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Guangdong, China
Introduction: Increasing evidence has indicated a connection between bipolar

disorder (BD) and arteriosclerosis (AS), yet the specific molecular mechanisms

remain unclear. This study aims to investigate the hub genes and molecular

pathways for BD with AS.

Methods: BD-related dataset GSE12649 were downloaded from the Gene

Expression Omnibus database and differentially expressed genes (DEGs) and

key module genes derived from Limma and weighted gene co-expression

network analyses (WGCNA) were identified. AS-related genes were sourced

from the DisGeNET database, and the overlapping genes between DEGs and

AS-related genes were characterized as differentially expressed arteriosclerosis-

related genes (DE-ASRGs). The functional enrichment analysis, protein-protein

interaction (PPI) network and three machine learning algorithms were performed

to explore the hub genes, which were validated with two external validation sets.

Additionally, immune infiltration was performed in BD.

Results: Overall, 67 DE-ASRGs were found to be overlapping between the DEGs

and AS-related genes. Functional enrichment analysis highlighted the cancer

pathways between BD and AS. We identified seven candidate hub genes (CTSD,

IRF3, NPEPPS, ST6GAL1, HIF1A, SOX9 and CX3CR1). Eventually, two hub genes

(CX3CR1 and ST6GAL1) were identified as BD and AS co-biomarkers by using

machine learning algorithms. Immune infiltration had revealed the disorder

of immunocytes.
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Discussion: This study identified the hub genes CX3CR1 and ST6GAL1 in BD and

AS, providing new insights for further research on the bioinformatic mechanisms

of BD with AS and contributing to the diagnosis and prevention of AS in

psychiatric clinical practice.
KEYWORDS

bipolar disorder, arteriosclerosis, bioinformatics, hub genes, CX3CR1, ST6GAL1
1 Introduction

Bipolar disorder (BD) is marked by alternating episodes of

depression as well as either mania or hypomania, impacting an

estimated 40 million individuals worldwide (1). Bipolar disorder is

the 17th leading cause of global burden of diseases (2) and often

lead to functional impairment and reduced quality of life (3).

Psychiatric and nonpsychiatric medical comorbidities are

common in patients with BD and might also contribute to

increased mortality, particularly from cardiovascular diseases

(CVDs) (4). Individuals diagnosed with bipolar disorder exhibit a

notably elevated risk of mortality from CVDs compared to the

general population, with a standardized mortality ratio of 1.73 and

experience cardiovascular mortality occurring an average of 17

years earlier (1, 5, 6). This elevated risk persists even after

considering the high prevalence of cardiovascular risk factors

present in individuals with bipolar disorder (7). Evidence from a

large epidemiological study suggests that the elevated occurrence

and premature onset of CVDs in BD surpasses what can be

accounted for by traditional cardiovascular risk factors (8).

Arteriosclerosis (AS) is primarily an aging-related process

characterized by increased stiffness in elastic arteries, including

the aorta (9). The pathological characteristics of AS include elastin

fracture, an increase in collagen fibers, and calcium deposition. AS

develops as a result of increased production or progressively greater

engagement of stiffer load-bearing elements in the arterial wall, such

as collagen (10). Arterial stiffness of AS is a significant risk factor for

CVDs and a powerful predictor of CVDs morbidity and

mortality (11).

Several studies have investigated the phenomenon between AS

and BD. In a study investigating the relationship between arterial

stiffness and BD, patients were found to have higher arterial stiffness

compared to healthy controls regarding to the elastic modulus of

the carotid artery (12). Furthermore, research suggested that

patients with BD have greater carotid intima-media thickness

before middle age and were at increasing risk of atherosclerosis

(13). BD was closely associated with and independently contribute

to increasing atherogenic potential (14). Long-term depressive and

manic symptom burden, especially the persistence and duration of

mood syndromes, has been independently linked to poor

endothelial function and impaired vascular function, which lead
02
to subsequent cardiovascular morbidity and mortality (15–17). The

chronicity of mood symptoms contributes to vasculopathy in a

dose-dependent fashion, and patients with more manic/hypomanic

symptoms had poorer endothelial function (17, 18). Besides, lipid

abnormalities that contribute to an increased atherogenic potential

are implicated in the pathophysiology of BD (19). Underlying

pathophysiological factors such as immune-inflammatory

abnormalities, hypothalamic-pituitary-adrenal axis and

sympathomedullary hyperactivity, increased platelet reactivity,

reduced heart rate variability, oxidative stress, and endothelial

dysfunction may also contribute to the heightened risk of CVDs

(20–22).

Most studies focusing on the relationship between BD and AS

are based on clinical investigation and examination, and scarce data

are available to explore associated pathological mechanisms and

genetic alterations. With the advancement of multi-omics

technologies, researchers are now able to uncover new insights

into human diseases by identifying biomarkers, pathways, and other

approaches, thereby offering novel strategies for disease diagnosis

and treatment (23). Genome-wide association studies (GWAS) have

identified several genetic variants between BD and CVDs (24, 25).

The risk of myocardial infarction has been linked to a genetic

variant in the ITIH3–ITIH4 genes, which have also been implicated

in the risk of BD (Consortium, 2011). A phenome-wide association

study (PheWAS) exploring BD and susceptibility genetic variants

across various medical conditions indicated that the genome-wide

single nucleotide polymorphism (SNP) rs4765913 in the

CACNA1C gene may be linked to an increased risk of

“cardiovascular dysgenesis” (25). An existing study of genome

wide and candidate gene studies related to cardiometabolic

diseases and mood disorders revealed 24 potential pleiotropic

genes that are likely to be shared between mood disorders and

cardiometabolic diseases risk (26). Moreover, data mining and

machine learning techniques have been employed in the study of

complex diseases to identify potential biomarkers (27). However,

there are limited biologically relevant diagnostic markers available

on AS in BD. Exploring new markers and methods to assess AS risk

in BD patients could lead to more accurate diagnosis and improved

treatment of BD. Investigating the pathogenesis and associations

with AS is of considerable interest in the field of psychiatry and this

progress requires having better understanding of molecular
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psychopathology and specific biomarkers (28). Therefore, the

present study was conducted to predict the bidirectional hub

genes and related pathways between BD and AS using

bioinformatics and machine learning algorithms.
2 Methods

2.1 Data collection and preparation

Gene datasets related to bipolar disorder were downloaded from the

Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geoprofiles/). The inclusion criteria are set as: expression

profiles come from the same sample source and should contain enough

sample size that at least fifty samples to ensure accuracy. In addition,

the test specimens included should be from humans. Finally, two

microarray datasets [GSE12649 and GSE5392] derived from prefrontal

cortex were downloaded from GEO (Affymetrix GPL96 platform,

Affymetrix Human Genome U133A Array). The GSE12649

comprised 33 bipolar disorder samples and 34 control groups, while

the GSE5392 contained 30 bipolar disorder samples and 52 control
Frontiers in Psychiatry 03
groups. GSE12649 was selected as the training group and GSE5392 as

the test group. The expression matrix file of GSE12649 was normalized

through the Limma package (29).

Since no microarray data sets detecting gene expression in brain

especially in prefrontal cortex among arteriosclerosis, DisGeNET

(https://www.disgenet.org/home/) was used to retrieve 2006

arteriosclerosis-related genes (ASRGs) (Supplementary Table S1).

The DisGeNET database is a comprehensive gene-associated

information platform that integrates experimentally validated data

with information from authoritative repositories and scientific

literature to present genes and variants linked to human diseases

(30). Given that the GEO database lacks datasets directly related to

AS, and considering that atherosclerosis is a consequence of

arteriosclerosis (10), we have chosen the atherosclerosis dataset

GSE100927 as our test group. The whole process flow is shown in

Figure 1 and the complete information dataset is given in Table 1.
2.2 Differential gene expression analysis

After preparing the data, differential expression analysis was

performed using the limma package in R (version 4.3.1) on the
FIGURE 1

The flow diagram for the whole study.
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GSE12649 dataset. Differentially expressed genes (DEGs) were

identified which were differentially expressed between the BD and

control groups. The DEG threshold was set as P value <0.05

and |log2FC (fold change) |>0.2. Next, the difference analysis

results were presented using the heatmap and volcano plot. In

both plots, blue indicated low expression, and red indicated high.

Then, the online Venn diagram tool (http://bioinformatics.psb.

ugent.be/webtools/Venn/) was used to obtain the differentially

expressed arteriosclerosis-related genes (DE-ASRGs) between

DEGs and ASRG.
2.3 Functional enrichment analysis of
DE-ASRGs

To further understand the function of the DE-ASRGs, we

performed Gene Ontology (GO) enrichment analysis (31) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis (32) using the DAVID (https://david.ncifcrf.gov/). GO is a

structured way to represent biological functions in terms of core

entities and annotate protein biomarkers in the biological process

(BP), cellular composition (CC) and molecular function (MF)

levels. KEGG enables the correlation of gene catalogues to system

functions at the cellular, species and ecosystem levels, facilitating

researchers to understand the signaling pathways in which genes are

involved. Based on the analysis, we selected the enrichment analysis

results with a count greater than 5 and arranged them in descending

order of count to identify the top 10.
2.4 Construction of protein–protein
interaction network and identification of
candidate hub genes

The DE-ASRGs were analyzed by a search tool for the retrieval

of interacting genes/proteins (STRING) (https://www.string-

db.org/) to predict the PPI network and to determine the possible

relationships between them (confidence level 0.4). The STRING

database and Cytoscape software (v3.10.1) completed constructing

the PPI network for DE-ASRGs. Gene modules were analyzed and

network characteristics of genes were ranked by protein score via

the MCODE and CytoHubba plugin, respectively. The CytoHubba

plugin was used to score each node gene by 9 randomly selected

algorithms, including MNC (Maximum Neighbourhood

Component), Degree, MCC (Maximal Clique Centrality), EPC

(Edge Percolated Component), Closeness, BottleNeck,

Betweenness, Radiality, and Stress. The top 10 genes from each
Frontiers in Psychiatry 04
algorithm were used to screen candidate hub genes through the

“UpSetR” package.
2.5 Screening of target genes by weighted
gene co-expression network analysis

The WGCNA was utilized for constructing unsigned co-

expression networks for the identification of co-expression

modules across samples using the “WGCNA” R package (33).

WGCNA is a highly efficient and accurate method for analyzing

microarray data, and using this approach can help identify genes

associated with diseases. Initially, normalized mRNA expression

data were used to perform WGCNA to identify gene co-expression

and the correlation between gene modules and clinical

characteristics (BD compared to control groups). Samples were

examined for missing values and then clustered using the average

linkage hierarchical method. Afterward, the optimal values of the

weighted parameters of the adjacent functions were obtained using

the pickSoftThreshold function and were used as soft thresholds for

subsequent network construction. Moreover, a topological overlap

matrix (TOM) was devised on the basis of an adjacency matrix, and

a dynamic tree-cutting algorithm was used for detecting gene

modules with a minimum gene group size of 30 and power = 6.

The correlation of each module with the BD was calculated, and the

module with P<0.05 was defined as the key module. Finally, we took

the intersection between DE-ASRGs and WGCNA-derived key

module genes to obtain potential hub gene of AS and BD.
2.6 Machine learning algorithms

To further identify hub genes from the potential candidates,

machine learning algorithms were employed. To ensure the

repeatability of these algorithms, we set the seed at 2023. The

Least Absolute Shrinkage and Selection Operator (LASSO)

algorithm was executed using the glmnet package (34), with a

tenfold cross-validation was performed to adjust the optimal

penalty parameter. The response type was set to binomial,

nlambda was set to 100, and alpha was fixed at 1. Moreover, we

chose the best lambda value by “lambda.min”. Subsequently, the

Random Forest (RF) algorithm (35) was implemented using the

randomForest package. We explored the optimal number of

random forest trees using cross-validation errors and settled on

500 trees for analysis. The significance of genes in the RF model was

evaluated based on mean decrease accuracy and mean decrease

Gini. The intersection genes from the top 3 mean decrease accuracy
TABLE 1 Detailed data set information.

Dataset Platform Disease
Samples
(patients/controls)

Source

Discovery cohort GSE12649 GPL96 Bipolar disorder 33/34 Prefrontal cortex

Validation cohort GSE5392 GPL96 Bipolar disorder 30/52 Prefrontal cortex

Validation cohort GSE100927 GPL17077 Atherosclerosis 69/35 Artery
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and top 3 mean decrease Gini were identified. Additionally, the

support vector machine recursive feature elimination (SVM-RFE)

method (36), acting as a vigilant machine learning approach, was

employed to select the most relevant variables by eliminating SVM-

produced eigenvectors. For the categorization analyses of the

screened markers in the BD, the caret package was utilized to

conduct the SVM-RFE. The results of SVM-RFE were visualized,

and through ten-fold cross-validation, the blue point represented

the maximum classification accuracy, highlighting the

corresponding gene sets as the most effective diagnostic markers.

Only the names of valuable genes used in each machine learning

model were included, irrespective of the specific learning model.

The hub genes were determined as the intersection genes of valuable

genes obtained from the three machine learning algorithms.

SVMs have been shown to exhibit robust classification

performance and high accuracy when utilizing feature selection

genes in the analysis of microarray expression profiles (37). In this

study, SVM was used to evaluate the predictive capability of hub

genes as feature genes as follows: 1) the BD datasets including

GSE12649 and GSE5392 were separately divided into training

(70%) and test (30%) sets; 2) SVM modeling was conducted using

gene expression data of hub genes from the training set; 3) optimal

SVM hyperparameters were determined through ten-fold cross-

validation; 4) model accuracy was assessed using the test set.
2.7 Verification of hub genes

To validate the expression of two hub genes in BD and AS, the t-test

was employed to analyze their expression levels. Initially, the expression

levels of these hub genes were measured in the dataset GSE12649.

Subsequently, two hub genes were validated in the independent datasets

GSE5392 and GSE100927. The expression levels of the hub genes were

visually represented in boxplots generated using the “ggplot2” package

in R. Furthermore, the predictive and discriminatory abilities of the hub

genes were evaluated through receiver operating characteristic (ROC)

analysis using the “pROC” package, with the area under the curve

(AUC) values determined.
2.8 Single gene GSEA analysis

Following the identification of hub genes, single-gene gene set

enrichment analysis (GSEA) was conducted to uncover their potential

functions, utilizing the “clusterProfiler” package. This analysis was

carried out using the human reference genome. Subsequently,

enrichplot was utilized to visualize the top 5 activating and inhibiting

pathways for each gene in the two disease groups.
2.9 Correlation analysis between infiltrating
immune cells and hub genes

For immune infiltration analysis, single-sample gene set

enrichment analysis (ssGSEA) was carried out using the “GSVA”

package to evaluate the relative infiltration levels of 28 immune cell
Frontiers in Psychiatry 05
types in each sample of BD. A comparison of immune cell content

between the BD and control groups was conducted using the

Wilcoxon test. Furthermore, Spearman correlation analysis between

infiltrating immune cells and hub genes was performed using the

“corrplot” package in R. The resulting correlations between hub genes

and immune cells were visualized using lollipop plots.
2.10 Statistical analysis

R software version 4.2.1 was used to perform statistical

analyses. Using the Student’s t-test, continuous variables were

compared between two groups. A p-value less than 0.05 was

statistically significant.
3 Results

3.1 Screening of differentially expressed
genes in BD and identification of
arteriosclerosis-related DEGs

After standardizing the microarray results, the differentially

expressed genes (DEGs) were screened by “Limma” package

(p < 0.05 and |log FC| > 0.2). The GSE12649 dataset contained 436

DEGs, including 201 upregulated genes and 235 downregulated genes

(Figures 2A, B). Then, we intersected the resulting data with 2006

ASRGs and a total of 67 differentially expressed arteriosclerosis-

related genes (DE-ASRGs) were identified (Figure 2C).
3.2 Analysis of the functional
characteristics of DE-ASRGs

In order to analyze the biological functions and pathways,

perform GO and KEGG pathway enrichment analysis on the

DEGs, ASRG, and DE-ASRG genomes using DAVID (Figures 2D-

F). Upon comparing the enrichment results of the three genomes, we

observed that DE-ASRGs were primarily focused on signal

transduction in biological processes. Additionally, negative

regulation of apoptotic processes, negative regulation of translation

from RNA polymerase II (pol II) promoter, and apoptotic processes

were identified as common biological processes across the three

genomes. The GO-CC pathways were principally associated with

the cytosol, nucleus, and cytoplasm. The GO-MF analysis revealed

enrichment in protein binding, identical protein binding and protein

homodimerization activity. Additionally, KEGG analysis showed that

these DE-ASRGs were enriched in pathways in cancer, PI3K-Akt

signaling pathway and human papillomavirus infection (HPV).
3.3 Construction of PPI network of DE-
ASRGs and potential hub gene screening

To explore the protein interactions among DE-ASRGs, we

performed a PPI network containing 67 nodes and 82 edges with
frontiersin.org
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FIGURE 2

Identification and analysis of differentially expressed genes (DEGs) and differentially expressed arteriosclerosis-related genes (DE-ASRGs) in bipolar
disorder (BD). (A) Volcanic map of the DEGs. (B) The expression patterns of top 50 DEGs shown by heatmap. (C) Venn diagram of DE-ASRGs.
(D-F) The bubble plot of GO enrichment and KEGG pathway analysis results for DEGs (D), ASRG (E), and DE-ASRGs (F).
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medium confidence (score > 0.4) using the STRING database and

visualized the network with Cytoscape software, as shown in

Figures 3A, B. Subsequently, the MCODE plugin identified a

cluster comprising 5 nodes (CSF1R, HIF1A, TIMP3, ITGA7,

SPP1) as illustrated in Figure 3C. The cytoHubba plugin was used

to score each node gene by 9 randomly selected algorithms and the
Frontiers in Psychiatry 07
top 10 hub genes from each algorithm were identified. Five

common genes (CSF1R, SPP1, HIF1A, SOX9, and CX3CR1) were

selected from the 9 algorithms, as shown in Figure 3D, using the

“UpSetR” package. Further screening of common genes through

regression analysis resulted in the identification of three candidate

hub genes (HIF1A, SOX9 and CX3CR1) as depicted in Figure 3E.
FIGURE 3

Protein–protein interaction (PPI) network and candidate hub genes. (A, B) Interaction network of differentially expressed arteriosclerosis-related
genes (DE-ASRGs) by STRING (A) and Cytoscape (B). (C) The upset plot displaying the common genes among 9 algorithms. (D) Cluster identified by
MCODE plugin. (E) Regression analysis of common genes.
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3.4 Construction of co-
expression networks

In this study, we conducted WGCNA to identify gene modules

associated with BD in the GSE12649 dataset. Initially, the dataset

underwent outlier screening, followed by clustering of the

remaining samples as depicted in Figure 4A. To establish scale-

free networks, a soft-threshold power of b = 6 (yielding a scale-free

R2 of 0.85) was selected for BD, as shown in Figure 4B. Using a

minimum module size of 30, we identified 12 modules, each

represented by a unique color (Figure 4C). Heat maps illustrating

module-trait relationships based on Pearson correlation coefficients

were generated to evaluate the connection between each module

and BD (Figure 4D). Among the 11 modules analyzed, the pink

module exhibited the strongest correlation with BD (correlation

coefficient = -0.29, P = 0.02), encompassing a total of 186 genes.

Subsequently, the 186 genes within the pink module were

intersected with the DE-ASRGs, resulting in the identification of
Frontiers in Psychiatry 08
4 candidate hub genes (CTSD, IRF3, NPEPPS and ST6GAL1)

(Figure 4E). These candidate hub genes were then integrated with

those identified through Cytoscape analyses, ultimately yielding a

total of 7 candidate hub genes (CTSD, IRF3, NPEPPS, ST6GAL1,

HIF1A, SOX9 and CX3CR1).
3.5 Screening hub genes through
machine learning

Lasso regression method, random forest and SVM-RFE method

were used to further screen the expression matrix of the 7 candidate

hub genes. The LASSO regression model was designed based on BD

as well as control samples. By analyzing the Lasso coefficient profiles

and selecting the optimal tuning parameter, l was determined to be

0.0168688 (Figure 5A). Subsequently, five candidate genes were

identified through the Lasso analysis. Following this, the seven

candidate hub genes were fed into the RF classifier, and the top
FIGURE 4

Weighted gene co-expression network analysis for gene set GSE12649. (A) Sample clustering to detect outliers. (B) Scale independence and mean
connectivity. (C) Cluster dendrogram. (D) Module-trait relationships. (E) Venn diagram of 4 candidate hub genes.
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three genes were chosen based on the mean decrease accuracy and

mean decrease Gini scale. Three genes were selected as candidate

genes from the RF results (Figure 5B). Furthermore, SVM-RFE

analysis was performed, revealing that the model incorporating

three genes exhibited the best Mean Absolute Error (MAE)

and Root Mean Square Error (RMSE) (Figure 5C). By comparing

the overlapping genes obtained from three machine learning

methods, two hub genes were selected: CX3CR1 and

ST6GAL1 (Figure 5D).

We developed SVM models using the BD datasets GSE12649

and GSE5392 to assess the predictive capability of the two hub

genes, CX3CR1 and ST6GAL1. The model’s performance on the
Frontiers in Psychiatry 09
GSE12649 test set showed an accuracy of 78.90% and a Kappa of

0.58. For the GSE5392 test set, the SVMmodel achieved an accuracy

of 70.83% and a Kappa of 0.42. The SVM results are detailed in

Figures 5E, F, as well as in Table 2.
3.6 The expression analysis and ROC curve
analysis of hub genes

We investigated the expression of these two genes in the

GSE12649 dataset and GSE5392 validation dataset, comparing BD

and control samples. As shown in Figure 6A, CX3CR1 and
FIGURE 5

Hub cross-talk gene screening. (A-C) Results of Least Absolute Shrinkage and Selection Operator (LASSO) (A), Random Forest (RF) (B), and support
vector machine recursive feature elimination (SVM-RFE) (C) analysis. (D) Venn diagram of 2 hub genes. (E, F) The confusion matrices for the model’s
validation on the GSE12649 (E) and GSE5392 (F) datasets.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1392437
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Zheng et al. 10.3389/fpsyt.2024.1392437
ST6GAL1 showed a significantly lower expression in BD, so as the

GSE5392 validation dataset (Figures 7A, C). Likewise, we used the

AS dataset GSE100927 for validation, and our findings revealed that

the expression level of hub genes was higher in the AS group

(Figure 7E). ROC analysis was used to verify the specificity and

sensitivity of the two hub genes for BD and AS diagnosis. The AUC

areas of the two hub genes in GSE12649 and GSE5392 were around

0.7, indicating their diagnostic value (Figures 7B, D). In GSE100927
Frontiers in Psychiatry 10
dataset, the AUC areas of two hub genes were > 0.8, showing that

the hub genes had good diagnostic values.
3.7 Single-gene GSEA analysis and
identification of transcription factors

Single-gene GSEA analysis was performed on these two hub genes

to obtain the related pathways of each gene. The results showed its

correlation with proteasome, basal cell carcinoma, fatty acid

degradation, mineral absorption and so on (Figures 7G-J). The

interaction network consisted of two hub genes and 23 TFs

(Transcription Factors) (Figure 6A). ST6GAL1 was regulated by

eleven TFs, while CX3CR1 was regulated by fifteen TFs. Moreover,

FOXC1, GATA2, and CREB1 were found to interact with both hub

genes, indicating a potential close interaction between these TFs and

the hub genes.
FIGURE 6

Regulatory networks and immune infiltration analysis for hub genes. (A) Transcription factor-key gene interaction network. (B) The difference in
immune infiltration between bipolar disorder samples and control samples. (C, D) Correlation between CX3CR1 and ST6GAL1 with immune
infiltrating cells.
TABLE 2 Classification performance of the two hub genes in the
GSE12649 and GSE5392 dataset.

Dataset Accuracy Kappa
P-Value

[Acc > NIR]

95%
Confidence
Interval

GSE12649 78.90% 0.58 0.02 (0.54, 0.94)

GSE5392 70.83% 0.42 0.03 (0.49, 0.87)
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3.8 Correlation analysis between hub
genes and immune cells

To further understand the involvement of the hub genes in

immune infiltration, we conducted Spearman correlation analysis

to investigate the potential relationships between these hub genes
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and immune cell infiltration. The results showed significantly

higher levels of immature B cells, neutrophils, central memory

CD4 T cells, and immature dendritic cells, as well as significantly

lower levels of activated CD8 T cells in the BD group compared to

the control group, as seen in the box plot (Figure 6B). Our findings

regarding the hub genes, CX3CR1 and ST6GAL1, were consistently
FIGURE 7

Hub gene expression level, receiver operating characteristic (ROC) analysis and the functions of hub genes including CX3CR1 and ST6GAL1.
(A, C, E) Expression levels of hub genes in GSE12639 (A), GSE5392 (C), GSE100927 (E). (B, D, F) The ROC curve analysis of hub genes in GSE12649
(B), GSE5392 (D), GSE100927 (F). (G-J) The activating and inhibiting pathways of CX3CR1 (G, H) and ST6GAL1 (I, J) using GSEA analysis.
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exhibited significantly positive correlations with eosinophils, while

demonstrating significantly negative correlations with immature B

cells (Figures 6C, D).
4 Discussion

BD is a chronic and disabling affective disorder with significant

high rate of physical comorbidities. Taking into account efficacious

psychopharmacological treatment and adequate follow-up

regarding physical comorbidities is critical for reducing the

cardiovascular disease risk in patients with BD. BD is known to

be a risk factor for accelerated early CVDs (20). Characterized by

arterial stiffness, AS may play a role in increasing the risk of CVDs

in patients with BD and should be further investigated (12). While

the clinical relationship between BD and AS has been well-discussed

(12, 18, 38), the pathogenesis underlying this relationship are not

fully understood. Therefore, it is essential to explore the molecular

changes of these two diseases and provided a theoretical basis for

the in-depth understanding of the pathogenesis.

In our study, we identified 67 overlapping DE-ASRGs between

BD patients and healthy controls, based on analysis of microarray

datasets. Our GO functional enrichment analyses revealed that

these DE-ASRGs were closely linked to various biological

processes, including signal transduction, positive and negative

regulation of translation from RNA pol II promoter, apoptotic

processes, cell adhesion, and positive regulation of protein kinase B

signaling. These findings indicated that the DE-ASRGs played

crucial roles in intracellular signaling and regulatory processes,

influencing cell survival, proliferation, and adaptation.

Furthermore, our KEGG enrichment analysis showed that the

DE-ASRGs were predominantly associated with the cancer

pathway, PI3K-Akt signaling pathway, HPV, and focal adhesion.

Recent studies have found that the PI3K-Akt pathway plays a

crucial role in cerebrovascular diseases, metabolic syndrome, and

mental disorders. The PI3K-Akt pathway can serve as a therapeutic

target for brain aging and neurodegenerative changes (39). One

study suggests that there may be a connection between bipolar

disorder and obesity through the PI3K-Akt pathway (40). The

PI3K-Akt pathway and focal adhesion, as potential genetic defects

in BD and therapeutic targets of lithium, play a role in axonal

growth and neuronal development (41). Previous studies have

found that lithium is a protective factor for CVDs (42). Based on

the founding of this study, the PI3K-Akt pathway and focal

adhesion may be potential targets for lithium to reduce the risk of

CVDs in BD patients. Interestingly, considering the correlation

between PI3K-Akt signaling pathway (43, 44), HPV (45), and focal

adhesion (46) with cancer, it could be inferred that cancer pathways

may play an important role between BD and AS.

By comprehensive analysis of gene expression profiles, CX3CR1

and ST6GAL1 were identified as two key hub genes between BD and

AS. CX3CR1, a crucial chemokine receptor in the G protein-coupled

receptor superfamily (47), is the only proinflammatory leukocyte

receptor specific for the chemokine fractalkine (CX3CL1) (48), and

the preservation of normal CX3CL1/CX3CR1 signaling seems to be

essential for normal brain function. The expression of CX3CR1 is
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largely restricted to microglia within the brain parenchyma, where

they play a role in remodeling neuronal circuits, serving as resident

phagocytic cells involved in immune-mediated defense mechanisms,

clearing damaged cell debris, and contributing to the regulation of

homeostatic synaptic plasticity (49, 50). In the absence of normal

CX3CL1/CX3CR1 signaling, aberrant microglial activation and

elevated microglial proinflammatory activity could increase

neurotoxicity, since CX3CL1/CX3CR1 signaling decreases the

overproduction of inducible nitric oxide synthase, interleukin (IL)-

1b, tumor necrosis factor-a (TNF-a), IL-6, and mediators of

oxidative stress (48, 51). As one of the chemokines, CX3CL1 can

regulate the population of central nervous system (CNS) tissue with

peripherally derived cell types by relying on the activation of the

CX3CR1 receptor and inhibiting the migration of astrocytes through

the PI3K activity (52). Previous findings supported the notion that

CX3CL1/CX3CR1 communication serves as an “off” signal,

maintaining microglia in a “resting” state (53, 54).

CX3CR1 has been shown to be associated with neurodegenerative

disorders and to exhibit neuroprotective effects (48). Recent

conceptualizations characterize BD as a neurodegenerative disorder,

marked by the progressive deterioration of brain volumes and

accelerated brain aging (55). Consistent with the results of this

study, significantly reduced CX3CR1 transcript level was observed

in patients with BD relative to controls (56). Another study suggested

that psychiatric therapy activates CX3CR1 (40), which indicated that

psychiatric therapy can play a therapeutic role in reducing

inflammatory response. It was speculated that the relationship

between CX3CR1 and BD may be attributed to abnormal

neuroinflammatory conditions. For the role of CX3CR1 in AS,

several lines of evidence implicated CX3CL1/CX3CR1 in the

pathogenesis of vascular inflammation injury (47). It could be

observed that CX3CL1/CX3CR1 was activated by inflammatory

stimuli, including TNF-a, IFN-g, and LPS (57). CX3CL1 could act

as a classical chemoattractant for T lymphocytes (58), and dendritic

cells (59), which was consistent with our immune infiltration results.

As chemokines and adhesion molecules, CX3CL1/CX3CR1 can

directly mediate the interaction between inflammatory cells and

vascular cells, and promote the plaque formation and development

(47). Considering that the decrease of CX3CR1 in CNS will promote

the occurrence of inflammation, the inflammatory situation may be a

common physiological mechanism of BD and AS. Consistent with

previous studies (60, 61), CX3CR1 had been shown to be upregulated

in the AS validation group in this study. Interestingly, CX3CR1

exhibited opposite changes in BD and AS, which may be due to

differences in sampling locations and the differential expression levels

in the brain and vascular cells.

ST6GAL1 has anti-inflammatory effects by catalyzing sialylation

of other molecules including receptors, lectins, and cytokines (62, 63).

The lack of ST6GAL1 represents an excessive inflammatory response,

with higher levels of neutrophilic and eosinophilic response (62, 64).

As we found in this study, ST6GAL1 levels were lower than normal in

BD patients, which may have contributed to the excessive of

inflammation in BD patients. Large scale association analysis

identified ST6GAL1 as a protective effect on CVDs occurrence

(65). ST6GAL1 is strongly expressed in large blood vessels,

including the aorta, and related to the angiogenic process (66).
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A previous study had shown that the overexpression of ST6GAL1

strongly inhibits monocyte-transendothelial migration, suggesting

that ST6GAL1 could be a potential target for atherosclerosis

prevention and treatment (67). However, the role of ST6GAL1

between BD and AS is not yet clear, and more research is needed

to elucidate the direct relationship between them. Given that both

conditions entail abnormal immune responses, the interplay between

CX3CR1 and ST6GAL1may serve as a key mechanism to understand

the association between BD and AS.

It should be noted that two hub genes both related to cancer,

which were identified as the key pathway through KEGG enrichment

analysis in this study. CX3CL1/CX3CR1 has a tumor-suppressive

activity by recruiting antitumoral immune cells such as NK and T

cells into the tumor microenvironment to control tumor growth (68).

Previous study observed that CX3CR1 ectopic expression improved

the recruitment of adoptively transferred T cells toward CX3CL1-

generated cancers, leading to the augmentation of T-cell infiltration

and reduction of tumor growth (69). In addition, CX3CL1/CX3CR1

axis (70) and ST6GAL1 (71) has been confirmed to mediates several

cellular functions, including activation of PI3K-Akt. ST6GAL1 has

become increasingly dominant in sialyltransferase activity, which are

implicated in cancer (72). ST6GAL1 is known to promote growth,

survival, and metastasis, and it is upregulated in various types of

cancer (including pancreatic, prostate, breast, and ovarian cancer)

(73–76), while being downregulated in hepatocellular carcinoma (77).

ST6GAL1 expression is thought to be associated with increased

invasiveness and metastasis (78). Knockout ST6GAL1, lacking the

a2,6-sialylation enzyme, is shown to exhibit impaired tumor

angiogenesis through enhanced endothelial apoptosis (79). Patients

with BD are more likely to develop malignant cancer than the general

population, which may imply a genetic overlap in neurodevelopment

and malignancy pathogenesis (80). Besides, AS are major risk factors

for cancer (81). Therefore, the cancer pathway may serve as a bridge

between BD and AS.

It is important to mention that, BD has been linked to clinical

signs of accelerated aging, potentially explaining its association with

age-related medical conditions including cancer (82). Aging is

characterized by the functional decline of the immune system and

is the primary risk factor for infectious diseases, CVDs, cancer, and

neurodegenerative disorders (83). Given that arterial stiffness in AS is

often considered a signal of vascular aging (11), it is possible that

aging could be a co-pathogenesis of the two diseases. Further research

on the biological mechanisms of aging and cancer between BD and

AS is needed. Furthermore, both CX3CR1 and ST6GAL1 have been

linked to cognitive impairment (84, 85). Among the co-regulated TFs,

CREB1 has been identified as a risk factor for cognitive impairment in

patients with BD (86). Given the unambiguous correlation between

BD and AS and cognitive impairment (87, 88), cognition may serve as

a critical connecting symptom between BD and AS.
5 Limitation

While we have speculated on the potential association between

BD and AS based on bioinformatics analysis, there are some

limitations to consider. Firstly, the absence of confounding
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variables in the GSE12649 dataset made it difficult to assess the

stability of the differential analysis. Secondly, the DisGeNET

database utilized in this study allows users to obtain genes

relevant to particular diseases (89). However, this approach may

filter out some potentially valuable molecules. In addition, the

different sampling locations limit the interpretability of hub

genes. Finally, considering feature selection algorithms appear to

possess poor reproducibility in different datasets, wet experiments

are needed to further verify the predictions.
6 Conclusions

In the present study, we utilized bioinformatic techniques

including three machine learning approaches to identify 2 hub

genes, CX3CR1 and ST6GAL1, which were both significantly

related to BD and AS. Furthermore, we uncovered that the co-

pathogenesis of the two diseases lies in the cancer-related pathways

through GSEA analysis. Overall, the newly discovered diagnostic

genes and potential molecular mechanisms in this study offer new

clinical insights and guidance for diagnosing and treating BD and

AS patients. However, further experimentation is needed to confirm

the conclusions.
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