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Introduction: Understanding the mechanisms underlying maternal postpartum

depression (PPD) and its effects on offspring development is crucial. However,

research on the association betweenmaternal PPD, gut microbiota, and offspring

neurodevelopment remains limited. This study aimed to examine the association

of maternal PPD symptoms with early gut microbiome, gut metabolome, and

neurodevelopment in infants at 6 months.

Methods: Maternal PPD symptoms were assessed using the Edinburgh

Postpartum Depression Scale (EPDS) at 42 days postpartum. Infants stool

samples collected at 42 days after birth were analyzed using 16S rRNA

sequencing and liquid chromatography–mass spectrometry (LC–MS)

detection. Infant neurodevelopment was measured at 6 months using the Ages

and Stages Questionnaire, Third Edition (ASQ-3). Correlations between gut

microbiota, metabolites and neurodevelopment were identified through co-

occurrence network analysis. Finally, mediation analyses were conducted to

determine potential causal pathways.

Results: A total of 101 mother-infant dyads were included in the final analysis.

Infants born to mothers with PPD symptoms at 42 days postpartum had lower

neurodevelopmental scores at 6 months. These infants also had increased alpha

diversity of gut microbiota and were abundant in Veillonella and Finegoldia, while

depleted abundance of Bifidobacterium, Dialister, Cronobacter and

Megasphaera. Furthermore, alterations were observed in metabolite levels

linked to the Alanine, aspartate, and glutamate metabolic pathway, primarily

characterized by decreases in N-Acetyl-L-aspartic acid, L-Aspartic acid, and L-

Asparagine. Co-occurrence network and mediation analyses revealed that N-

Acetyl-L-aspartic acid and L-Aspartic acid levels mediated the relationship

between maternal PPD symptoms and the development of infant problem-

solving skills.
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Conclusions: Maternal PPD symptoms are associated with alterations in the gut

microbiota and neurodevelopment in infants. This study provides new insights

into potential early intervention for infants whose mother experienced PPD.

Further research is warranted to elucidate the biological mechanisms underlying

these associations.
KEYWORDS

postpartum depression, neurodevelopment, gut microbiome, gut metabolome, gut-
brain axis
Introduction

Postpartum depression (PPD) is a prevalent mental health

issue in the perinatal period, affecting approximately 17.2% of

mothers globally, with rates varying from 6.5% to 60.9% across

different populations (1). This condition may emerge during

pregnancy or persist beyond the first postpartum month,

possibly lasting several years. PPD not only jeopardizes the

physical and mental well-being of mothers, but is also linked to

adverse impacts on the development and behavior of infants (2).

Previous studies have shown that postpartum depressive

symptoms were associated with delayed early child development

(3) and reduced verbal Intelligence Quotient (IQ) in offspring (4).

Similar findings have been observed in animal models, where

offspring from stressed dams had increased anxiety-like behavior

and behavioral deficits compared to those from non-stressed

mothers (5, 6). Elucidating the potential biological mechanisms

behind these associations is the key to the development of

strategies for early intervention in at-risk infants.

The early stages of life represent a critical window for gut

microbial colonization, influencing infant health in terms of

growth, neurodevelopment, and temperament (7, 8). Factors such

as maternal emotional status can shape the composition of the

infant’s early-life gut microbiota. Research indicates that infants

born to mothers with higher reported levels of anxiety and

perceived stress had less alpha diversity and lower abundance of

Bifidobacterium dentium (9). Furthermore, maternal depressive

symptoms have been linked to reduced fecal Immunoglobulin A

concentrations in infants (10). However, longitudinal studies

examining the infant gut microbiota in mediating the effects of

maternal PPD on infant health outcomes are lacking.

Therefore, we hypothesize that infants born to mothers with

postpartum depressive symptoms are subject to early gut

microbiota composition and influencing neurodevelopment.

Leveraging data from our previous randomized controlled trial

(11), this study aims to investigate the association of maternal

PPD symptoms with infant gut microbiota and neurodevelopment.
02
Materials and methods

Study participants

This study was derived from a triple-blinded randomized

controlled trial investigating the effects of vaginal microbiota

transfer on the gut microbiome and early neurodevelopment of

infants born by cesarean delivery (11). Vaginal delivery cases during

the same period served as natural controls. Pregnant women were

enrolled from December 2020 to July 2021 at a tertiary teaching

hospital in Guangdong, China. Eligible participants were women

aged 18 years or older, with singleton intrauterine pregnancies, and

newborns who were alive with a gestational age of over 37 weeks.

Women were excluded if they were infected with sexually

transmitted diseases (STDs), including syphilis, HIV, gonorrhea,

and chlamydia. This study enrolled mothers regardless of their

delivery mode. Newborns with Apgar scores less than seven at one

minute after birth, as well as those with any congenital anomalies or

intrauterine infections, were excluded. Given that the focus of this

study was to explore the effects of maternal PPD symptoms on

infant gut microbiome and neurodevelopment, pregnant women

with a history of mental disorders before or during pregnancy, or

those using psychiatric medications in the preceding 6 months were

also excluded. Informed consent was obtained from all participants.

A total of 101 participants were enrolled in the study and completed

baseline assessments, irrespective of their group allocations in the

randomized trial.
Outcome measures

We assessed infant development using the Ages and Stages

Questionnaire, Third Edition (ASQ-3) (12) at 6 months after birth.

The assessment covers five domains: communication, problem-

solving, gross motor, fine motor, and personal social skills, for a

total of 30 age-appropriate items. Each item is assigned a score of 10

if the child has mastered the skill, 5 if the skill is emerging or
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occasional, and 0 if the child cannot master the skill. The individual

domain scores are obtained by summing scores of 6 items, resulting

in a range of 0 to 60 for each domain. The total ASQ-3 score is the

sum of the five domain scores, yielding a total score range from 0

to 300.
Exposure measures

The primary exposure was maternal PPD symptoms at 42 days

postpartum, assessed using the Edinburgh Postpartum Depression

Scale (EPDS) (13), thereby establishing two distinct groups: the

PPD group and the non-PPD group. Depressive symptoms were

measured using the 10-item EPDS, which describes depression as

cognitive and affective features that last for at least one week (13).

Each item has four possible responses and is scored from 0 to 3;

individual item scores are then summed to generate a total score

ranging from 0 to 30. Consistent with prior research validating a

cutoff score of 11 for better sensitivity to major or minor depression

(13–15), scores of 11 or higher were considered indicative of

depressive symptoms.
Potential confounders

Potential confounders evaluated included maternal and infant

characteristics that have an established or potential associations

with infants’ neurodevelopment and/or maternal PPD symptoms.

According to previous reports, we considered several maternal and

infant characteristics as covariates, including maternal pre-

pregnancy BMI (16), weeks of gestation (1, 17), birth mode

(vaginal delivery, cesarean section, cesarean section exposed to

maternal vaginal fluids) (18), neonatal intensive care unit (NICU)

care (19), infant feeding (exclusive breastfeeding, formula feeding,

and partial breastfeeding at 42 days postpartum, along with the

introduction of complementary foods at 6 months) (20).

Demographic and clinical information about the study

participants was collected from the transcribed medical records

and obtained through a self-administered questionnaire.
Sample collection and gut
microbiota sequencing

Infant fecal samples were collected at 42 days after birth. A

sterile applicator stick was used to collect stool from a soiled diaper,

placing it directly into a sterile collection tube. Samples were then

refrigerated until transferred to a -80 °C freezer, where they were

stored until sequencing procedures were performed. Genomic DNA

was extracted from infant stool using MoBio PowerSoil DNA

Isolation Kits (MoBio Laboratories, Carlsbad, CA, USA) in

accordance with the manufacturer’s instructions. Amplicon

sequencing of the V3-V4 gene region of the 16S ribosomal RNA

was conducted, following the procedures detailed elsewhere (11).
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Metabolomics profiling

Targeted liquid chromatography–mass spectrometry (LC–MS)

was used to characterize the fecal metabolomic signatures as our

previously published study (11). Briefly, dried fecal samples were

homogenized, extracted, and derivatized. Subsequently,

supernatant aliquots underwent ultra-performance liquid

chromatography coupled to tandem mass spectrometry. The LC–

MS system, controlled by MassLynx 4.1 software, employed an

ACQUITY BEH C18 column. A mixed standard solution calibrated

the absolute concentrations of metabolites, processed using

Targeted Metabolome Batch Quantification (TMBQ) software.
Statistical analyses

Participant characteristics in the PPD and non-PPD groups

were compared at 42 days postpartum using appropriate

statistical tests. Linear regression analyses were conducted to

explore the associations between maternal PPD symptoms and

neurodevelopmental outcomes in infants. In the univariate linear

regression model, maternal PPD symptoms was the independent

variable and ASQ-3 total score and the scores for its 5 domains were

the dependent variables. The multivariable linear regression model

considered confounders including pre-pregnancy BMI, gestational

weeks, delivery mode, NICU care, and complementary food at 6

months. The delivery mode covariate adjusted in this study

included categories from the original trial (vaginal delivery,

cesarean section, cesarean section with exposure to vaginal fluids)

(11). To reduce potential bias from missing data, particularly

regarding complementary food intake at 6 months and ASQ-3

scores, we employed a random forest imputation method to

estimate and impute the missing values in the dataset. A

sensitivity analysis was conducted to assess the robustness of the

association between maternal PPD symptoms and infant

neurodevelopment after imputation.

Microbiome alpha diversity evenness was assessed using the

Shannon diversity index and compared between the PPD and non-

PPD groups through the Wilcoxon rank-sum test. Differences in

community-level composition, as measured by unweighted UniFrac

distances matrices between the two groups, were assessed using

permutation multivariate analysis of variance (PERMANOVA)

with the adonis2 function (vegan package) (21).

The Linear Discriminant Analysis Effect Size (LEfSe) algorithm

was used to identify differentially abundant taxa between groups

with a logarithmic linear discriminant analysis (LDA) score cutoff

of 2. Multivariate linear regression was used to identify statistically

significant associations between microbial features and maternal

PPD symptoms. The analyses were adjusted for mode of delivery

(including original intervention for CS) and feeding type at 42 days.

The discriminative fecal metabolites between the two groups were

identified using the Wilcoxon rank-sum test. Pathway

enrichment analysis was carried out based on the Kyoto

Encyclopedia of Genes and Genomes (KEGG) Pathway Database
frontiersin.org
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(http://www.genome.jp/kegg/) and MetaboAnalyst database (http://

www.metaboanalyst.ca/).

A co-occurrence network, comprising discriminative fecal

genera, metabolites, and neurodevelopmental domain scores, was

constructed using Spearman’s correlation analysis and visualized in

Cytoscape (Version 3.2.1, http://www.cytoscape.org). Causal

mediation analysis was used to test whether maternal PPD

symptoms at 42 days pos tpar tum influenced infant

neurodevelopment at 6 months through intermediate gut

microbiota or metabolites (22) with the above mentioned

confounders adjusted. P-values were adjusted based on the

Benjamini–Hochberg false discovery rate (FDR) method, with the

significance level and FDR threshold set at 0.05 and 0.25,

respectively. All analyses were performed using R version 4.2.1.
Results

Maternal and infant characteristics

A total of 101 mothers who met the inclusion criteria were

enrolled in the study, and all of them completed the depression

assessment online through a web-based platform using the EPDS at

42 days postpartum. Among them, 4 mother-infant dyads were

temporarily residing outside our local area, leaving 97 infant fecal

samples being were collected at 42 days after birth. However, within

the first 6 months, a total of 15 infants were lost to follow-up,

leaving 86 infants available for neurodevelopmental evaluation

using ASQ-3 (Figure 1).
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A total of 41 mothers experienced PPD at 42 days after delivery,

based on a cutoff score of 11 on the EPDS. Of these, 40 mothers

contributed infant fecal samples for subsequent gut microbiota

analysis. The demographic and clinical characteristics of the

mothers and infants are presented in Table 1. The participants

were divided into two groups based on their EPDS scores at 42 days

after delivery (PPD group vs. non-PPD group), representing

mothers with and without postpartum depression. The age range

of mothers was 19 to 42 years old, with the majority being

multiparous women. No infants were received antibiotic within

the first 42 days of life due to physical illness. No significant

differences were observed in occupation, education, income, pre-

pregnancy BMI, gestational age, mode of delivery, and feeding types

between the two groups. A comparable number of infants in both

the non-PPD (24 infants) and PPD (8 infants) groups had received

maternal vaginal microbiota transplantation at birth as part of our

previous RCT (11). At the 6-month follow-up, 34 infants in the

PPD group and 52 in the non-PPD group completed the

neurodevelopment assessment using ASQ-3.
Association between maternal PPD
symptoms and infant neurodevelopment
at 6 months

The linear regression results showed that infants in the

PPD group had significantly lower scores in ASQ-3 total

score (MD = -21.2; 95% CI = -36.6 to -5.9; P=0.007), fine motor

(MD = -4.2; 95% CI = -7.4 to -0.9; P=0.012), problem-solving
FIGURE 1

Flowchart of mother-infant dyads included in the study.
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(MD = -7.5; 95% CI = -11.5 to -3.4; P<0.001) and personal-social

domains (MD = -6.2; 95% CI = -11.6 to -0.7; P=0.028).

These differences remained statistically significant in multiple

linear regression models after adjusting for confounders,

including maternal pre-pregnancy BMI, gestational age, mode of

delivery (including original CS intervention factor), NICU care of

infants within 42 days of birth, and introduction of complementary

food at 6 months after birth (Figure 2). After imputing the missing

data with random forest methods, the significant results of the

multiple regression model remained.
Association between maternal PPD
symptoms and infant gut microbiota

We examined the associations between infant gut microbiota and

maternal PPD symptoms using infant stool samples collected at 42

days after birth. Our findings revealed that infants exposed to

maternal PPD symptoms had higher Shannon diversity than those

in the non-PPD group at 42 days (P=0.013, Figure 3A); the maternal
TABLE 1 Maternal and infant demographic and clinical characteristics
between the non-PPD and PPD groups.

Maternal and
infant characteristics

non-
PPDa

(n=60)

PPDa

(n=41)
P
value

Maternal characteristics

Maternal age (years), mean ± SD 30.4 (4.9) 29.1
(6.0)

0.229

Marital status 0.077

Married 59 (98.3) 36 (87.8)

Unmarried 1 (1.7) 5 (12.2)

Occupation 0.284

Professional 11 (18.3) 4 (9.8)

Company or factory worker 14 (23.3) 14 (34.2)

Self-employed 18 (30.0) 8 (19.5)

Housewife 17 (28.3) 15 (36.6)

Education 0.072

Junior high school or below 19 (31.7) 22 (53.7)

High school 20 (33.3) 11 (26.8)

College or above 21 (35.0) 8 (19.5)

Monthly household income per capita, RMB 0.740

<5000 20 (33.3) 15 (36.6)

5000–8000 22 (36.7) 12 (29.3)

>8000 18 (30.00) 14 (34.2)

Primipara 0.061

No 48 (80.0) 25 (61.0)

Yes 12 (20.0) 16 (39.0)

Pre-pregnancy BMI, kg/m2 21.5 (2.6) 21.1
(3.2)

0.477

Gestational weight gain, kg 13.8 (4.2) 14.3
(4.5)

0.602

Excessive gestational weight gain 0.708

No 40 (66.7) 25 (61.0)

Yes 20 (33.3) 16 (39.0)

Perinatal antibiotic use 0.334

No 14 (23.3) 14 (34.1)

Yes 46 (76.7) 27 (65.9)

Infant characteristics

Gestational age (days), mean ± SD 272.4 (7.5) 274.1
(6.6)

0.241

Birth weight (kg), mean ± SD 3.2 (0.4) 3.3 (0.4) 0.290

Mode of delivery 0.088

VD 18 (30.0) 15 (36.6)

CS 18 (30.0) 18 (43.9)

(Continued)
TABLE 1 Continued

Maternal and
infant characteristics

non-
PPDa

(n=60)

PPDa

(n=41)
P
value

Infant characteristics

CS+VMTb 24 (40.0) 8 (19.5)

Gender >0.999

Boy 37 (61.7) 25 (61.0)

Girl 23 (38.3) 16 (39.0)

NICU care within the first 28 days 0.148

Yes 8 (13.3) 11 (26.8)

No 52 (86.7) 30 (73.2)

Hospitalizationc 0.650

Yes 2 (3.3) 0 (0.0)

No 58 (96.7) 41
(100.0)

Feeding type at 42 days 0.410

Exclusive breastfeeding 40 (66.7) 25 (61.0)

Formula feeding 5 (8.3) 7 (17.1)

Partial breastfeeding 15 (25.0) 9 (22.0)

Complementary food at 6 months 0.260

No 11 (18.3) 3 (7.3)

Yes 38 (63.3) 31 (75.6)

Missing data 11 (18.3) 7 (17.1)
front
aData are reported as n (%) unless otherwise indicated.
bThese infants born via CS were exposed to maternal vaginal microbiota in our original
RCT (11).
cThe data were collected from 28 days to 42 days after birth.
SD, standard deviation; BMI, body mass index; VD, vaginal delivery; CS, cesarean section;
VMT, vaginal microbiota transfer; NICU, neonatal intensive care unit.
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EPDS score at day 42 was also positively associated with the Shannon

diversity index (r=0.22, P=0.032). However, the overall microbial

community composition did not significantly differ between the PPD

and non-PPD groups (PERMANOVA test, P=0.332). The

predominant phyla across all samples were Proteobacteria,

Firmicutes, Actinobacteria, and Bacteroidetes. At the genera level,

14 dominant genera, constituting over 90% of the total microbial

abundance, were listed (Figure 3B). Among these, Escherichia,

Bifidobacterium, and Klebsiella were the three most abundant
Frontiers in Psychiatry 06
genera in infants. A total of 10 taxa showed significant changes in

abundance with the criteria LDA>2.0 and P<0.05 (Figure 3C).

Notably, the abundance of genera Bifidobacterium, Dialister,

Cronobacter and Megasphaera was higher in the non-PPD group,

while Veillonella and Finegoldia were enriched in the PPD group.

When performing multiple linear regression after adjusting for mode

of delivery (including original CS intervention factor) and feeding

type at day 42 to identify differential abundant taxa between groups,

we observed that Dialister (P=0.047) and Blautia (P=0.038) were
FIGURE 2

Comparison of infant neurodevelopment between PPD and non-PPD groups based on ASQ-3 scores at 6 months after birth. [Model 1 was the
crude model, model 2 was adjusted for pre-pregnancy BMI, gestational age, NICU care, mode of delivery (intervention factor included), and
introduction of complementary food at 6 months.].
A B C

D E F

FIGURE 3

Associations between maternal PPD symptoms at 42 days and infant gut microbiota and metabolome at 42 days after birth. (A) Comparison of
Shannon diversity index between infants in the PPD and non-PPD groups at 42 days using Wilcoxon test. (B) Relative abundances of the 14
predominant genera between groups. Dissimilarities in gut microbiota composition at genus level between PPD and non-PPD groups at 42 days.
(C) LEfSe (LDA>2) illustrating taxa that are significantly different in infants between PPD and non-PPD groups. (D) Metabolite composition of infants
in non-PPD and PPD groups. The metabolites with the top 20 concentrations are shown. (E) Heatmap of associations between differentially
abundant genera and the top 20 concentrations metabolites (Spearman’s rank correlation analysis). *** P<0.001, **P<0.01, *P<0.05 (FDR<0.25).
(F) Volcano chart of fold changes in metabolites in stool samples of infants in the PPD and non-PPD groups. The dotted line represents P = 0.05.
Red dots show enriched metabolites in non-PPD group, while blue dots show opposite. Notable metabolites are labeled.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1385229
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zhou et al. 10.3389/fpsyt.2024.1385229
significantly enriched in infants exposed to maternal PPD symptoms,

while Bifidobacterium (P=0.048) was significantly depleted.
Association between maternal PPD
symptoms and infant gut metabolites

Next, we performed targeted metabolomic profiling of fecal

samples from infants in the non-PPD and PPD groups by using

liquid chromatograph-mass spectrometry (LC–MS). Infants in the

non-PPD group harbored a number of richer and higher-

concentration metabolites in stool (Figure 3D). The top 3

metabolites in infants at 42 days were Linoleic acid, Acetic acid

and L-Cystine. Next, we focused on the correlations between

differential microbial features and the top 20 metabolites

(Figure 3E). Impressively, positive correlations were identified

between the abundance of Bifidobacterium and the majority of

fecal metabolites, whereas the abundance of Finegoldia exhibited

negative correlations. By using the Wilcoxon test, six discriminative

metabolites between PPD and non-PPD groups were identified

(Figure 3F). Specifically, compared to those in the non-PPD group,

the PPD group displayed enrichment of 2 metabolites, 3,4-

Dihydroxyhydrocinnamic acid and N-Acetyl-L-methionine, and

depletion of 4 metabolites, including N-Acetyl-L-aspartic acid,

Gluconolactone, L-Aspartic acid, L-Asparagine. Moreover,

pathway-based differential abundance analysis highlighted that

the metabolic pathway of Alanine, aspartate and glutamate

metabolism was significantly downregulated in the PPD group.
Frontiers in Psychiatry 07
Association of infant gut microbiota and
gut metabolites with neurodevelopment
at 6 months of age

To explore the potential relevance between bacterial

composition and metabolomic phenotypes, we calculated

Spearman’s correlation matrices and constructed a co-occurrence

network of differential microbial genera, metabolites and

neurodevelopment (Figure 4A). Co-occurrence network analysis

revealed a total of 36 co-occurrence relationships, with 16

connections found in microbiota-metabolite. Of these, 5 were

negative, with Finegoldia and 3,4-Dihydroxyhydrocinnamic acid

being the major contributors to this finding, which were also

enriched in the PPD group. Interestingly, Bifidobacterium had

positive relationships with Gluconolactone and L-Asparagine,

while Finegoldia showed opposite. When linking these differential

genera and metabolites with infant neurodevelopment, the

Bifidobacterium was the only taxa showing positive correlation

with infant fine motor skill, while Finegoldia showed opposite.

Moreover, the metabolites involved with Alanine, aspartate and

glutamate metabolism were positively correlated with

neurodevelopment. For example, L-Aspartic acid and L-

Asparagine were positively associated with personal-social score,

L-Aspartic acid and N-Acetyl-L-aspartic acid were positively

associated with problem solving score, L-Aspartic acid was

positively associated with fine motor.

Furthermore, to evaluate whether metabolites can mediate the

microbial impact on the association between maternal PPD
A B

C

FIGURE 4

Association between differentially abundant genera, metabolites, and infant neurodevelopment at 6 months of age. (A) A co-occurrence network
constructed from the relative abundances of differential microbial genus, fecal metabolites as well as neurodevelopment score in infants in PPD
group and non-PPD group. The spearman correlation analysis was used to explore the co-occurrence network. The node size signifies its degree,
representing the number of network connections. The shape of node denotes the components (ellipse: neurodevelopment domains, triangle:
microbial genera, and cut-rectangle: metabolites). Deep and light colors indicate increased and decreased relative abundances in non-PPD
compared to PPD, respectively. Solid and dashed edges represent positive and negative correlations, respectively. The colors and shapes of nodes
indicate the categories of nodes. Edges thickness indicate the magnitude of correlation. FM, fine motor; GM, gross motor; CM, communication; CG,
problem solving skills; PS, personal-social skills. (B, C) Mediation analysis assessing the role of (B) N-Acetyl-L-aspartic acid and (C) L-Aspartic acid in
the association between maternal PPD symptoms and infant problem-solving skill scores. The model was adjusted for gestational age, mode of
delivery, feeding type at day 42, NICU care, and maternal pre-pregnancy BMI.
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symptoms at day 42 postpartum and infant neurodevelopment, we

performed mediation analyses using the above identified

discriminative metabolites. Results indicated that the level of fecal N-

Acetyl-L-aspartic acid and L-Aspartic acid mediated the relationships

between maternal PPD symptoms at 42 days postpartum and infant

problem-solving skill scores,with an effect size of -0.72 (95%CI= -1.59

to -0.11, Figure 4B) and -0.34 (95% CI = -2.42 to -0.08,

Figure 4C), respectively.
Discussion

Theprevalence of PPD in this studypopulationwas approximately

40%,which is higher than in other studies (1, 23, 24). Previous research

has indicated that cesarean section delivery could elevate the risk of

PPD (25, 26). In this study, there were twice as many women who

delivered by cesarean section compared to those who delivered

vaginally. Furthermore, our definition of PPD differs from those of

other studiesdue tovariations in theuse of theEPDStool and its cut-off

points. Even so, we cannot ignore the global trend of increasing PPD

incidence and its harm. With escalating rates of maternal perinatal

depression, we face not only the risk of maternal mental disorders but

also growing concerns about the potential long-term impacts on infant

health and well-being. A particular emphasis in research on infant

neurodevelopment has been on the early development of gut

microbiota (27–29). It is therefore crucial to explore the associations

among maternal PPD, infant gut microbiota, gut metabolites, and

neurodevelopment. In this study, we found that maternal PPD

symptoms at day 42 postpartum were negatively associated with

infant neurodevelopment at 6 months of age. This association could

be partially explained by alterations in the infant’s gut microbiota and

gut metabolites.

Maternal psychiatric disorders and stress-induced disturbances

in bacterial community structure have been confirmed in both

human and preclinical animal studies (5, 30–32). Our data

further indicated that maternal PPD symptoms were correlated

with changes in the microbial composition of offspring within

the first 6 weeks after birth. Infants born to mothers with

depressive symptoms had higher alpha diversity in their gut

microbiota and were characterized by a lower relative abundance

of Bifidobacterium. These findings were consistent with a recent

study reporting that both maternal prenatal and PPD could affect

offspring gut microbiome diversity and Bifidobacterial abundances

(9). However, the measurement of maternal PPD and the collection

of infant fecal samples were conducted simultaneously in our study.

Despite this synchrony, it is essential to recognize that the EPDS

evaluates depressive symptoms over the past week, whereas PPD

typically manifests within the first 30 days postpartum (2, 33).

Consequently, it is conceivable that maternal alterations in mood

and behavior may have already exerted an influence on the

developing infant gut microbiota prior to the measurement at 42

days. Future studies with longitudinal designs are warranted to

elucidate the causal relationships between maternal PPD and infant

gut microbiota dynamics.

The mechanism by which early-life exposure to maternal PPD

influences infant gut microbiota and neurodevelopment is still
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unclear. One significant factor is that exposure to maternal

depression can affect the bacterial composition of breast milk at

both the phyla and genera levels (34), an important observation

considering that breast milk is a primary dietary and microbial

source for the offspring. Moreover, PPD may affect infant immunity

through breast milk. Changes in the offspring’s immune systems,

with potential effects on antimicrobial peptide and antibody

production and quantity, could lead to dysregulated shaping of

the microbiome in early life. We previously observed lower levels of

TGF-b in the colostrum of mothers with PPD (35), which is crucial

for modulating infant inflammatory responses and promoting the

development of the infant’s gastrointestinal tract (36, 37). A prior

study also showed that maternal depressive symptoms were linked

to reduced fecal IgA concentrations in infants (10). Further studies

could focus on the vertical transmission of maternal and infant

microbiota in mother–child dyads with PPD. Conversely, reduced

mother–infant interaction could perturb the development of infant

microbiota due to reduced horizontal transmission. Maternal

depression has been shown to affect the skin microbiome in

offspring (38). The elucidation of the pathway by which PPD

affects the offspring’s microbiome is an ongoing and crucial issue,

requiring further research in both humans and animals. In addition

to factors related to mother–infant bacterial transmission, the

Integrative Body-Mind-Spirit (IBMS) model potentially provides

an explanation for this phenomenon. From the IBMS model, which

emphasize the importance of achieving balance and harmony

between the body, emotions, and spirit (39, 40), a mother’s

emotional status could influence the emotional and spiritual

status of her infant. For example, PPD affects a mother’s

emotions and life attitude, thereby diminishing her caregiving

capacity and impacting the mental and neural development of her

infant. Therefore, promoting the well-being of postpartum women

in from Body-Mind-Spirit perspective could help mitigate the

effects of PPD on their offspring.

Early-life microbial colonization plays a key role in

neuropsychological development (41). Our study revealed a

positive correlation between the relative abundance of

Bifidobacterium and infant neurodevelopment. Conversely,

Finegoldia was found to be negatively associated with infant fine

motor development. These findings align with prior studies (36, 42,

43). For example, alterations in gut microbial composition have

been identified in children with autism (44). Additionally, sterile

mice presented more pronounced short-term cognitive and

working memory impairments compared to mice with normal

gut microbiota (45). These results may be linked to the brain-gut-

microbiome axis, where the gut microbiome collaborates with its

host to regulate the development and function of the nervous

system by producing and modifying various metabolic,

immunological and neurochemical factors (46). Within our co-

occurrence network analysis, we observed that Bifidobacterium and

Finegoldia formed co-occurring relationships with fecal L-Aspartic

acid and its derivative, N-Acetyl-L-aspartic acid. Bifidobacterium

has the potential to elevate L-Aspartic acid levels by incorporating

aspartate into its peptidoglycan structure, alongside its

immunomodulatory effects on brain metabolism and the synthesis

of related substances within the same pathway (47–49). However, the
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pathophysiologicalmechanism linking Finegoldia and L-Aspartic acid

remains unknown and requires further research. These findings imply

synergistic relationships between altered gut microbes and the host’s

metabolism in infants with maternal PPD. N-Acetyl-L-aspartic acid is

a contributor to energy production from the amino acid glutamate in

neuronal mitochondria, and could function as a neurotransmitter in

the brain through its interaction with metabotropic glutamate

receptors (50). The levels of L-Aspartic acid and N-Acetyl-L-aspartic

acid have been reported to decrease in various neuropathological

conditions, such as brain injury, Alzheimer’s disease, and autism (51,

52). Higher level of N-Acetyl-L-aspartic acid in the hippocampus have

been associated with enhanced working memory performance in

humans (53). In our study, infants whose mother had PPD exhibited

a reduction inBifidobacteriumandL-Aspartic acid, aligningwith lower

neurodevelopmental scores. It is therefore important to monitor and

maintain an early gut microbiota balance in infants with mothers

experiencing PPD. Based on these findings, animal experiments to

further identify the key gut microbial strains and their functional

metabolism associated with neurodevelopment would be of

paramount importance and may lead to new therapeutic strategies

for mothers with PPD and their infants.

To the best of our knowledge, this study is the first to demonstrate

thatmaternal postpartumdepression symptomsmay impact offspring

neurodevelopment by influencing the composition of infant fecal

microbiota and metabolites. This impact includes an increase in

alpha diversity and a reduction in the relative abundance of

beneficial bacteria, such as Bifidobacterium, as well as a decrease in

the neurotransmitter N-Acetyl aspartic acid. Notably, our mediation

analysis provided causal evidence regarding the connection between

changes in the level of N-Acetyl aspartic acid and the development of

infant problem-solving skills (54–56). Nevertheless, our study has

several limitations. First, we did not evaluate or clinically confirm

maternal depression during pregnancy and other perinatal emotional

disorders such as anxiety; instead, we relied on self-reported history of

depression or psychiatric diseases before or during pregnancy to

exclude women with these conditions. Different mood disorders can

coexist or be interrelated, and previous emotional symptomsmight be

associated with the occurrence of PPD. Further research could be

initiated, encompassing the period from pregnancy through the

postnatal phase, with a focus on gathering diagnostic data. Second,

this was a single-center study encompassing approximately 100

participants, whether and to what extent the results can be

generalized to other populations require confirmation by future

studies in diverse populations. Third, the persistence of early PPD

symptoms and how the gut microbiota evolves with age remain

unclear. Therefore, longitudinal studies with larger sample sizes,

multicenter designs and measuring emotional disorders before,

during, and after pregnancy up to 6 months are needed to draw

more definitive causal conclusions. Finally, our study did not include

an analysis of maternal samples such as stool, blood, and breast milk,

limiting our ability to explore potential pathways through which

maternal PPD might affect maternal inflammatory and microbiome

profiles, and subsequently disrupt the offspring’s microbiome. Future

studies incorporating both maternal and infant microbiome samples,

along with assessment of mood and behavior in both cohorts, are
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essential to advance our understanding of maternal influence on the

infant microbiome and health.
Conclusions

This study suggests that symptoms of maternal postpartum

depression could affect infant neurodevelopment, potentially

involving alterations in infant fecal aspartate metabolism. Future

research focusing on mother–infant dyads over an extended period

across diverse populations may reveal more direct relationships

between postnatal maternal mental health and the offspring

microbiome, providing further insights into how these alterations

may affect offspring health outcomes.
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