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Background: Evidence has suggested that microRNAs (miRNAs) may play an

important role in the pathogenesis of psychiatric disorders (PDs), but the results

remain inconclusive. We aimed to identify specific differentially expressed

miRNAs and their overlapping miRNA expression profiles in schizophrenia (SZ),

major depression disorder (MDD), and bipolar disorder (BD), the three major PDs.

Methods: The literatures up to September 30, 2023 related to peripheral blood

miRNAs and PDs were searched and screened from multiple databases. The

differences in miRNA levels between groups were illustrated by the standardized

mean difference (SMD) and 95% confidence interval (95% CI).

Results: In total, 30 peripheral bloodmiRNAs were included in the meta-analysis,

including 16 for SZ, 12 for MDD, and 2 for BD, each was reported in more than 3

independent studies. Compared with the control group, miR-181b-5p, miR-34a-

5p, miR-195-5p, miR-30e-5p, miR-7-5p, miR-132-3p, miR-212-3p, miR-206,

miR-92a-3p and miR-137-3p were upregulated in SZ, while miR-134-5p, miR-

107 and miR-99b-5p were downregulated. In MDD, miR-124-3p, miR-132-3p,

miR-139-5p, miR-182-5p, miR-221-3p, miR-34a-5p and miR-93-5p were

upregulated, while miR-144-5p and miR-135a-5p were downregulated.

However, we failed to identify statistically differentially expressed miRNAs in

BD. Interestingly, miR-132-3p and miR-34a-5p were upregulated in both SZ

and MDD.
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Conclusions: Our study identified 13 differentially expressed miRNAs in SZ and 9

in MDD, among whichmiR-132-3p andmiR-34a-5p were upregulated in both SZ

and MDD by systematically analyzing qualified studies. These miRNAs may be

used as potential biomarkers for the diagnosis of SZ and MDD in the future.

Systematic Review Registration: http://www.crd.york.ac.uk/PROSPERO,

identifier CRD42023486982.
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1 Introduction

Psychiatric disorders (PDs) are debilitating disease with unknown

etiology and pathogenesis, characterized by the dysfunction of complex

emotional and cognitive processes (1). Many patients with PDs require

long-term treatment to maintain social function and prevent symptom

relapse, causing heavy public health and economic burden (2).

Schizophrenia (SZ), major depression disorder (MDD) and bipolar

disorder (BD) are the three major PDs with high disability and lethality

(3). SZ is the most severe PDs characterized by hallucinations,

delusions, disturbed emotions, and social withdrawal, with a lifetime

prevalence of approximately 1% worldwide (4). MDD is characterized

by depressed mood and anhedonia, with a lifetime prevalence of 2-21%

worldwide (5). BD is characterized by recurrent episodes of mania and

depression, as well as impairments in cognitive performance, which

occurs with a lifetime prevalence of 1-2% (6). Currently, the diagnosis

of PDs mainly relies on patient’s statements and doctor’s subjective

judgment of clinical symptoms, rather than on pathological and

physiological indicators, and many PDs have overlapping symptoms,

resulting in high rates of misdiagnosis and missed diagnosis. Thus,

there is an urgent need to seek objective, effective, convenient and

feasible early molecular diagnostic biomarkers for PDs.

Both genetic and environmental factors are thought to

contribute to PDs (7). Epigenetic mechanisms, which combine

genetic and environmental factors by translating the

environmental information into a genetic code, have been

reported to regulate pathways affecting PDs (8). Epigenetic

mechanisms, which include DNA methylation, histone

modification, and noncoding RNA (ncRNA), can regulate the

gene expression without perturbation of DNA sequences (9).

Among them, microRNAs (miRNAs), as a class of small ncRNA

molecules, have been given great attention for their potential role in

the etiology and pathophysiology of many diseases (10, 11).

miRNAs negatively regulate gene expression at the post-

transcriptional level by inhibiting translation and/or activating

messenger RNAs (mRNAs) degradation through binding to the

3’-untranslated region (3’-UTR) of target mRNAs (12). miRNAs

have strong cell and tissue specificity, and these specific expressions

are not only the basis for its functional study, but also good disease
02
markers. Evidence indicates that miRNAs regulate several aspects

of neurodevelopment, including neurogenesis, neuronal

differentiation, and synaptic plasticity through complex genetic

networks (13).

Recent studies have revealed that disturbances in miRNAs may

contribute to the etiology of SZ, MDD and BD, but there were

conflicting results between these studies (10, 14), which may be due

to differences in study design, small sample size, different specimen

types. Therefore, the purpose of the present study was to

comprehensively analyze the expression profiles of peripheral

blood miRNAs associated with the pathogenesis or development

of SZ, MDD and BD, and identify their specific differentially

expressed miRNAs and their overlapping miRNAs expression

profiles, so as to explore whether one or more miRNAs are

promising biomarkers for their early diagnosis.
2 Materials and methods

The study protocol and registration information are available

at http://www.crd.york.ac.uk/PROSPERO/ (registration

number: CRD42023486982).
2.1 Search strategy

This study was followed by recommendations from the

Preferred Reporting Items for Systematic Reviews and Meta-

Analysis (PRISMA) guideline. Literature search was conducted

using Cochrane Library, PubMed, Embase, Medline, Wanfang,

CNKI, and Weipu for studies published from February 2007 to

September 2023, investigating differentially expressed miRNAs in

SZ, MDD, or BD patients versus controls. The Search was

performed using the following key terms: (“microRNA” OR

“miRNA” OR “miR”) AND (“psychiatric disorders” and

“schizophrenia” OR “SZ” OR “major depressive disorder” OR

MDD OR “bipolar disorder” OR BD). A manual search of

reference lists from relevant articles was conducted to uncover

more potential studies.
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2.2 Eligibility criteria

Studies were included if they met the criteria below: 1) case-

control studies; 2) studies on differential expression of peripheral

blood miRNAs in SZ, MDD or BD; 3) the relative miRNA

expression was detected by real-time quantitative polymerase

chain reaction (RT-qPCR) or miRNA PCR panel or microarray

or sequencing; 4) the mean and standard deviation (SD) of miRNA

expression in the case group and control group could be obtained,

or the relevant data could be used to calculate the above indicators.

The exclusion criteria were as follows: 1) studies were not

conducted in human subjects; 2) incomplete data; 3) duplicate

data; 4) reviews, meta-analyses, letters or conference.
2.3 Data extraction

Two authors independently manually screened and extracted

the data from included studies. Any inconsistencies were discussed

with a third author until consensus was reached. The following

items for each included study were extracted: 1) first author; 2) year

of publication; 3) country; 4) specimen type; 5) sample size; 6) age;

7) miRNA detection methods; 8) mean and SD of the identified

miRNAs in each group. If the mean and SD couldn’t be extracted

from studies, we tried to contact their authors. The studies we didn’t

receive a response were listed in Supplementary Table 1. If different

specimen types were involved in the same study, data extraction and

corresponding analysis were performed separately.
2.4 Quality assessment

The quality of included studies was assessed by using the

Newcastle–Ottawa Scale (NOS) (15), which consists of three

dimensions: selection, comparability and exposure. The studies

with a score ≥ 5 are regarded as high quality.
2.5 Target gene prediction and functional
enrichment analysis

TargetScan andmiRanda were used to predict the target genes for

common differentially expressed miRNAs in SZ, MDD or BD.

TargetScan algorithms eliminated genes with context scores < 50%.

miRanda algorithms eliminated genes with maximum energy > -10.

Genes co-identified by both databases were potential target genes for

a given miRNA. Functional enrichment analysis of the predicted

target genes was implemented with kyoto encyclopedia of genes and

genomes (KEGG). We performed enrichment analysis with the cut-

off criterion of P < 0.05.
2.6 Statistical analysis

All analyses were conducted by Stata 12.0. The standard mean

difference (SMD) and its 95% confidence interval (CI) were used to
Frontiers in Psychiatry 03
combine the miRNA expression results. The between-study

heterogeneity was evaluated by a Cochran’s Q-statistic and

quantified by I2 metric value. If I2<50% and P>0.10, the fixed-

effects model was conducted, otherwise, the random-effects model

was applied. Subgroup analyses were performed based on specimen

types. The potential for publication bias was examined by Begg’s

test and Egger’s test. Leave-one-out sensitivity analysis was

performed to detect the stability of the results. P<0.05 was

considered statistically significant.
3 Results

3.1 Characteristics of eligible studies

According to the search strategy, 5572 studies were identified in

the database. After an initial screen, 2532 duplicate studies were

removed. Next, 2877 studies were excluded based on titles and/or

abstracts. The remaining 163 studies were evaluated in detail of

which 50 studies were excluded due to incomplete data (n=27), no

healthy controls (n=8), reviews (n=13) and meta-analysis (n=2). Of

the remaining 113 studies, 35 were not included in the meta-

analysis after data extraction because the mean and SD of the

miRNAs reported in these studies could not be extracted from more

than 3 independent studies (Supplementary Table 2). Finally, 78

studies were suitable for quantitative meta-analysis, of which 29

were identified for SZ (16–44), 45 for MDD (45–89), and 6 for BD

(21, 24, 90–93). 2 studies (21, 24) were for both SZ and BD. The

flowchart of the study screening process was shown in Figure 1. The

NOS results showed that all the included studies were of high

quality, with scores ranging from 5 to 9. The characteristics of the

eligible studies were summarized in Table 1.
FIGURE 1

Flowchart of study selection process in this meta-analysis.
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TABLE 1 Characteristics of eligible studies included in the meta-analysis.

Disease Study Country
Sample size

Specimen type Detection method NOS
Case Control

SZ Gardiner 2012 (16) Australian 57 34 PBMC qPCR 5

Wang 2012 (17) China 40 40 Plasma qPCR 8

Zhang 2014 (18) China 60 72 Plasma/PBMC qPCR 9

Song 2014 (19) China 20 20 Plasma qPCR 9

Sun 2015 (20) China 25 13 Plasma/PBMC qPCR 9

Feng 2016 (21) China 90 90 PBMC qPCR 7

Su 2017 (22) China 174 80 Plasma/PBMC qPCR 7

Liu 2017 (23) China 39 50 PBMC qPCR 9

Peng 2017 (24) China 90 90 Plasma qPCR 7

Qu 2017 (25) China 40 40 PBMC qPCR 8

Ma 2018 (26) China 44 44 Whole blood qPCR 6

Bao 2018 (27) China 46 49 PBMC qPCR 9

Feng 2018 (28) China 90 90 Plasma qPCR 7

Fu 2018 (29) China 17 16 Plasma qPCR 9

Wang 2019 (30) China 35 15 Plasma/PBMC qPCR 9

Shi 2019 (31) China 75 70 Plasma qPCR 9

Du 2019 (32) China 49/100 46/100 Blood exosome Sequencing/qPCR 8

Guan 2021 (33) China 40 40 Plasma qPCR 9

Lu 2021 (34) China 26 48 PBMC qPCR 9

Jiang 2021 (35) China 50 30 PBMC qPCR 9

Zhang 2021 (36) China 150 150 Serum qPCR 8

Chen 2021 (37) China 104 100 Plasma qPCR 7

Gou 2021 (38) China 123 50 Whole blood qPCR 8

Pan 2021 (39) China 118 47 Whole blood qPCR 8

Fu 2022 (40) China 32 48 PBMC qPCR 6

Lu 2022 (41) China 51 51 Serum qPCR 9

Huang 2022 (42) China 92 89 Serum qPCR 7

Wang 2023 (43) China 100 30 Serum qPCR 9

Jin 2023 (44) China 51 51 Whole blood qPCR 8

MDD Rong 2012 (45) China 42 40 Plasma qPCR 9

Belzeaux 2012 (46) France 16 13 PBMC qPCR 8

Li 2013 (47) China 40 40 Serum qPCR 6

Liu 2014 (48) China 32 28 Plasma qPCR 9

Wan 2015 (49) China 6 6 Serum PCR Panel 8

Camkurt 2015 (50) Turkey 50 41 Plasma qPCR 8

Li 2015 (51) China 18 18 Whole blood qPCR 8

Song 2015 (52) China 36 30 Whole blood qPCR 9

Wang 2015 (53) Sweden 169 52 Plasma qPCR 7

(Continued)
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TABLE 1 Continued

Disease Study Country
Sample size

Specimen type Detection method NOS
Case Control

Gururajan 2016 (54) Ireland 40 20 Whole blood qPCR 6

He 2016 (55) China 32 30 PBMC qPCR 8

Liu 2016 (56) China 62 73 Whole blood qPCR 8

Feng 2016 (57) China 60 30 Plasma qPCR 9

Roy 2017 (58) USA 18 17 Serum qPCR 6

Kolshus 2017 (59) Ireland 7 21 Whole blood qPCR 8

Fang 2018 (60) China 45 32 Plasma qPCR 9

Kuang 2018 (61) China 84 78 Serum qPCR 9

Wang 2018 (62) China 20 20 Whole blood qPCR 7

Gheysarzadeh 2018 (63) Iran 39 36 Serum qPCR 8

Yuan 2018 (64) China 100 120 Serum qPCR 8

Hung 2019 (65) China 84 43 PBMC qPCR 9

Zhu 2019 (66) China 90 60 Serum qPCR 5

Lv 2019 (67) China 59 59 Serum qPCR 9

Tian 2019 (68) China 104 52 Serum qPCR 9

Zhao 2019 (69) China 97 63 Plasma qPCR 9

Kong 2019 (70) China 27 46 Whole blood qPCR 9

Meng 2020 (71) China 50 50 Serum qPCR 6

Fu 2020 (72) China 59 59 Serum qPCR 9

Cao 2020 (73) China 63 63 Serum qPCR 9

Liang 2020 (74) China 30 30 Serum exosome qPCR 7

Xu 2020 (75) China 41 31 PBMC qPCR 7

Qian 2020 (76) China 45 32 Plasma qPCR 7

Wei 2020 (77) China 33 46 Blood exosome qPCR 6

Ding 2021 (78) China 50 50 Whole blood qPCR 6

Al-Rawaf 2021 (79) Saudi Arabia 40 30 Serum qPCR 8

Hung 2021 (80) China 52 31 Serum exosome qPCR 9

Liu 2021 (81) China 20 20 Serum qPCR 6

He 2021 (82) China 40 34 Plasma qPCR 8

Roumans 2021 (83) Sweden 50 49 Plasma qPCR 7

Zhao 2021 (84) China 77 80 Serum qPCR 8

Xian 2022 (85) China 6 3 Serum exosome qPCR 7

Lin 2022 (86) China 216 200 Serum qPCR 9

Brás 2023 (87) Portugal 32 40 PBMC qPCR 7

Deng 2023 (88) China 113 107 Serum exosome qPCR 8

Wu 2023 (89) China 24 24 Serum qPCR 6

BD Rong 2011 (90) China 21 21 Plasma qPCR 8

Feng 2016 (21) China 90 90 PBMC qPCR 7

(Continued)
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3.2 Main results and sub-group analysis

In our meta-analysis, we analyzed the expression of 16 miRNAs

from 29 studies for SZ. The results showed that SZ patients had

higher miRNA levels than control group in miR-181b-5p, miR-34a-
Frontiers in Psychiatry 06
5p, miR-195-5p, miR-30e-5p, miR-7-5p, miR-132-3p, miR-212-3p,

miR-206, miR-92a-3p and miR-137-3p, while lower miRNA levels

than control group in miR-134-5p, miR-107, and miR-99b-5p.

Besides, miR-432-5p, miR-346 and miR-22-3p were not

dysregulated (Table 2, Figure 2). 9 of 16 miRNAs were included
TABLE 1 Continued

Disease Study Country
Sample size

Specimen type Detection method NOS
Case Control

Peng 2017 (24) China 90 90 Plasma qPCR 7

Xu 2018 (91) China 105 100 Plasma qPCR 9

Camkurt 2020 (92) Turkey 58 51 Whole blood qPCR 8

Tekdemir 2022 (93) Turkey 66 66 Whole blood qPCR 8
frontie
SZ, schizophrenia; MDD, major depression disorder; BD, bipolar disorder; PBMC, peripheral blood mononuclear cell.
TABLE 2 Meta-analysis results of differentially expressed miRNAs in PDs reported in three or more studies.

Disease miRNA
No.
of

study

Test of association Test of heterogeneity

Direction

Publication bias

SMD
(95CI)

Z P
I2

(%)
P Model

Begg’s
test

P-Value

Egger’s
test

P-Value

SZ miR-181b-5p 14
1.08

(0.51,1.64)
3.73 1.93E-04 96.0 5.34E-60 R up 0.324 0.066

miR-34a-5p 12
0.81

(0.43,1.18)
4.24 2.19E-05 90.8 2.81E-20 R up 0.115 0.349

miR-195-5p 12
0.95

(0.50,1.39)
4.17 3.11E-05 93.1 2.26E-28 R up 0.244 0.088

miR-30e-5p 11
0.94

(0.52,1.36)
4.38 1.21E-05 90.6 3.20E-18 R up 0.876 0.736

miR-7-5p 10
0.59

(0.27,0.90)
4.65 2.42E-04 83.8 1.01E-08 R up 0.371 0.577

miR-432-5p 9
-0.04

(-0.26,0.18)
0.37 7.12E-01 56.0 2.00E-02 R / 0.754 0.167

miR-346 9
-0.50

(-1.07,0.08)
1.70 8.89E-02 94.3 1.80E-26 R / 0.602 0.163

miR-132-3p 7
0.39

(0.04,0.75)
2.20 2.81E-02 74.2 7.26E-04 R up 0.548 0.950

miR-212-3p 7
0.57

(0.29,0.86)
3.93 8.50E-05 71.1 2.01E-03 R up 0.764 0.865

miR-206 5
1.71

(0.47,2.95)
2.70 6.95E-03 97.8 3.54E-38 R up 1.000 0.286

miR-134-5p 5
-0.47

(-0.82,-0.11)
3.24 9.70E-03 79.2 7.17E-04 R down 0.462 0.264

miR-92a-3p 4
1.64

(0.23,3.06)
2.27 2.30E-02 96.8 2.34E-20 R up 0.308 0.097

miR-107 4
-0.77

(-1.10,-0.43)
4.53 5.97E-06 70.6 1.70E-02 R down 0.734 0.201

miR-137-3p 3
4.17

(1.49,6.85)
3.05 2.29E-03 99.1 3.47E-51 R up 0.296 0.216

miR-99b-5p 3
-0.72

(-1.35,-0.09)
2.25 2.46E-02 87.5 3.41E-04 R down 1.000 0.363

(Continued)
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TABLE 2 Continued

Disease miRNA
No.
of

study

Test of association Test of heterogeneity

Direction

Publication bias

SMD
(95CI)

Z P
I2

(%)
P Model

Begg’s
test

P-Value

Egger’s
test

P-Value

miR-22-3p 3
2.78

(-0.62,6.18)
1.60 1.09E-01 98.8 3.36E-37 R / 0.296 0.021

MDD
miR-124-3p 9 2.02

(1.02,3.03)
3.96 7.62E-05 97.5 2.55E-65 R up 0.348 0.174

miR-16-5p 7 -0.79
(-1.84,0.25)

1.49 1.37E-01 96.7 2.47E-36 R / 0.368 0.776

miR-132-3p 7 1.40
(0.75,2.05)

4.23 2.29E-05 92.0 4.54E-14 R up 0.133 0.335

miR-155-5p 7 -0.64
(-2.40,1.12)

0.71 4.76E-01 98.0 8.68E-64 R / 0.548 0.846

miR-139-5p 5 2.76
(0.90,4.63)

2.91 3.65E-03 95.2 4.60E-17 R up 0.806 0.585

miR-451a 5 -0.94
(-2.85,0.98)

0.96 3.37E-01 98.0 2.50E-41 R / 0.806 0.932

miR-146a-5p 5 -1.01
(-2.22,0.21)

1.62 1.05E-01 97.1 9.05E-29 R / 0.462 0.214

miR-182-5p 4 3.72
(1.64,5.79)

3.51 4.53E-04 97.4 8.85E-25 R up 0.308 0.355

miR-221-3p 4 2.72
(1.72,3.73)

5.32 1.03E-07 93.2 1.35E-09 R up 0.734 0.445

miR-34a-5p 4 3.78
(0.77,6.78)

2.46 1.38E-02 97.8 4.32E-29 R up 0.734 0.633

miR-145-5p 4 -0.15
(-0.74,0.43)

0.51 6.07E-01 82.6 6.30E-04 R / 0.734 0.500

miR-144-5p 4 -1.65
(-2.69,-0.60)

3.08 2.04E-03 93.5 6.18E-10 R down 0.734 0.408

miR-135a-5p 3 -10.65
(-13.39,-7.90)

7.60 2.95E-14 87.1 4.29E-04 R down 0.296 0.272

miR-134-5p 3 -1.50
(-3.43,0.44)

1.52 1.29E-01 98.0 6.65E-23 R / 0.296 0.107

miR-195-5p 3 -3.00
(-6.90,0.90)

1.51 1.31E-01 98.9 2.11E-40 R / 1.000 0.704

miR-223-3p 3 0.25
(-0.43,0.94)

0.72 4.72E-01 82.2 3.68E-03 R / 1.000 0.459

miR-93-5p 3 0.47
(0.17,0.77)

3.11 1.88E-03 0.0 4.08E-01 F up 0.296 0.154

miR-21-5p 3 -0.18
(-0.44,0.09)

1.30 1.93E-01 23.4 2.71E-01 F / 1.000 0.592

miR-106a-5p 3 0.17
(-0.21,0.55)

0.88 3.81E-01 48.8 1.42E-01 F / 1.000 0.525

miR-126-3p 3 0.14
(-0.19,0.47)

0.82 4.12E-01 0.0 6.92E-01 F / 0.296 0.474

let-7e-5p 3 0.00
(-0.55,0.56)

0.01 9.91E-01 73.2 2.39E-02 R / 1.000 0.648

let-7b-5p 3 -0.21
(-0.72,0.30)

0.80 4.24E-01 61.8 7.32E-02 R / 1.000 0.813

(Continued)
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in subgroup analysis stratified by specimen type in SZ patients. The

results revealed that miR-34a-5p, miR-30e-5p, miR-7-5p and miR-

212-3p were both upregulated in plasma and PBMC. miR-195-5p

was upregulated in plasma, PBMC and whole blood. miR-181b-5p

was upregulated in plasma, but not in PBMC and whole blood.

miR-132-3p was upregulated in plasma, but not in PBMC. miR-346

was downregulated in PBMC, but not in plasma. miR-432-5p was

not dysregulated both in plasma and PBMC (Figure 2).

We analyzed the expression of 25 miRNAs from 45 studies for

MDD. The results suggested that MDD patients had higher miRNA

levels than control group in miR-124-3p, miR-132-3p, miR-139-5p,

miR-182-5p, miR-221-3p, miR-34a-5p and miR-93-5p, while lower

miRNA levels than control group in miR-144-5p and miR-135a-5p.

Besides, miR-16-5p, miR-155-5p, miR-451a, miR-146a-5p, miR-145-5p,

miR-134-5p, miR-195-5p, miR-223-3p, miR-21-5p, miR-106a-5p, miR-

126-3p, let-7e-5p, let-7b-5p, miR-17-5p, miR-9-5p and miR-26b-5p

were not dysregulated (Table 2, Figure 3). 3 of 25 miRNAs were

included in subgroup analysis stratified by specimen type in MDD

patients. The results showed thatmiR-124-3p was upregulated in serum,

but not in plasma and PBMC. miR-16-5p was not dysregulated in

plasma, whole blood and PBMC. miR-132-3p was upregulated in

serum, plasma and whole blood, but not in PBMC. (Figure 3).

We analyzed the expression of miR-134-5p and miR-107 from 6

studies for BD, but neither of them were dysregulated in BD

patients (Table 2, Figure 4).
3.3 Differentially expressed miRNAs in both
SZ and MDD patients

Our results found that miR-132-3p and miR-34a-5p were

upregulated in both SZ and MDD patients, suggesting that they

may likely share some common molecular mechanisms.
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3.4 Bioinformatics analysis

To get insight into the possible roles of the miR-132-3p and miR-

34a-5p, we performed target gene prediction and KEGG pathway

analysis. A total number of 4138 target genes from miR-132-3p and

miR-34a-5pwere identified by using TargetScan andmiRanda. Figure 5

showed the top 20 significant enriched terms identified for KEGG

pathway analysis, including axon guidance, neurotrophin signaling

pathway, ErbB signaling pathway, FoxO signaling pathway, etc.
3.5 Publication bias and sensitivity analysis

Begg’s test and Egger’s test results indicated that there were no

publication bias in this meta-analysis except miR-22-3p in SZ

(Table 2). Sensitivity analysis showed that none of individual

study could obviously influenced the pooled ORs except miR-22-

3p in SZ, miR-223-3p and miR-17-5p in MDD (Supplementary

Figures 1-3). For miR-22-3p, miR-223-3p and miR-17-5p, when Du

et al.’s study, Huang et al.’s study, Belzeaux et al.’s were removed,

respectively, the levels of these 3 miRNAs were all upregulated, but

only 2 studies remained for each miRNA, so we wouldn’t further

discuss them.
4 Discussion

A major goal of psychiatric research is to identify biomarkers

for early and reliable diagnosis of PDs and guide their effective

clinical treatment. In recent years, miRNAs, a key regulator of

neurogenesis, neuronal differentiation, and synaptic plasticity, have

received widespread attention as potential biomarkers of PDs (94,

95). However, as the literature reviews on miRNAs in PDs were
TABLE 2 Continued

Disease miRNA
No.
of

study

Test of association Test of heterogeneity

Direction

Publication bias

SMD
(95CI)

Z P
I2

(%)
P Model

Begg’s
test

P-Value

Egger’s
test

P-Value

miR-17-5p 3 0.15
(-0.39,0.70)

0.55 5.82E-01 72.4 2.66E-02 R / 1.000 0.305

miR-9-5p 3 1.18
(-0.30,2.65)

1.57 1.17E-01 86.4 6.27E-04 R / 1.000 0.637

miR-26b-5p 3 -2.35
(-7.36,2.65)

0.92 3.57E-01 99.3 1.24E-63 R / 0.296 0.245

BD miR-134-5p 4
-2.68

(-5.63,0.28)
1.78 7.59E-02 99.3 4.45E-96 R / 0.089 0.092

miR-107 3
0.06

(-0.24,0.35)
0.37 7.08E-01 60.3 8.04E-02 R / 1.000 0.326
f

SZ, schizophrenia; MDD, major depression disorder; BD, bipolar disorder; SMD: standard mean difference; CI: confidence interval; R, random-effects model; F, fixed-effects model.
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merely narrative, or only meta-analysis for single disease (such as

SZ or MDD), and no relatively comprehensive data was available. In

this study we conducted a comprehensive and systematic meta-

analysis for the first time to simultaneously identify dysregulated

miRNAs expression profiles in SZ, MDD and BD.

In our meta-analysis, we focused on differentially expressed

miRNAs derived from peripheral blood, excluding studies from

brain tissue, as the method for extracting miRNAs from brain tissue

has limited sample sources and are difficult to apply in clinical

practice. Studies have found that brain disease-specific miRNAs can

also be detected in peripheral blood, where their levels were highly
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correlated with those in the brain (96, 97). Interestingly, in SZ

patients, miR-181b-5p and miR-132-3p were significantly increased

in the pooled results, but only in certain blood elements in subgroup

analysis based on specimen type. However, miR-346 was

significantly decreased in PBMC, but not in plasma or the pooled

results. In MDD patients, miR-124-3p was significantly increased in

serum, but not in plasma and PBMC. These results indicated that

the expression patterns of miRNAs could be affected by different

specimen types. Previous evidence showed that the miRNA

expression profiles in different blood elements may vary due to

element-specific miRNAs released by specific tissues (98), unique
FIGURE 2

Forest plot of the meta-analysis of peripheral blood microRNAs of SZ patients versus controls.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1390366
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Liu et al. 10.3389/fpsyt.2024.1390366
miRNA features from unique lineage (99), different biological

specimen processing conditions, and variation in reference

miRNA levels (100).

With respect to SZ, Liu et al. (23) revealed that miR-181b-5p,

miR-21-5p, miR-195-5p, miR-137, miR-346 and miR-34a-5p in

PBMCs had high diagnostic sensitivity and specificity in SZ based

on their meta-analysis of six diagnostic studies. Han et al. (101)

found 27 significant differentially expressed miRNAs in SZ, of

which 5 were downregulated, whereas 22 were upregulated. In
Frontiers in Psychiatry 10
our meta-analysis, we found the levels of miR-181b-5p, miR-34a-

5p, miR-195-5p, miR-30e-5p, miR-7-5p, miR-132-3p, miR-212-3p,

miR-206, miR-92a-3p and miR-137-3p were increased in SZ

patients, while the levels of miR-134-5p, miR-107 and miR-99b-

5p were decreased. Our research findings were not entirely

consistent with the two previous meta-analysis, such as miR-195-

5p was increased in SZ patients in our study but not in Han et al.’s

study. The reasons for the inconsistent conclusion may be due to

differences in inclusion and exclusion criteria, outcome measures,
FIGURE 3

Forest plot of the meta-analysis of peripheral blood microRNAs of MDD patients versus control.
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and the number of studies included. Of the thirteen differentially

miRNAs in our study, miR-181b-5p was the most commonly

reported one. Increased levels of miR-181b-5p have been detected

in plasma (17, 19, 22), serum (43), as well as in brain of SZ patients

(102). Of note, miR-181b-5p targeted a-amino-3-hydroxyl-5-

methyl-4-isoxazolepropionate acid (AMPA) glutamate ionotropic

receptor type subunit 2 (GRIA2) and the calcium sensor protein

gene visinin like 1 (VSNL1) in SZ patients (102); both of these

targets were themselves suspected to have a role in the pathology of

SZ (103, 104). Guo et al. (105) constructed a miRNA-transcription

factors regulatory network for SZ and found that miR-195-5p was

one of the core regulators in this regulatory network. Many of the

predicted target genes of miR-195-5p, such as regulator of G-

protein signaling 4 (RGS4), N-methyl-D-aspartate (NMDA)

glutamate ionotropic receptor type subunit 3A (GRIN3A), and

reelin (RELN), have been reported to correlate with SZ (106,

107). Brain Derived Neurotrophic Factor (BDNF) was involved in

neuronal plasticity, and multiple studies supported its close

association with SZ (108). Mellios et al. showed that miR-195-5p

regulated BDNF, thereby affecting the expression of downstream

gamma-aminobutyric acid (GABA)ergic transcripts, such as

parvalbumin (PV), somatostatin (SST), and neuropeptide Y

(NPY) in SZ (109, 110). Xu et al. (111) indicated that a

potentially functional variant that affected pre-miR-30-5p played
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a role in SZ susceptibility. Overexpression of miR-30e-5p in the rat

brain could lead to cognitive impairment, resulting in anxiety,

depression, and SZ like symptoms (112). Abnormal expression of

miR-7-5p could inhibit the protein kinase AKT1 gene, which has

been confirmed to be a susceptibility gene for SZ (113). In addition,

Zhang et al. (114) found that miR-7-5p was overexpressed in

plasma of SZ and the overexpression of miR-7-5p significantly

inhibited the expression levels of SH3 and multiple ankyrin repeat

domains protein 3 (SHANK3), which in turn may play an essential

role in the pathological process of SZ. It was found that miR-212-3p

was co-transcribed with miR-132-3p, the miR-132-3p/miR-212-3p

family influenced genes associated with circadian clock entrainment

(115), which was consistent with the defective circadian

synchronization observed in SZ. A recent study suggested that

miR-206 may contribute to SZ risk through allele-dependent

regulation of the genome-wide significant gene NT5C2 (116). Du

et al. (32) showed significantly increased miR-206 levels and

decreased BDNF levels in SZ, and antipsychotics restored the

dysregulations of miR-206 and BDNF in SZ, suggesting that

upregulation of miR-206 may contribute to the dysfunction of

BDNF in SZ. miR-92a-3p was related to synaptic transmission

(117). Studies have confirmed that miR-137-3p was closely related

to the development and maturation of the nervous system, and can

regulate multiple neural development signaling pathways and target

gene expression through cascade effects (118). Wright et al. (119)

identified the possible regulatory signaling pathways involved in SZ

by miR-137-3p through functional enrichment analysis, including

axonal guidance, Ephrin receptor signaling, long-term regulation,

Sertoli cell junction, and protein kinase A signaling. Kwon et al.

(120) confirmed that susceptibility genes of SZ, such as

transcription factor 4 gene (TCF4), calcium voltage-gated channel

subunit alpha1 C gene (CACNA1C), CUB, and Sushi multiple

domains 1 gene (CSMD1), WW domain binding protein 1 like gene

(C10orf26) were target genes for miR-137-3p. miR-134-5p was a

brain-specific miRNA that presented in the synaptic dendrite

chamber of hippocampal neurons, which repressed dendritic

spine size by inhibiting the translation of Lim kinase 1 (Limk1)

mRNA, thereby affecting the strength of excitatory synapses (121).

More recently, it has been shown that the expression of silent

information regulator 1 (SIRT1), which modulates synaptic

plasticity and memory formation, is regulated by cAMP-response

element-binding protein (CREB), which itself is translationally

repressed by miR-134-5p (121, 122). Beveridge et al. (107)

suggested that miR-107 were highly enriched in pathways

involved in neural connectivity and synaptic plasticity, such as
FIGURE 4

Forest plot of the meta-analysis of peripheral blood microRNAs of BD patients versus controls.
FIGURE 5

Top 20 significant enriched kyoto encyclopedia of genes and
genomes (KEGG) signal pathway for the predicted target genes of
miR-132-3p and miR-34a-5p.
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axon guidance, long-term potentiation. Scarr et al. (123)

demonstrated that miR-107 could regulate the expression of

cortical muscarinic M1 receptors (CHRM1), which was involved

in the pathophysiology of SZ (124). Kaurani et al. (125) reported

that miR-99b-5p regulated Z-DNA binding protein 1 (Zbp1) to

control inflammatory response in microglia, which may contributed

to the pathogenesis of SZ.

Regarding MDD, Li et al. (126) showed that 17 miRNAs had

high sensitivity and specificity in diagnosing MDD based on 7

studies. We found the levels of miR-124-3p, miR-132-3p, miR-139-

5p, miR-182-5p, miR-221-3p, miR-34a-5p and miR-93-5p were

increased, while the level of miR-144-5p and miR-135a-5p were

decreased. Our research findings were not entirely consistent with

Li et al.’s meta-analysis, such as miR-16-5p was not dysregulated in

MDD patients in our study but was upregulated in their study. The

most possible reason for the inconsistent conclusion may be their

meta-analysis based on diagnostic studies and all mentioned

miRNAs only reported in single study, but our present study

included miRNAs from at least 3 independent studies. Moreover,

we conducted subgroup analysis stratified by specimen type. Of the

seven differentially expressed miRNAs in our study, miR-124-3p

was the most frequently reported one. Increased levels of miR-124-

3p have been consistently detected in serum (58, 79) and plasma

(60, 69). miR-124-3p was a rich brain-specific miRNA that

inhibited serotonin induced synaptic facilitation by regulating

CREB, thereby negatively regulating synaptic plasticity (127).

Studies indicated that miR-124-3p could inhibit the expression of

BDNF in the hippocampus of depression model rats (128). BDNF

was a validated miR-124-3p target (47) and low expression levels of

BDNF played a predominant role in the pathophysiology of MDD

(129). miR-139-5p might act as a negative regulator for neural stem

cell proliferation and neuronal differentiation, and modulated

cortical neuronal migration by targeting lissencephaly-1 (Lis1)

(77, 130). Wei et al. (77) found stress-induced elevation of miR-

139-5p caused impairment of hippocampal neurogenesis and

depressive-like behaviors in adult mice. miR-182-5p has been

proven to be an important regulatory factor in the nervous

system, involved in various biological processes such as neuronal

survival (131), axonogenesis (132), and protein signal transduction

(133). Studies have provided evidence for miR-182-5p as a

modulator of the endogenous circadian clock (134). Disruption of

circadian rhythms has long been implicated in the pathophysiology

of MDD (135). Li et al. (47) found the serum levels of miR-182-5p

were increased and BDNF levels were reduced in MDD patients,

which supported that miR-182-5p could negatively regulate BDNF

expression and might be related to the development of MDD.

Although miR-221-3p was commonly considered as a tumor

regulator, in recent years, some researchers have been repeatedly

reported abnormally high levels of miR-221-3p in the cerebrospinal

fluid (CSF) and serum of MDD patients (49, 136), suggesting that

miR-221-3p may also be involved in the pathogenesis of MDD.

Studies revealed that miR-221-3p was closely related to neuronal

development and axon growth (137, 138). In addition, Lian et al.

(139) demonstrated that miR-221-3p could promote the
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development of MDD by modulating Wnt2/CREB/BDNF axis.

Wu et al. (89) demonstrated that miR-144-5p influenced synaptic

plasticity by targeting phosphatase and tensin homolog (PTEN),

and miR-144-5p exerted anti-inflammatory effects in patients with

MDD. miR-135a-5p regulated axon growth/regeneration and

mediated long-term depression (140, 141). Ding et al. (78)

demonstrated that miR−135a-5p regulated apoptosis and

inflammatory response in mouse hippocampal neurons by

regulating the expression of Toll like receptor 4 (TLR 4), thereby

alleviating the depressive behavior of mice and playing a protective

role in depression. Valiuliene et al. (142) revealed that miR-93-5p

may regulate the expression of the pro-inflammatory cytokine

IL-18, involving in the pathophysiology of MDD.

Our results found that miR-132-3p and miR-34a-5p were

increased in both SZ and MDD patients, suggesting that they may

likely share some commonmolecular mechanisms. miR-132-3p was

a miRNA enriched in the brain and participated in axonal growth,

proliferation and synaptic plasticity (115). Neuronal plasticity and

its related pathways have shown to be disturbed in SZ and MDD

(143, 144). miR-132-3p targeted important genes that regulate

neuronal plasticity, including BDNF, methyl-CpG-binding protein

2 (MeCP2), GTPase activating protein (p250GAP) (145–147). Su

et al. (148) demonstrated that miR−132-3p was significantly

increased in the peripheral blood of MDD patients, while BDNF

and MeCP2 were decreased, and the level of miR-132-3p was

negatively correlated with the protein expression levels of MeCP2

and BDNF. Low BDNF level was also detected in CSF and plasma of

SZ patients (149). Besides, MeCP2 has been repeatedly reported as a

risk gene for SZ (150, 151). p250GAP was a brain-enriched NDMA

receptor-interacting RhoGAP. Studies have shown that the

p250GAP gene was associated with risk for SZ and MDD (152,

153). miR-34a-5p suppressed SIRT1, leading to increased acetylated

p53, a regulator of the cell cycle progression and cellular senescence

(154). It has also been shown that miR-34a-5p was a transcriptional

target of p53, thus establishing a positive feedback loop between

miR-34a-5p, p53, and SIRT1 (154, 155). Oxidative stress induced

the upregulation of p53 activity, consequently increasing the

expression levels of miR-34a-5p (155, 156). Both SZ and MDD

were associated with high oxidative stress levels (157, 158), which

could elucidate the upregulated miR-34a-5p found in these patients.

In addition, SZ and MDD also were genetically associated with the

SIRT1 gene (159–161). Xu et al. (162) indicated that miR-34a-5p

targeted the NMDA receptors (including Grin1, Grin2a, and

Grin2b), providing evidence of a post-transcriptional mechanism

of SZ and MDD associated glutamatergic and synaptic dysfunction

(163–165). Moreover, KEGG pathway analysis in the present study

indicated that the identified signaling pathways enriched by the

predicted target genes of miR-132-3p and miR-34a-5p, such as axon

guidance, neurotrophin signaling pathway, ErbB signaling pathway,

FoxO signaling pathway, were closely related to the pathologic

mechanisms of SZ and MDD (166–171). Interestingly, enriched

KEGG pathways also contained cancer pathways, which may be

involved in shared pathogenesis of SZ and MDD. For example,

PI3K/Akt pathway, which modulated by miR-132-3p, was a
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prototypic cancer pathway (172). Many genes on PI3K/Akt

pathway were considered to be potentially susceptible genes for

the development of SZ (173). The levels of Akt1 were decreased in

the brain, as well as in the peripheral lymphocytes of individuals

with SZ (174). P13K/Akt signaling cascade also was strongly linked

with the neurobiology of MDD (175). Reduced Akt1 activity was

found in the brain of MDD patients (176). Evidence showed that

p53, which could regulate the transcription of miR-34a-5p, was one

of the most important tumor suppressor genes (177). Catts et al.

(178) proposed that p53 might be a candidate susceptibility gene for

SZ by regulating apoptosis. Mahmood et al. (179) suggested the

protective effect of minor allele 72C of p53 gene towards MDD.

The following limitations of the study should be considered.

Firstly, between-study heterogeneity remained substantial although

we performed subgroup analyses to explore their sources. The

possible causes of heterogeneity may be related to the duration,

severity, and treatment of patient’s disease. Due to the limited

information provided by the included studies, further analysis was

not possible. Secondly, the majority of the population included in

the study came from China, which may limit the broad applicability

of the findings. Thirdly, potential publication bias may affect the

present results due to the relative small number of studies included

for some miRNAs. Finally, most of miRNAs included in the present

meta-analysis were detected by qPCR, which may also result in bias.
5 Conclusion

In summary, our study identified 13 differentially expressed

miRNAs in SZ, 9 differentially expressed miRNAs in MDD, among

which miR-132-3p and miR-34a-5p were upregulated in both SZ

and MDD by systematically analyzing qualified studies. These

miRNAs may be used as potential biomarkers for the diagnosis of

SZ and MDD in the future. Further validation in large patient

cohorts is required to confirm the findings.
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