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Background: Schizophrenia (SZ) is a psychiatric condition that adversely affects

an individual’s cognitive, emotional, and behavioral aspects. The etiology of SZ,

although extensively studied, remains unclear, as multiple factors come together

to contribute toward its development. There is a consistent body of evidence

documenting the presence of structural and functional deviations in the brains of

individuals with SZ. Moreover, the hereditary aspect of SZ is supported by the

significant involvement of genomics markers. Therefore, the need to investigate

SZ from a multi-modal perspective and develop approaches for improved

detection arises.

Methods: Our proposed method employed a deep learning framework

combining features from structural magnetic resonance imaging (sMRI),

functional magnetic resonance imaging (fMRI), and genetic markers such as

single nucleotide polymorphism (SNP). For sMRI, we used a pre-trained

DenseNet to extract the morphological features. To identify the most relevant

functional connections in fMRI and SNPs linked to SZ, we applied a 1-dimensional

convolutional neural network (CNN) followed by layerwise relevance

propagation (LRP). Finally, we concatenated these obtained features across

modalities and fed them to the extreme gradient boosting (XGBoost) tree-

based classifier to classify SZ from healthy control (HC).

Results: Experimental evaluation on clinical dataset demonstrated that,

compared to the outcomes obtained from each modality individually, our

proposed multi-modal approach performed classification of SZ individuals

from HC with an improved accuracy of 79.01%.

Conclusion: We proposed a deep learning based framework that selects multi-

modal (sMRI, fMRI and genetic) features efficiently and fuse them to obtain
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improved classification scores. Additionally, by using Explainable AI (XAI), we

were able to pinpoint and validate significant functional network connections

and SNPs that contributed the most toward SZ classification, providing necessary

interpretation behind our findings.
KEYWORDS

schizophrenia, multi-modal, imaging genetics, deep learning, explainable artificial
intelligence (XAI), single nucleotide polymorphism (SNP), functional network
connectivity (FNC), structural magnetic resonance imaging (sMRI)
1 Introduction

Schizophrenia (SZ) affects approximately 1 in 300 individuals,

with a global prevalence of around 24 million people, as reported by

the World Health Organization (WHO) IHME (1). People with SZ

could experience symptoms such as auditory and visual

hallucinations, delusional thoughts, and disorganized thinking

and behavior Frith et al. (2). The condition causes significant

distress for the individual affected and also has an impact on their

interpersonal connections, imposing a substantial burden on their

personal and social life. In our society, SZ has a significant social

and financial impact. People suffering from SZ often need medical

attention, which further adds to these costs. SZ symptoms overlap

with those of other mental disorders, making it difficult to precisely

and promptly diagnose SZ Andreasen (3). The etiology of SZ,

although extensively studied, remains unclear, as multiple factors

come together to contribute toward its development. It is a

complicated and heterogeneous neuropsychiatric disorder, that

raises the necessity to study it from a multi-modal perspective.

Our objective is to fulfill this goal by using a multi-modal approach

where SZ is evaluated from morphological, connectivity, and

gnomic standpoints. By effectively fusing features from these

domains, an explainable deep learning-based framework was

developed that is capable of representing this heterogeneous

disorder better and can be used in further classification approaches.

Structural and functional deviations within the brain structure

are significant factors in this contextHaukvik et al. (4). MRI scans of

individuals with SZ exhibit subtle variations in brain structure and

function, such as diminishing brain tissue and abnormal neural

connections Lawrie et al. (5) Andreou and Borgwardt (6). There is a

consistent body of evidence documenting the presence of structural

deviations in the brains of individuals with SZ. However, these

changes are non-specific and so subtle that they are easily

overlooked by human experts. This raises the need for an

automated diagnosis system that can analyze MRI data with

meticulous precision and detect even the most subtle changes

with high accuracy.

Several methods for the automatic classification of individuals

with SZ Schnack et al. (7) SupriyaPatro et al. (8) using brain MRI

had already been developed. One such method developed by Lung-
02
Hao et al. Noble (9) used a support vector machine (SVM) based on

brain-wise functional connectivity (FC) to classify SZ-affected

individuals, and healthy controls based on the resting-state

functional magnetic resonance imaging (rs-fMRI) Lee et al. (10).

Wismuller et al. WismüCheck that all equations and special

characters are displayed correctly.ller and Vosoughi (11) adopted

an extended Granger causality technique to extract features from

brain MRIs, which were then classified using SVM after identifying

key attributes using Kendall’s tau rank correlation coefficient.

However, these approaches frequently encounter difficulties in

obtaining relevant features from brain MRIs. Deep learning has

enabled the use of Convolutional Neural Network (CNN)

architecture for automated feature learning from images Sadeghi

et al. (12). Researchers used 3D sMRI data with deep learning

models to collect significant spatial and morphological features

Kanyal et al. (13)Mazumder et al. (14). In their study, Hu et al. used

pre-trained 2D and 3D CNN models, as well as 3D sMRI

technology Hu et al. (15), which aligned well with the

“disconnection” hypothesis Frith et al. (16), which associated SZ

symptoms with irregular neural connectivity networks and

impaired cognitive process coordination. Data from functional

brain connectivity had also been utilized with deep learning

techniques to improve SZ classification outcomes. Phang et al.

(17) Zheng et al. (18) Alves et al. (19) Oh et al. (20)

On the other hand, the hereditary aspect of SZ is supported by

the significant involvement of genomics markers. Single-nucleotide

polymorphisms (SNPs), which are variations in a single DNA

nucleotide, have become important genomics markers that

contribute toward the classification and explanation of SZ making

genomics information useful in understanding and diagnosing SZ

Corvin and Sullivan (21)Hannon et al. (22)Zamanpoor (23). SNPs

reveal the unique variation in humans which can provide insights

into the development of SZ Li et al. (24). However, given the large

number of available SNPs, understanding all of the information

they provide can be difficult. Moreover, employing all of these SNP

variations as features can degrade the employed method’s

performance Janecek et al. (25). Having too many features can be

computationally expensive, and most SNP variations offer little to

no insight into SZ. As a solution, deep-learning based methods can

be employed to reduce data dimensionality while gaining a greater
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understanding of the genomic factors associated with SZ. To resolve

this, we aimed to reduce the number of features employing

explainable AI (XAI), which not only aided in the selection of the

most relevant features but also ensured that the model’s output

become easily interpretable. This is particularly important in high-

stakes environments, such as medical imaging, where the accuracy

and transparency of the model’s decision-making process are

crucial and can help in the better overall diagnosis of disorder.

Using XAI also helps to alleviate concerns regarding biased black-

box deep learning methodologies and ensures that the model

predictions are trustworthy, fair, and safe for use in critical

applications Van der Velden et al. (26). Following that, as sMRIs,

fMRIs, and SNPs all have distinct characteristics and provide

complementary information, evaluating each of these elements

separately generated three distinct latent spaces, which we fused

through concatenation.

In summary, this work aims to identify biomarkers and improve

prediction accuracies by fusing features from different modalities.

Our approach models the SZ classification as a multi-modal

problem which was analyzed with a multi-modal perspective that

included three types of complementary data which provided a more

extensive and nuanced understanding of the genomics and neural

components that contributed to SZ while providing explainability

behind our model’s predictions. Along with the explainability, the

use of XAI helped significantly with feature selections, as using all

available heterogeneous features from different modalities holds the

potential to downgrade the model’s performance.
2 Materials and methods

In Figure 1, we present a visual overview and summary of our

proposed multi-modal approach, leveraging various data modalities

(sMRI, fMRI, and SNP), delineated into two prime stages.
Frontiers in Psychiatry 03
In the first stage, feature extraction and feature selection were

performed from different modalities. The morphological feature

extraction was performed using a pre-trained denseNet121 model

modified to work with 3D sMRIs. Next, the relevance scores of the

1378 functional connections were computed by considering the

flattened lower triangular functional network connectivity (FNC)

matrices. This was archived by utilizing layer-wise relevance (LRP)

on a one-dimensional (1D) CNN that was specifically

trained on the lower-triangular matrix. Next, based on the

relevance scores, the top 249 functional connections were selected

to serve as functional features. Similarly, CNN was utilized to

analyze genomic data which is represented as SNP, and using

LRP the relevance score of each SNP was computed. Based on

these scores, out of 4943 SNPs only a subset of 100 SNPs with the

greatest relevance scores were selected to be used in our

methodology. The selected SNPs served as the genetic features

with the most genomic information for our classification task.

Access to class labels (SZ diagnosis) for all the subjects in our

experiments, meant all of our employed deep learning models were

performing supervised learning tasks.

For the second stage, the selected features from sMRI, FNC, and

SNP modalities were merged and following that the merged data

was fed into an extreme gradient boost (XGBoost) Classifier. The

motivation to use XGBoost for SZ classification came from past

studies Gheshlaghi et al. (27) that successfully utilized transfer

learning methodologies to categorize images of breast cancer

histopathology. These investigations had shown that XGBoost is

an effective classifier when dealing with multiple modalities of data

sources. Moving forward, we provide a detailed description of the

methods we used, diving deep into the intricate methods related to

extracting features, determining relevance scores, and combining

different types of data. The idea is to offer a clearer insight into how

our proposed multi-modal deep learning approach works for

SZ classification.
FIGURE 1

Method Overview: Initially, a memory-efficient, pre-trained DenseNet121 was used to extract morphological characteristics from 3D sMRI. Then,
layer-wise relevance propagation following the 1D pre-trained CNN was utilized to select the top 249 FNC connections from all 1378 FNC
connections and consider them as functional features. Similarly, the 100 most significant SNP features were selected using a pre-trained CNN with
LRP. These features were then concatenated and fed into the XGBoost model for SZ classification.
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2.1 Dataset

For our experiments, a subset of the Functional Brain Imaging

Research Network (FBIRN), The Bipolar and Schizophrenia

Network for Intermediate Phenotypes (BSNIP), and the Center

for Biomedical Research Excellence (COBRE) datasets were

meticulously selected, encompassing participants diagnosed with

schizophrenia (SZ) and healthy controls (HC). The dataset contains

the sMRI, fMRI, SNP, and patient behavior of the subjects. For our

investigation, the subjects were strictly limited within these cohorts

having comprehensive data across sMRI, functional network

connectivity(FNC), and genomics.

BSNIP Tamminga et al. (28) dataset is a collection of data from

a network of laboratories striving to reveal phenotypes, genotypes,

and biomarkers to elucidate psychosis. The consortium has made a

dense phenotype process with the help of people who are grappling

with psychosis all their lives, their family members, and healthy

controls. This has created a database of biological information

about people with SZ, schizoaffective disorder, and bipolar

disorder with psychosis. The dataset encompasses 397 subjects

diagnosed with SZ, possessing a mean age of approximately 35.7

years, among which there are 327 males. In comparison, the control

group constituted of healthy individuals consists of 459 members

exhibiting a mean age to around 36.5 years and includes 210 males.

From BSNIP, a total of 96 healthy controls and 105 SZ-diagnosed

subjects were included in our study with an average age of 36.37

years. Out of the selected subjects, there were 118 males and

83 females.

The FBIRN Keator et al. (29) dataset includes functional brain

imaging data in addition to linked clinical and demographic

information from participants. In the research cohort, 110 healthy

controls and 76 patients with SZ were incorporated with an average

age of 37.19 years. The age range of participants spanned from 18 to

62 years old. In the included subjects there were 146 males and 40

females. The repository contains structural and functional brain

imaging data, clinical data, and cognitive data from people with SZ

and HC. This dataset has been utilized for a broad variety of

research purposes, such as examining the neuronal basis of

various mental disorders, developing computational tools for

evaluating brain data, and exploring biomarkers for detecting and

comprehending brain-related conditions.

The COBRE provides raw anatomical and functional MR data

from a total of 75 healthy controls and 72 patients diagnosed with

SZ ranging in age from 18 to 65 years old in each group with an

average age of 38.89 years. All of the individuals were screened, and
Frontiers in Psychiatry 04
those who had a history of certain conditions led to their exclusion

from the study. These conditions included a history of neurological

illness, a history of mental retardation, a history of serious head

trauma with more than five minutes of loss of consciousness, and a

history of drug addiction or dependency within the previous year.

In the included participants there were 83 males and 22 females.

Table 1 summarizes the dataset used in this study, including the

source dataset from which the subset was obtained, along with the

subjects in each class and their overall total. In total, our research

dataset comprised of 492 participants, including 219 diagnosed with

SZ and the residual group consisted of 273 healthy controls.
2.2 Feature extraction

Prior to the utilization of compiled data in experimental trials,

confirmation of some degree of standardization across datasets is

imperative. The steps for pre-processing the raw data is replication

from the work of Rehman et al. Rahaman et al. (30) where they used

statistical parametric mapping and MATLAB-based tools.

sMRI is a three-dimensional (3D) map of brain morphology.

The raw sMRI from all three datasets were processed using

statistical parametric mapping (SPM12) in MATLAB using a

reference brain image to spatially register our raw images. This

was followed by joint bias correction, after which the brain tissues

were categorically separated into white matter, grey matter, and

cerebrospinal spinal fluid using which the

grey matter volume (GMV) was extracted. We selected the 3D

grey matter density maps because it has strong spatial information

that can be used to identify subtle alterations in the brains of SZ

patients. Our processed output 3D grey matter density map had the

dimensions of 121 × 145 × 121 voxels.

To extract the morphological features from the 3D sMRI, we

used a pre-trained network called the denseNet121 Huang et al. (31)

modified to work with 3D sMRI. Using denseNet, we were able to

analyze the gray matter density maps that were obtained from

sMRI. By using a pre-trained network, we adopted the transfer

learning approach for extracting the morphological features.

The transfer learning approach uses the learning obtained from

similar tasks to boost performance on a new task. This technique is

valuable in analyzing medical images as it aids in overcoming the

issue of medical data scarcity while also conserving time and

computing resources Kim et al. (32). In relation to CNNs,

transfer learning uses a pre-trained model and fine-tunes it for a

specific task within medical imaging. The objective is to retain the
TABLE 1 Dataset description.

Datasets
Gender

(Male/Female) Age (Years) Healthy Control Schizophrenic Total

FBIRN 146/40 37.19 ± 10.60 110 76 186

COBRE 83/22 38.89 ± 13.11 67 38 105

BSNIP 118/83 36.37 ± 12.27 96 105 201

Total 347/145 37.48 ± 11.99 273 219 492
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fundamental characteristics comprehended by the model in its

preliminary layers, and adjust subsequent layers congruent with

our specific data and application scenario Kim et al. (32).

Transfer learning can be leveraged to extract features from the

final layer of a pre-trained network and can also circumvent the

issue of over-fitting. The application of transfer learning as a feature

extraction strategy demonstrated enhanced performance on a

restricted medical imaging dataset, specifically in the classification

of breast histopathological images. Lang et al. (33)

In a standard CNN, the output from (n − 1)-th layer serves as

the input to the (n)-th layer. This flow can be represented using

X(n) = Hn(X
(n−1)), with Hn denoting the non-linear transformation

used at each step. This configuration of layers can cause an issue of

vanishing gradients from the back layers to the layers at the front.

Huang et al. (31) proposed DenseNet, which uses dense block

structures, as a solution to this problem. These provide connections

between every previous (L) layer and the current n-th layer in

addition to its immediate predecessor (n − 1)-th layer, enabling

efficient information transfer and preservation across all layers in

our network as shown in Equation 1:

X(n) = Hn(½X(n−L) +⋯+X(n−2) + X(n−1 0�) (1)

The utilization of the configuration delineated in Equation 1

enhances inter-layer information transmission, consequently

optimizing gradient flow. The 3D CNN utilizes a kernel of

dimensions 7 × 7 × 7 and max-pooling to process the input data,

which subsequently flows through the initial dense blocks. In these

dense blocks, the number of layers is variable, and each of these

layers comprises two 3D CNNs with distinct-sized kernels. The

convolutional filters have dimensions of 1×1×1 and 3×3×3. The

employment of the initial 3D-CNN results in a reduction

in the dimensions of the feature map, thereby enhancing

computational efficiency. The transition stage between the blocks

consists of three distinct steps: first, the application of the ReLU

activation function, then batch normalization, and last, reduction

pooling between neighboring dense blocks. Subject-unique features

are expressed using an output vector (Xi) comprised of 1024

features, generated upon the application of a concluding global

averaging layer Yu et al. (34).

Functional network connectivity (FNC) is a two-dimensional

(2D) matrix representation of connectivity strengths between

different regions of the brain. Functional magnetic resonance

imaging (fMRI), a four-dimensional brain scan, measures changes

in blood flow prompted by brain activity over time to produce the

FNC. The fMRI was also pre-processed using the SPM12 Ashburner

et al. (35) toolkit. To ensure that a steady state of magnetization was

achieved, the initial five-time points from fMRI scans were

disregarded. Thereafter, rigid body motion correction was

performed to rectify any head movement by the subject. This was

followed by slice-timing correction to address timing differences

during slice acquisition. The brain can be divided into network

components using Independent Component Analysis (ICA) Du

et al. (36). Each component has its unique time course. FNC was

calculated by measuring the changes among these component-time

courses over time. This was done by calculating cross-correlations
Frontiers in Psychiatry 05
between the different brain networks (components). Calhoun et al.

(37). As a result, we obtained a 53×53 diagonally symmetric 2Dmatrix

for each subject depicting their functional network connectivity.

Due to the symmetrical characteristics of the FNC matrix, we

extracted 1378 connections from its lower triangular matrix. The

objective was to pinpoint the most crucial connectivity associations

linked with SZ, employing these as connectivity features which

significantly enhanced the model’s classification performence while

minimizing time and computational resource usage. This was based

on the idea that using a large number of features can adversely affect

our model’s accuracy. A pre-trained one-dimensional CNNs was

used specifically for carrying out layer-wise relevance propagation

(LRP) on the FNC. In subsection 2.3, necessary details are provided

regarding LRP. The application of LRP yielded relevance scores for

each of the 1378 connections from the lower triangular matrix. On

this, we performed feature selection by only keeping the top 249

connections that we utilized in our further analyses. The

summation of all relevance scores yielded a total of 1. The

selection process of the top 249 connections exclusively included

features with relevance scores exceeding the threshold set at 0.002,

identified through iterative experimentation and evaluation.

For the genetic data, the datasets were merged and preprocessed

by the PLINK pipeline Purcell et al. (38). PLINK provides a robust

and easy-to-use platform for executing numerous standard analyses

using data from the entire genome. In our research, we shortlisted

4943 single nucleotide polymorphisms (SNPs) found within 108

risk Loci linked to SZ Chen et al. (39) Pantelis et al. (40). This was

based on the findings from genome-wide association studies done

by the Psychiatric Genomic Consortium for SZ. SNPs are a type of

genomic variation that exists within the human genome. There are

over 9 million SNPs documented in public SNP databases. These

SNPs play an important role and act as key indicators in scientific

research probing into the effects of variations in our genomes. Yang

et al. (41) Kim and Misra (42) Aguiar-Pulido et al. (43) Zhao et al.

(44) The genomic information is obtained through SNPs, which

facilitates the differentiation between individuals with SZ and those

who are healthy. The genomic data about SNPs is characterized by a

higher dimensionality, with the majority of these SNPs being

unrelated to SZ as noted in the study by Yu et al. Yu et al. (34).

Therefore, it is essential to reduce the number of SNPs. A subset of

4943 SNPs associated with SZ risk was utilized, based on findings

from the psychiatric genomic consortium. A one-dimensional 1D

CNN was used in conjunction with layer-wise relevance

propagation (LRP) to identify the leading 100 SZ-associated

SNPs, which were subsequently utilized as the genomic features

denoted as Wi.
2.3 Explainable artificial intelligence (XAI)
and feature selection

As we adopted a multi-modal approach in our work, the feature

space can grow extremely large, and most of these features offer

little to no insights into the pathways of SZ. The SNPs alone can

provide tens of thousands of features that don’t contribute much to
frontiersin.org
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our model’s output. Along with that, there are functional

connections too that have little influence over our model’s

predictions. Thus, we needed a mechanism to perform feature

selection, as processing a large feature set can be computationally

expensive and could lead to the model making poor predictions

rather than improving them. We overcame this challenge by

employing XAI in our line of work. Employing XAI, we aimed to

identify features from each modality that contributed the most to

our model output. Following that we fused these features effectively

to make the final predictions.

The purpose of explainable artificial intelligence (XAI) is to

enable human experts to comprehend the underlying causes that led

to the formation of an AI’s classification Pearl (45). XAI involves a

set of procedures and methodologies that, when combined, allow

users to understand and trust the results and outputs generated by

machine learning algorithms Holzinger et al. (46). Most of the deep

learning models are considered as black boxes that are impossible to

comprehend Rocha et al. (47) Rudin (48). Deep learning utilizes

neural networks, which are among the most complex and difficult

for a human to understand. Chaddad et al. Chaddad et al. (49) have

classified various AI techniques into ten categories: machine

learning, neural networks and deep learning, data mining,

knowledge discovery, and advanced analytics, rule-based

modeling and decision-making, fuzzy logic-based approach,

knowledge representation, uncertainty reasoning, and expert

system modeling, case-based reasoning, text mining and natural

language processing, visual analytics, computer vision and pattern

recognition, hybridization, searching, and optimization. Several

commonly used techniques in the field of explainable AI include

feature importance analysis, rule extraction, surrogate models,

visualizations, and counterfactual explanations. Feature

importance analysis involves the identification of the most

significant features within a model that contribute to its output.

The process of rule extraction involves the extraction of rules from a

model that is readily understandable to human beings. The concept

of surrogate models involves the development of a simplified model

that serves as an approximation for the behavior exhibited by a

more complicated model. Visualizations involve generating visual

depictions that portray data and models used within artificial

intelligence systems. Counterfactual explanations generate

hypothe t i ca l s cenar ios tha t cou ld have resu l t ed in

different outcomes.

The core idea underlying the LRP algorithm for attributing

relevance to individual input nodes is to trace back contributions to

the final output node layer by layer Böhle et al. (50). The method of

LRP has been established as a means of achieving explainable

artificial intelligence it enables the decomposition of a deep neural

network’s prediction over a sample, such as an image, into relevance

scores for the single input dimensions of the sample, such as the

pixels in an image Binder et al. (51). The proposed method uses a

deep neural network’s back-propagation rule to calculate the

relevance score for each feature for the classification outcome.

The LRP is characterized by the preservation of information

during the propagation process. Specifically, the neurons located

in the lower layers of the neural network receive equal information

from the upper neurons in a precise manner.
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The characters l and m symbolize two neurons found in

successive layers of the neural network. The function in Equation

2 shows the transmission of relevance scores Rm from a given layer

to neurons located in the previous layer:

Rl =o
m

zlm

olZlm
Rm, (2)

The variable zlm denotes the extent to which neuron l has

contributed to the relevance of neuron m. The significance of the

topmost layer can be found by computing the maximum value of

the final activation. In order to effectively implement conservation,

it is necessary for Equation 2 to maintain the constraint thatolzlm
remains constant, thereby ensuring that the overall level of

relevance remains consistent as it transitions between layers. The

propagation process is terminated when the next neuron is the

input one. After applying the Equation 2 to individual neurons, it is

crucial for the networks to maintain their layer-wise conservation

property. The equation olR
l =omRm

m holds true. Upon the

global application of the conservation property, it becomes

possible to derive the rankings Rj, j =  f1,⋯,Mg for all M-

dimensional input vectors from the model output.

The relevance score Rj denotes the impact of each network

connection in the SZ classification. The sorting of all 1378

functional network connections based on their relevance score

lead to the selection of the top 249 FNCs associated with SZ as

the connectivity feature Zi for a given subject i.
2.4 Data fusion and classification

At this stage we already obtained features from three different

modalities ready to be fused and evaluated. To summarize, for each

subject i we had 1024 morphological features, which can be denoted

by xi, we used 249 functional network connections, denoted by yi,

and 100 genomics features, denoted by zi. The fusion of these

features is shown in the Equation 3:

Fi = Xi ⊕ Zi ⊕Wi, (3)

Here, the ⊕ operator represents the vector concatenation.

We chose to use the XGBoost algorithm for our data classification

due to its proven efficacy, as reported in previous studies Friedman

(52) Livne et al. (53) Le et al. (54) Zhang et al. (55). XGBoost has been

recognized for its exceptional capacity to tackle intricate issues in self-

supervised learning involving large datasets. The architecture of the

XGBoost combines both classification and regression trees (CART),

resulting in a substantial acceleration of execution speed. By

employing such a combination approach, it can address problems

that would ordinarily be quite challenging with other classifiers. This

model can predict the binary labels yi as shown below:

yi =o
t
 ft(Fi), ft ∈ z (4)

In Equation 4, f represents a functional domain function, z
represents all possible CARTs and t denotes the number of trees.

Given that individual CART parameters drive XGBoost parameters,

identifying optimal parameter combinations during training

sessions is crucial.
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3 Results

This section goes over the experiments we conducted using our

proposed deep learning based SZ prediction methodology. To assess

the validity of our proposed method, we used 5-fold cross-

validation with 80: 20 training testing split ratio. We also utilized

this for tuning the parameters of the XGBoost classifier. Our

experimental findings are further divided into quantitative

(subsection 3.1) and qualitative evaluation (subsection 3.2) to

explain our results in a broadly manner.
3.1 Qualitative evaluation

To recognize and examine critical connections impacting the

result within functional network connectivity, we used Layerwise

Relevance Propagation (LRP). This method was applied specifically

to the lower triangular matrix in identifying and extracting the top

249 crucial features from an initial pool of 1378 features. These were

derived from all three employed different datasets: the Functional

Biomedical Informatics Research Network (FBIRN), Consortium

for Neuropsychiatric Phenomics (COBRE), along Bipolar-

Schizophrenia Network on Intermediate Phenotypes (BSNIP)

datasets. The top 25 of 249 functional network connections

between various regions of the brain used in our study are

illustrated in Figure 2. It is important to note the connections

observed in both the subcortical (SC) and sensorimotor (SM) areas,

underscoring their vital importance. Furthermore, the connections

with the highest relevance scores were found in the sensorimotor

(SM) and default-mode (DM) regions. This observation was

consistent with clinical research that indicates the disruption of

interactions between subcortical and cortical regions as the cause

that underlies SZ Karbasforoushan and Woodward (56) Wheeler

et al. (57) Hummer et al. (58).

In addition, our approach successfully identified SNPs linked to

SZ, with particular emphasis on rs217291, rs217290, rs3798869, and

rs217289 as the top four most significant genomic indicators. This

discovery provides strong support for the findings of genome-wide
Frontiers in Psychiatry 07
association studies (GWAS) Dennison et al. (59), further

emphasizing the significance of genomic makers in classifing

individuals with SZ from HC.
3.2 Quantitative evaluation

To perform a thorough quantitative evaluation, we meticulously

assessed the efficacy of our performed binary classification. Table 2

summarizes our obtained results.

The XGBoost classifier attained a 66.35% accuracy rate solely by

using sMRIs extracted morphological features, showcasing its

efficacy in using sMRI data to differentiate between individuals

with SZ and HC. Also, the XGBoost classifier displayed a notable

57.06% accuracy rate when using only SNP features, highlighting its

competence in adeptly handling genomic data for classification tasks.

The XGBoost classifier demonstrated a noteworthy accuracy of

75.29% by using the 249 FNC connections that were chosen by the

use of layer-wise relevance propagation (LRP). This points toward

the significance of network connectivity in accurately distinguishing

between SZ and healthy control subjects, thus highlighting it’s

significance as a potential clinical biomarker.

The most significant performance improvement was observed

after incorporating all three modalities. By effectively combining the

249 functional connections, 100 SNPs, and 1024 morphological

features, we obtained improved performance of 79.01%, 78.83%,

79.43% and 78.93% in terms of accuracy, precision, recall and f1-

score, respectively. The use of multi-modal data emphasizes the

combined influence of morphology, genomics, and connectivity,

providing strong evidence for the effectiveness of our

proposed framework.

This study reveals the substantial benefits of a comprehensive

approach that combines and integrates morphological, genomic,

and connectivity data. By merging these three different domains, a

significant performance gain had been obtained in terms of

accuracy, precision, recall and f1-score when classifying SZ

individuals, which may ultimately make a crucial contribution to

the diagnosis and treatment of this neuropsychiatric disorder.
FIGURE 2

Three different views of the brain on the top 25 of 249 functional connections ranked by LRP. These included the subcortical (SC), auditory (AUD),
sensorimotor (SM), visual (VIS), cognitive-control (CC), default-mode (DM), and cerebellar (CB) regions. LRP was employed on the lower triangle of
the functional network connectivity matrix to find the most important 249 connections. Notably, there was a strong connection in the subcortical
(SC) and sensorimotor (SM) areas, emphasizing their crucial significance.
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4 Discussion

Our obtained findings revealed the significance of our proposed

novel multi-modal approach for SZ classification. The obtained

performance gain in terms of all four evaluation indices provided

persuasive evidence that functional network connections outperform

both structural MRI and SNP as classification aspects. Significantly,

the effectiveness of these functional network connections became

particularly evident when compared to traditional sMRI and genomic

data. Additionally, the classification performance tend to follow a

steady growth pattern as we merged features from different

modalities. There’s a significant boost in accuracy when two of

three modalities fused features were employed compared to single

modality features. Our proposed method, also effectively deals with

limited training data and black-box issues of deep learning models.

The employed explainability technique: LRP; performed feature

selection and provided verifiable insights with clinical findings.

Such as the connections between the SM and DM regions had the

highest relevance score and the top four SNPs identified using LRP

were also consistent with genome-wide association findings. These

meticulously selected features provided significant performance gain

during our downstream SZ classification task. The unique distinction

of this approach lies in its revelation that the fusion of these

modalities— FNC, sMRI, and SNP leads to an improved degree of

classification performance. In this study, the integration of multiple

data modalities provided a significant gain for SZ classification,

highlighting the synergistic potential of our approach. Our

proposed approach thus, allows for a comprehensive analysis of SZ

across multiple domains, thereby increasing the likelihood of

identifying any latent markers that the sole use of a single

modality could overlook along with providing improved

classification performance.

To ensure the robustness of our study, all experiments were

performed with 5-fold cross-validation. The process of fine-tuning

the hyper-parameters for the XGBoost classifier was achieved by

iteratively experimenting with different values on the validation set.

The objective of this last fine-tuning process was to enhance the

performance and accuracy of the classifier in its final classification

task. As we move ahead with research, one essential aspect becomes

prominent: the need to standardize magnetic resonance imaging

(MRI) images derived from a range of datasets. This step can

protect against any biases that might inadvertently creep into our

model due to different image contrasts stemming from various

imaging equipment. Implementing this preventive measure has the

potential to yield more balanced results.
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In this work, we introduced a deep learning based multi-modal

framework that incorporated three different modalities (sMRI, fMRI

and SNPs) and leveraged explainable AI to attain better classification

performance while limiting computational resource usage for

identifying SZ individuals from HC. Particularly, 1-D CNN with

LRP was applied on FNCs and SNPs to reduce features by selecting

based on their corresponding relevance scores that resulted improving

the model’s final classification and use of computational resources.

Experimental outcomes obtained by performing evaluation on three

clinical datasets proved the robustness and superiority of our

introduced multi-modal approach.
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