD-related gene sets (55). These studies

provide evidence that polygenic variation in ASD may manifest as

intermediate behavior-related brain circuits that give rise to

distinguishable ASD subgroup phenotypes by modulating

connectivity in ASD-related networks. However, neuroimaging

genetics studies about prognosis of ASD is limited, this motivates

future research evaluating the reproducibility, validity, and clinical

utility of ASD dimensional and subtype models in the outcomes of

ASD. In the long term, there is translational potential for prognosis

and targeted pharmacological and circuit-based therapies for ASD.
5 Limitations

Limitations of this study should be noted. Firstly, although this is a

longitudinal follow-up study, we did not acquire the MRI data at

follow-up, missing the predicting value of neuroimaging trajectory on

the outcomes of ASD children. Secondly, our participants were limited

to individuals with high-functioning ASD, as well as the limited cohort

size, the explanation and generalization of the results in this study must
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be cautious. ASD is a heterogeneous neurodevelopmental disorder,

showing great differences in terms of genetic predisposition, brain

imaging, behaviors, and cognitive functions, so it is necessary for future

studies to expand sample size to precisely identify neuroimaging

genetics predictive biomarkers of prognosis of ASD children. In

addition, this is a single cite study, so it is difficult to replicate across

datasets. The last but not the least, we did not control the interventions

of the affected children in this study, most of whom received non-

systematically short-term, not qualified social and behavior

interventions, thus, it is unlikely true that intervention factors have

effects on the outcomes. In the future, larger cohort frommultiple study

cites, and more rigorous study design such as giving thought to

interventions are needed to confirm our results.
6 Conclusions

Both EFRS and brain connectivity especially FC can predict the

social adaptability outcomes of ASD children. The FC of left middle

occipital gyrus and left pallidummediates the relationship of EFRS and

social communication of ASD, suggesting that occipital gyrus and

pallidum play an important role in the etiology of ASD exome

polygenic genetic risk and may be the intervention targets in the

prognosis of children with ASD. Our findings could improve

understanding of the neuroimaging genetics of ASD and suggest

potential intervention targets to improve the outcomes of children

with ASD.
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