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Introduction: Adverse childhood experiences (ACEs) are linked to higher rates of

psychiatric disorders in adults. Previous neuroimaging studies with small samples

have shown associations between ACEs and alterations in brain volume,

connectivity, and blood flow. However, no study has explored these

associations in a large clinical population to identify brain regions that may

mediate the relationship between ACEs and psychiatric diagnoses. This study

aims to evaluate how patient-reported ACEs are associated with brain function in

adults, across diagnoses.

Methods:We analyzed 7,275 adults using HMPAO SPECT scans at rest and during

a continuous performance task (CPT). We assessed the impact of ACEs on brain

function across psychiatric diagnoses and performed mediation analyses where

brain functional regions of interest acted as mediators between patient-reported

ACEs and specific psychiatric diagnoses. We further evaluated the risk of being

diagnosed with specific classes of mental illnesses as a function of increasing

ACEs and identified which specific ACE questions were statistically related to

each diagnosis in this cohort.

Results: Increased ACEs were associated with higher activity in cognitive control

and default mode networks and decreased activity in the dorsal striatum and

cerebellum. Higher ACEs increased the risk of anxiety-related disorders,

substance abuse, and depression. Several brain regions were identified as

potential mediators between ACEs and adult psychiatric diagnoses.

Discussion: This study, utilizing a large clinical cohort, provides new insights into

the neurobiological mechanisms linking ACEs to adult psychiatric conditions.

The findings suggest that specific brain regions mediate the effects of ACEs on

the risk of developing mental health disorders, highlighting potential targets for

therapeutic interventions.
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1 Introduction

Adverse childhood experiences (ACEs) include abuse, neglect,

and household instability, and are associated with both physical and

mental health problems in adulthood. More than half of all adults

report at least one ACE, with a quarter of all adults experiencing two

or more (1). A large, cross-sectional study of more than 11,000

adults found that there was a dose-dependent association between

cumulative ACE scores and psychiatric diagnoses in adults (2).

These associations highlight the importance of studying the effects

of ACEs on all aspects of health, especially mental health. To date,

ACE screening has been completed through questionnaires that

assess an individual’s exposure to the 10 ACEs: physical, sexual, and

emotional abuse; emotional and physical neglect; domestic violence;

and parental substance use, mental illness, separation, and

incarceration. Previous research has demonstrated that higher

ACE scores are associated with altered adult brain function,

which may mediate the psychiatric diagnoses that are prevalent in

groups exposed to ACEs (3). Devi et al. found higher rates of

psychiatric diagnoses, including mood disorders, schizophrenia,

adjustment disorders, and anxiety disorders, in adults with

childhood trauma as compared to the general population.

Another study by Baldwin et al. found that ACE scores are good

predictors of differences in health between groups that did and did

not have ACEs, which identified targets for intervention on a broad

scale (4). Additional studies have demonstrated the increased risk of

mental health disorders with early life adversity such as personality

disorders, substance disorders, behavioral disorders, and sleep

disorders (5–7). Furthermore, studies have found that childhood

maltreatment leads to increased and overgeneralized fear responses

in female children, which may predispose them to psychopathology

in adulthood (8).

Functional neuroimaging offers a potential bridge between

population-level ACE associations and individual mental health

diagnoses. ACEs and childhood trauma have been linked to

alterations in brain structure, function, and connectivity. It has

been hypothesized that ACEs change the connectivity within the

brain in a way that results in functional changes leading to later

mental health conditions. To date, much of the functional

neuroimaging research has been limited by examining single

diagnoses, like depression or posttraumatic stress disorder (PTSD)

(9). Xie et al. (10) found that reduced right hypothalamic volumes as

a reaction to childhood stress may contribute to the development of

PTSD in adult trauma survivors. Additionally, neuroimaging work

has shown that larger amygdala volumes, as assessed by magnetic

resonance imaging (MRI), are correlated with increased risk exposure

during childhood (11). A meta-analysis evaluating functional MRI in

34 studies of adults reporting ACEs compared to controls found

increased activation in the right amygdala and decreased activation in

the middle frontal gyrus (12). Furthermore, in 23 studies of mixed

adversity, they found greater activation in the right amygdala,

precuneus, and superior frontal gyrus (12). Using positron

emission tomography (PET), an imaging modality used to study in

situ blood flow, Schmahl et al. studied 20 women with a history of

childhood physical and sexual abuse and found that memories of

trauma were associated with increased blood flow in the right
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dorsolateral prefrontal cortex (DLPFC), right anterior cingulate,

and left orbitofrontal cortex, while they found decreased blood flow

in the left DLPFC in women without a borderline personality

disorder, suggesting that these functional alterations are associated

with early childhood trauma (13). In another PET study using a

ligand measuring dopamine, Egerton et al. evaluated 47 young adults

compared to 20 healthy volunteers and found that severe physical

and sexual abuse and unstable families in childhood were associated

with elevated dopamine in the striatum in adulthood, providing

evidence that childhood adversity is linked to elevated striatal

dopamine function in adulthood (14). Although each of these

studies provides evidence linking ACEs to the adult brain, each is

limited by small sample sizes and a narrow scope of psychiatric

conditions, which limit their generalizability and application in a

clinical setting; yet, these studies support additional scientific research

to connect ACEs and mental health disorders through functional

neuroimaging assessments.

This study aims to understand the relationship between ACEs,

psychiatric disorders, and adult brain function in the largest clinical

cohort we are aware of to gain insight into the common brain

functional patterns associated with increasing ACEs in adults and

their risk of being diagnosed with specific mental health illnesses. We

hypothesize that psychiatric disorders such as substance abuse/

dependence, PTSD, personality disorders, anxiety disorders, and

sleep disorders will be associated with higher ACE scores.

Furthermore, we expect higher ACE scores to be associated with

altered function in areas of the inferior, middle, and superior frontal

gyrus, DLPFC, precuneus, anterior cingulate, amygdala, and striatum.

To understand brain functional relationships with ACEs in this

clinical cohort, we utilized available single-photon computed

tomography (SPECT) data, an imaging technique for measuring

perfusion and metabolic status in the brain (15–17). We evaluated

brain SPECT in the same patients at rest and during an attention

task to understand differences in the associations between

increasing ACEs and adult brain function during attentional

demands versus at rest, an important distinction for psychiatric

conditions such as attention deficit hyperactivity disorder (ADHD)

(18, 19), major depressive disorder (MDD) (20, 21), and PTSD (22,

23), among others. Next, we evaluated the risk of being diagnosed

with adult psychiatric conditions as a function of increasing patient-

reported ACEs and, through mediation analyses, evaluated which

brain functional associations serve as mediators between ACEs and

each significant psychiatric condition to better inform treating

physicians about the potential impact of ACEs on their adult

patient’s brain health.
2 Materials and methods

The clinical dataset used in this study consisted of 7,275 patients

(Table 1) who were evaluated at the 11 Amen Clinics Inc. (ACI)

mental health facilities over approximately 2 years in which the

ACEs 10-question assessment was acquired at intake (24). Patients

were excluded if they had diagnoses of dementia, mild cognitive

impairment, epilepsy, brain lesions, tumors, or brain resection (see

Supplementary S1 for frequency of diagnoses and S5 for psychiatric
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medications reported at intake). All patients in the study gave

informed consent to have their anonymous data used in future

research at the time of their initial visit to the clinic. Each patient

participated in two brain SPECT scans as part of their standard

intake, one at rest and another while performing the Conners

Continuous Performance Test (CPT, Multi-Health Systems,

Toronto, Ontario) (25–27). Diagnostic data used in this study

were assigned by the ACI treating physician based on all the

available clinical data, including a detailed clinical history, DSM

IV/V checklists, neuropsychological assessments, and radiological

assessments of the brain SPECT scans.

SPECT scans were acquired using InterMedical MultiCam 3000eco

3-head gamma cameras (Intermedical Medizintechnik GmbH,

Lubbecke, D-32312, Germany). For each procedure, an age- and

weight-appropriate dose of 99mTc–hexamethylpropyleneamine

oxime (HMPAO) was administered intravenously at rest and while

performing the CPT, a visual task used for the evaluation of attention

and response inhibition (25–27). For the resting scans, patients were

injected while they sat in a dimly lit room with their eyes open. For the

CPT scans, patients were injected 3 min after starting the task.

Approximately 15 min after the injection, the patients were scanned.

CPT scans were collected on average 1.8 ± 2.7 days after the resting

scans. Data acquisition yielded 120 images per scan, with each image

separated by 3°, spanning 360°. A low-pass filter was applied with a

high cutoff, and Chang attenuation correction was performed (28, 29).

The resulting reconstructed image matrices were 128 × 128 × 78 with

voxel sizes of 2.5 mm3.

For voxel-based analyses, images were aligned to the Montreal

Neurological Institute (MNI) space with the Advanced Normalization

Tools [ANTs version 2.2.0 (30); RRID: SCR_004757] using a SPECT

template, resulting in an image matrix size of 79 × 96 × 68 with

isotropic voxel sizes of 2.0 mm3. SPECT images were scaled to the

within-scan maximum voxel, and noise outside of the brain was

removed using 50% of the maximum threshold prior to registration.

After the thresholded images were aligned to the MNI space and the

transformation was applied to the un-thresholded images, a brainmask

derived from the MNI 152 template (31, 32) was used to remove noise

outside the brain from the un-thresholded images for use in the

statistical models. Registered SPECT scans were visually checked for

the absence of severe anatomical abnormalities and/or proper

registration to the MNI space. All subsequent voxel-based linear
Frontiers in Psychiatry 03
models were constructed using the SPM121 Statistical Parametric

Mapping tool (RRID: SCR_007037) (33). A voxel-based one-sample

t-test model was used to compare the ACE total score with cerebral

perfusion using proportional scaling to account for differences in global

SPECT signal. To account for differences in ventricular off-target noise,

we followed a procedure similar to CompCor (34), adding the mean

and maximum activity in the ventricles as nuisance regressors to the

SPM models. Because the data used in this study are from a clinical

sample of patients collected at multiple imaging facilities and with

varying diagnoses and comorbidities, both the acquisition site and

number of axis 1 psychiatric diagnoses (35) were included as nuisance

covariates (see Supplementary S1 for frequency of diagnostic classes in

the sample) along with age and patient-reported sex at birth.

Each patient was asked to complete the ACE assessment, consisting

of 10 questions listed in Table 2. To evaluate the risk of being diagnosed

with a specific class of mental health condition as a function of

increasing the ACE total score and to associate individual question

responses with each significant diagnosis, linear binomial regression

models were used in the R2 statistical analysis software (RStudio

version 2023.06.0 + 421; RRID: SCR_001905), including age, patient-

reported sex at birth, and data acquisition site as nuisance covariates.

To understand whether the significant brain functional

associations with ACEs serve as mediators between ACEs and

adult psychiatric diagnoses, we used the multilevel mediation and

moderation (M3) toolbox (36–38). The mediator variable (m) was

the mean voxel value across 53 mm boxed regions of interest (ROIs)

centered on the coordinates reported in Tables 3 and 4. The mean

ROI data for each patient in the study were sampled from the

SPECT data used in the SPM voxel-based models with the MarsBar

toolbox (39). Path (b) in Figure 3 represents the association between

mean brain function in each ROI and the diagnostic class (y).

Covariates for the mediator variables included age, sex at birth, site,

and number of Axis 1 diagnoses. The path (ab) represents the

mediating effect of brain function between the ACE total score and

the diagnostic class. The direct path between ACEs and the

diagnostic class is represented by path (c′), after controlling for
TABLE 1 Patient sample characteristics including sample size, average age ± standard deviation (std) in years, number of male and female patients
using sex at birth, race and ethnicity as a percentage of the sample, average number of Axis 1 diagnoses ± std, average ACE total scores ± std, and the
distribution of ACE total scores in the sample.

Sample Age (years) Sex
at Birth

Race and ethnicity Number of Axis
1 Diagnoses

ACE
Total Score

ACE Total
Score Distribution

7,275 40.9 ± 16.3
(min = 18; max = 95)

3,521 men
3,754
women

African American: 1.6%
Arab/Middle Eastern: 0.3%
Asian: 2.9%
Caucasian: 75.6%
Hispanic/Latino: 1.2%
Native American/Inuit:
0.2%
Pacific Islander: 0.1%
Multi-Ethnic: 0.8%
Other: 1.4%
Unknown/Declined: 15.8%

2.4 ± 1.6 2.4 ± 2.3 0 = 26.8%
1 = 17.5%
2 = 13.8%
3 = 12.3%
4 = 9.9%
5 = 7.3%
6 = 5.5%
7 = 3.2%
8 = 2.0%
9 = 1.2%
10 = 0.5%
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TABLE 2 Adverse childhood experiences (ACE) assessment questions.

ACE_Q_1
Before your 18th birthday, did a parent or other adult in the household often or very often swear at you, insult you, put you down, or humiliate you? Or act
in a way that made you afraid that you might be physically hurt?

ACE_Q_2
Before your 18th birthday, did a parent or other adult in the household often or very often push, grab, slap, or throw something at you? Or, ever hit you so
hard that you had marks or were injured?

ACE_Q_3
Before your 18th birthday, did an adult or person at least five years older than you ever touch or fondle you, or have you touch their body in a sexual way?
Or attempted or actually had oral, anal, or vaginal intercourse with you?

ACE_Q_4
Before your 18th birthday, did you often or very often feel that no one in your family loved you or thought you were important or special? Or that your
family did not look out for each other, feel close to each other, or support each other?

ACE_Q_5
Before your 18th birthday, did you often or very often feel that you did not have enough to eat, had to wear dirty clothes, and had no one to protect you?
Or that your parents were too drunk or high to take care of you or take you to the doctor if you needed it?

ACE_Q_6 Before your 18th birthday, was a biological parent ever lost to you through divorce, abandonment, or other reasons?

ACE_Q_7
Before your 18th birthday, was your mother or stepmother: often or very often pushed, grabbed, slapped, or had something thrown at her? Or, sometimes,
often, or very often kicked, bitten, hit with a fist, or something hard? Or, ever repeatedly hit over at least a few minutes or threatened with a gun or knife?

ACE_Q_8 Before your 18th birthday, did you live with anyone who was a problem drinker or alcoholic, or who used street drugs?

ACE_Q_9 Before your 18th birthday, was a household member depressed or mentally ill, or did a household member attempt suicide?

ACE_Q_10 Before your 18th birthday, did a household member go to prison?
F
rontiers in Ps
TABLE 3 Statistically significant [t(1,7268) = 2.45, p < 0.05 FDR] regions of association with higher ACE scores in the CPT condition after co-varying
for the nuisance effects of age, sex at birth, location/site, and number of axis 1 diagnoses.

Coordinates (x,y,z) Region t (1,7268) Direction Cohen’s D

Parietal

−40 −56 40 Angular Gyrus L (BA 39) 5.65* Positive 0.13

40 −54 40 Angular Gyrus R (BA 39) 5.77* Positive 0.13

Sub-cortical

0 −20 −2 Thalamus Medial Dorsal 4.75* Positive 0.11

26 12 −8 Putamen R – Lentiform Nucleus 4.74* Negative 0.11

−14 16 −2 Caudate L 3.86 Negative 0.09

12 22 −6 Caudate R 3.57 Negative 0.08

−28 10 −8 Putamen L 5.06* Negative 0.12

−32 6 16 Insula L 5.30* Negative 0.13

38 −20 14 Insula R 3.81 Positive 0.09

−20 −40 −12 Parahippocampal L (BA 36) 3.78 Positive 0.09

18 −34 −6 Parahippocampal R (BA 30) 4.50 Positive 0.11

−10 −24 14 Thalamus Pulvinar L 4.05 Negative 0.10

Occipital

2 −90 −2 Lingual Gyrus (BA 18) 6.03* Positive 0.14

−34 −84 12 Occipital Mid. L (BA 19) 4.60* Positive 0.11

32 −74 12 Occipital Mid. R (BA 19) 3.20 Positive 0.11

Cerebellum

28 −54 −50 Cerebellum R 5.14* Negative 0.12

−26 −62 −50 Cerebellum L 3.79 Negative 0.09

(Continued)
ychiatry
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TABLE 3 Continued

Coordinates (x,y,z) Region t (1,7268) Direction Cohen’s D

Cingulate

−2 34 22 Ant. Cingulate Sup. L (BA32) 3.59 Positive 0.08

0 −42 36 Post. Cingulate (BA 31) 5.01 Positive 0.12

2 6 −8 Ant. Cingulate Ventral 5.01 Positive 0.12

Temporal

54 −50 18 Temporal Sup R (BA 22) 5.12* Positive 0.12

−58 −30 16 Temporal Sup L (BA 22) 4.67* Positive 0.11

−58 −20 −20 Temporal Inf L (BA 20) 3.36 Positive 0.08

−62 −22 −14 Temporal Mid. L (BA 21) 3.52 Positive 0.08

60 −6 −18 Temporal Mid. R (BA 21) 3.89 Positive 0.09

42 −46 −10 Fusiform R (BA 37) 4.13 Negative 0.09

−30 −58 −10 Fusiform L (BA 37) 3.83 Negative 0.09

Frontal

−2 60 14 Medial Frontal (BA 10) 5.19* Positive 0.12

4 40 −24 Medial Frontal (BA 11) 4.22 Positive 0.10

−16 44 10 Medial Frontal L (BA 9) 4.42 Negative 0.10

18 54 2 Medial Frontal R (BA 10) 4.12 Negative 0.10

18 24 −22 Inferior Frontal R (BA 47) 6.19* Negative 0.15

−20 24 −22 Inferior Frontal L (BA 47) 4.20 Negative 0.10

Brainstem

2 −32 −38 Pons 4.57* Negative 0.10
F
rontiers in Psychiatry
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The table includes MNI-space coordinates in millimeters from the origin (coordinate), brain region (Region), t-score (t), p-value (p-value) corresponding to the t-score, direction of association,
either positive or negative (Direction), and the Cohen’s D effect size (Cohen’s D). Asterisks in the t-score (t) column indicate differences that survive a more stringent family-wise error correction
at p < 0.05 [t(1,7268) = 4.61, p < 0.05 FWE].
TABLE 4 Statistically significant [t(1,7268) = 2.45, p < 0.05 FDR] regions of association with higher ACE scores during the rest condition after co-
varying for the nuisance effects of age, biological sex, location, and number of axis 1 diagnoses.

Coordinates (x,y,z) Region t (1,7268) Direction Cohen’s D

Parietal

40 −54 42 Parietal Inferior R (BA 40) 4.59* Positive 0.11

−26 −60 50 Parietal Superior L (BA 7) 3.56 Positive 0.08

42 −52 40 Angular Gyrus R (BA 39) 4.12 Positive 0.10

−16 −46 44 Precuneus L (BA 7) 3.86 Negative 0.09

18 −44 44 Precuneus R (BA 7) 4.02 Negative 0.09

Sub-cortical

44 −22 14 Insula R 4.40 Positive 0.10

−34 −4 16 Insula L 3.54 Negative 0.08

12 −14 8 Thalamus—Medial Dorsal R 4.25 Negative 0.10

14 −18 14 Thalamus—Lateral Dorsal R 4.58* Negative 0.11

(Continued)
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the mediator variable (m). For a full mediation, we required the

probabilities of the coefficients to satisfy the following criteria: a(p)

< 0.05, b(p) < 0.05, ab(p) < 0.05, and c′(p) > 0.05, indicating that the

path through the brain function mediator variable is significant,

whereas the direct path (c′) after controlling for the mediator, is not.

For partial mediation, we required the following: a(p) < 0.05, b(p)<

0.05, and ab(p) < 0.05, and allow c′(p) < 0.05, but that a(p), b(p), and
ab(p) are all less than (i.e., more significant) than the c′(p)
relationship, indicating that the path through the brain function

mediator variable is more statistically significant than the direct

path (c′) after controlling for the mediator. We then interpreted the
Frontiers in Psychiatry 06
output of the mediation models with respect to full and partial

mediation (see Section 3.3).
3 Results

3.1 SPECT associations with
increasing ACEs

The CPT SPECT analysis yielded both positive and negative

associations with ACE total score (Table 3; Figures 1, 2). Significant
TABLE 4 Continued

Coordinates (x,y,z) Region t (1,7268) Direction Cohen’s D

Sub-cortical

−18 −24 8 Thalamus—Pulvinar L 4.31 Negative 0.10

−18 1 −12
−20 16 −4

Putamen L 5.66*
4.72*

Negative 0.13
0.11

20 14 −12 Putamen—Lentiform R 4.89* Negative 0.11

38 10 14 Insula R (BA 13) 3.09 Negative 0.07

−34 −4 16 Insula L (BA 13) 3.54 Negative 0.08

36 −42 −12 Parahippocampal R (BA 37) 3.72 Negative 0.09

Occipital

2 −88 −8 Lingual (BA 18) 4.93* Positive 0.12

Cerebellum

20 −60 −50 Cerebellum R 5.27* Negative 0.12

−22 −60 −48 Cerebellum L 3.95 Negative 0.09

Cingulate

0 30 26 Ant. Cingulate Sup 4.30 Positive 0.10

−8 −14 34 Mid. Cingulate 2.93 Positive 0.07

−4 −60 8
−4 −46 30

Posterior Cingulate (BA30) 4.56
4.24

Positive 0.11
0.10

Temporal

−34 −78 24 Temporal Mid L (BA 21) 5.00* Positive 0.12

40 −70 26 Temporal Mid R (BA 21) 4.03 Positive 0.09

46 −24 10 Transverse Temporal (BA41) R 4.72* Positive 0.11

−50 −26 10 Transverse Temporal (BA41) L 4.26* Positive 0.10

Frontal

0 58 16 Medial Frontal (BA 9) 4.00 Positive 0.09

0 42 −22 Medial Frontal (BA11) 3.61 Positive 0.08

−16 26 −24 Inferior Frontal (BA 47) L 4.34 Negative 0.10

16 26 −24 Inferior Frontal (BA 47) R 4.06 Negative 0.10

Brainstem

6 −28 −32 Pons 4.12 Negative 0.10
The table includes MNI-space coordinates in millimeters from the origin (coordinate), brain region (Region), t-score (t), the direction of the association, either positive or negative (Direction), and the
Cohen’s D effect size (Cohen’s D). Asterisks in the t-score (t) column indicate differences that survive a more stringent family-wise error correction at p < 0.05 [t(1,7268) = 4.61, p < 0.05 FWE].
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voxels were evaluated using whole-brain false discovery rate (FDR)

multiple comparison corrections [t(1,7268) = 2.45, p < 0.05 FDR] in

SPM12 and reported with MNI-space coordinates and atlas-

identified brain regions using the Mango3 tool. We found higher

perfusion in association with increasing ACEs in areas of the

angular gyrus, superior, middle, inferior, and fusiform gyrus of

the temporal lobe, parahippocampal gyrus, midline aspects of the

medial frontal, medial dorsal nucleus of the thalamus, superior

anterior cingulate, ventral anterior cingulate, posterior cingulate,

and areas of the visual cortex. We found negative associations in the

inferior orbitofrontal cortex, lateral aspects of the medial frontal,

caudate, putamen, insula, pulvinar area of the thalamus, cerebellum,

and pons region of the brainstem.

The resting condition also showed both positive and negative

associations with ACEs, using the same threshold as with the CPT

condition (Table 4; Figures 1, 2). We found higher perfusion in

association with increasing ACEs in areas of the superior and

inferior parietal lobe, the angular gyrus, precuneus, middle and

transverse temporal lobes, midline aspects of the medial frontal

lobe, and areas of the visual cortex, although less widespread than in

the CPT condition. In the cingulate, we find positive associations in

the superior anterior cingulate, posterior cingulate, and middle

cingulate, a region not identified in the CPT condition. We found

negative associations in the parahippocampal gyrus, the inferior

orbitofrontal cortex, the cerebellum, the caudate, the putamen, the

medial and lateral dorsal nuclei and pulvinar of the thalamus, and

the pons region of the brainstem. The insula included both positive

and negative associations.

In evaluating the relationship between ACEs and the difference

between CPT and resting conditions (see Supplementary Section

S.4), we found only positive associations surviving the FDR

threshold, implying that greater activation during the CPT

condition over the resting condition is related to increasing ACEs.

We found significant clusters in regions of the prefrontal cortex,

inferior frontal cortex, insula, portions of the inferior, middle, and

superior temporal lobes, anterior, middle, and posterior cingulate,

inferior parietal lobe, right cerebellum, visual cortex, caudate, and

both medial–dorsal and ventral–lateral thalamus.
3.2 Diagnoses

To understand the relationship between increasing ACEs and

the risk of specific diagnoses in this sample, we use the diagnoses

given at ACI and binomial regression, covarying for age, sex at

birth, and site of treatment. The results are shown in Table 5. To

further evaluate the relationship between the diagnostic classes

identified in Table 5 and specific ACE questions, we regressed

each diagnosis against all ACE questions, covarying for age, sex at

birth, and site of treatment (see Supplementary Section S2 for

significant ACE question statistics). We then selected ACE

questions that were significantly (p < 0.05 FDR) related to each

diagnostic class. These results identify many diagnostic classes
3 https://mangoviewer.com/.
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that have been reported in the literature to be associated with

ACEs, such as PTSD, anxiety disorders, mood disorders, and a

variety of substance abuse-related disorders (see the Discussion

section). We found that PTSD was significantly associated with

the majority of ACE questions, including those involving

psychological abuse, sexual abuse, household dysfunction,

violence, and mental illness. Furthermore, we found that

substance abuse-related diagnoses (i.e., substance abuse,

substance dependence, alcohol-related disorder, and nicotine-

related disorder) were all associated with having substance abuse

in the household as a child, with a subset also associated with

having a mental illness and/or psychological abuse present. The

depression-related diagnoses were associated with having

psychological abuse and/or mental illness in the household,

which is consistent with our clinical expectations. Finally,

attention deficit-related disorders were associated with sexual

abuse and violence in the household.
3.3 ACEs—brain function mediation

In Section 3.1, we showed the significant brain function

associations with increasing ACEs. In Section 3.2, we related

increasing ACEs to the risk of being diagnosed with specific

mental health conditions. Our hypothesis is that having ACEs as

a child may alter one’s perception of the world, their experiences in

it, and brain development/function. Such aberrant brain function,

in adulthood, could be a potential mediator between ACEs and

mental health diagnoses. Here, we specifically tested these

mediation relationships. For each diagnosis in Table 5 and each

significant ACE-SPECT association in Tables 3 and 4, we evaluated

full and partial mediation effects with SPECT-derived brain

function as the mediator. The models were constructed using

similar procedures to those described in (36–38). In our models

(Figure 3), the initial variable was the ACE total score (x), with a

path between the ACE total score and brain function (a),

representing the association between ACEs and SPECT brain

function. The FDR-corrected results are shown in Table 6, while

the complete table including significant results at the uncorrected

threshold of p < 0.05 is provided in Supplementary Section S3.

Overall, we found both full and partial mediation results in

resting and CPT SPECT scan ROIs. Looking broadly at the results,

we found that the substance abuse disorder diagnosis includes the

insula, putamen, and caudate. In comparison, the substance

dependence diagnosis yields the strongest results in the medial

frontal regions. For alcohol-related disorders, we found that the left

superior parietal and left insula are partial mediators, whereas the

right parahippocampal gyrus is a full mediator. For nicotine-related

disorders, we found that the pons are a significant mediator only in

the CPT condition. For mood disorders, we found partial mediators,

including the pons at rest, the bilateral parahippocampal gyrus in the

CPT condition, and the medial dorsal nucleus region of the thalamus

in the CPT condition. There were no significant full or partial

mediation results when evaluating the difference between CPT and

resting scans.
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FIGURE 2

Axial, sagittal, and coronal slices showing statistically significant [t(1,7268) = 2.45; p < 0.05 FDR corrected] associations with increasing ACE scores.
Areas in red/yellow show regions of higher perfusion with increasing ACE scores. Areas in blue/green show regions of lower perfusion with
increasing ACE scores.
FIGURE 1

Cortical and sub-cortical areas showing statistically significant [t(1,7268) = 2.45; p < 0.05 FDR corrected] associations with increasing ACE scores.
Areas in red/yellow show regions of higher perfusion with increasing ACE scores. Areas in blue/green show regions of lower perfusion with
increasing ACE scores.
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TABLE 5 The diagnostic classes significantly (p < 0.05 FDR) associated with increasing ACE scores.

Diagnostic Class t(1,7164) Odds Ratio p-Value
(FDR Corrected)

Significant ACE
Questions (p <
0.05 FDR)

Post-Traumatic Stress Disorder 24.94 1.36 1.01E−135 1,3,4,5,7,9

Anxiety Disorder 10.14 1.14 6.03E−23 9

Brain Trauma 9.27 1.19 2.00E−19 1,4,6

Depression NOS 7.15 1.13 7.39E−12 9

Parasomnia 6.73 1.32 1.10E−10 5

Borderline 6.16 1.28 4.04E−09

Personality Cluster B 6.03 1.27 7.78E−09

Attention Deficit Disruptive Behavior 5.97 1.07 9.66E−09 3,7

Attention Deficit Hyperactivity 5.94 1.07 1.02E−08 3,7

Depressive Disorder 5.55 1.06 9.27E−08 4,9

Bipolar Disorder 5.33 1.10 2.90E−07

Substance Abuse Disorder 5.02 1.09 1.44E−06 8,9

Alcohol-Related Disorder 3.97 1.08 1.84E−04 8

Major Depression 3.66 1.04 5.96E−04 4,9

Mood Disorder NOS 3.32 1.06 1.97E−03

Primary Sleep Disorder 2.53 1.08 2.09E−02

Phobias 2.48 1.06 2.17E−02

Cyclothymic Disorder 2.48 1.12 2.17E−02

Nicotine-Related Disorders 2.45 1.08 2.24E−02 4,8,9

Substance Dependence 2.35 1.06 2.83E−02 8
F
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The table includes the t-score for the ACE total score variable, odds ratio of the exponentiated ACE total score coefficient, uncorrected p-values, FDR-corrected p-values, and ACE questions
associated with each diagnostic class.
FIGURE 3

Mediation model path diagram showing each component of the models: ACE total score (x), SPECT brain function meditation variable (m), and
diagnostic outcome variable (y).
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1401745
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Keator et al. 10.3389/fpsyt.2024.1401745
4 Discussion

This study offers significant insights into how ACEs are

associated with brain function and psychiatric diagnoses in a

large clinical cohort. The findings underscore the profound

impact of ACEs on adult mental health, highlighting the need for

clinicians to incorporate this knowledge into practice to better

diagnose and treat individuals with a history of childhood adversity.
4.1 Neuroimaging

In the SPECT neuroimaging analyses, we found a mix of

positive and negative associations in the frontal and parietal

regions that are part of the cognitive control network. Both

resting and CPT scans yielded positive associations in the medial

aspects of the frontal lobe (BA 9-11). This may be evidence of

difficulty in decision-making due to overactivity at rest and more so

in the CPT condition, as a function of higher ACEs. Brodmann

areas 9–11, part of the prefrontal cortex, have been associated with a

variety of functions including risk and decision-making, learning,

planning, focus, reward and conflict, pain, pleasant and unpleasant
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emotions, anhedonia, and working memory (40–42). Furthermore,

in both resting and CPT scans, we found negative associations in the

orbital frontal region (BA 47), bilaterally, which may indicate a

dulling of emotion recognition. BA 47 is thought to be related to the

recognition of emotions such as fear, disgust, and anger (43).

In the parietal lobe, we found consistent positive associations in

the angular gyrus, on the right side at rest and bilaterally in the CPT

condition. The angular gyrus is thought to be a hub of converging

multisensory information and has been associated with a variety of

functions including conflict resolution, episodic memory, theory of

mind, visuospatial retrieval, default mode network, inhibition, and

memory retrieval (44).

Broadly, the cognitive control network has been associated with

regions in the DLPFC, anterior cingulate, insula, angular gyrus, and

parietal cortex (45, 46). Deficits in the cognitive control network

have been linked with alcohol use disorder, substance use disorder,

bipolar disorder, depression, and PTSD, among others (47–49). In

our results, we found significant associations in areas of cognitive

control in both resting and CPT conditions, while also showing that

substance abuse, substance dependence, alcohol abuse, nicotine-

related disorders, PTSD, and depression-related diagnoses were all

significantly associated with higher ACEs. Furthermore, we found
TABLE 6 Mediation model results by diagnostic class.

Diagnostic
Class

Brain
Region

(Coordinates) Condition
Mediation

Type a(t) a(p) b(t) b(p)
ab
(t) ab(p) c'(t) c'(p)

Substance
Abuse Disorder

Putamen L
(−20,16,−4) Rest Full −5.12 3.10E−07 3.04 2.37E−03 −2.58 9.95E−03 1.48 1.38E−01

Insula L (−32,6,16) CPT Full −5.04 4.74E−07 3.53 4.16E−04 −2.85 4.32E−03 1.51 1.31E−01

Caudate L
(−14,16,−2) CPT Full −5.51 3.65E−08 2.86 4.28E−03 −2.51 1.23E−02 1.49 1.37E−01

Substance
Dependence

Medial
Frontal (0,58,16) Rest Full 4.57 4.85E−06 −2.81 4.92E−03 −2.36 1.85E−02 0.52 6.02E−01

Medial
Frontal (−2,60,14) CPT Full 5.05 4.56E−07 −2.49 1.29E−02 −2.20 2.80E−02 0.52 6.05E−01

Medial Frontal
L (−16,44,10) CPT Full −3.64 2.70E−04 2.80 5.07E−03 −2.17 3.00E−02 0.49 6.24E−01

Alcohol-Related
Disorder

Parietal Superior L
(−26,−60,50) Rest Partial 3.49 4.93E−04 −3.96 7.60E−05 −2.57 1.02E−02 2.25 2.43E−02

Parahippocampal R
(18,−34,−6) CPT Full 4.52 6.24E−06 2.40 1.62E−02 2.08 3.73E−02 1.96 5.01E−02

Insula L (−32,6,16) CPT Partial −5.04 4.74E−07 2.77 5.61E−03 −2.39 1.68E−02 2.25 2.44E−02

Nicotine-
Related
Disorder Pons (2,−32,−38) CPT Full −5.14 2.86E−07 −2.24 2.52E−02 2.02 4.34E−02 0.51 6.10E−01

Mood
Disorder NOS Pons (6,−28,−32) Rest Partial −4.82 1.47E−06 3.35 8.13E−04 −2.71 6.72E−03 2.45 1.44E−02

Parahippocampal L
(−20,−40,−12) CPT Partial 3.49 4.79E−04 −6.26 3.96E−10 −3.02 2.52E−03 2.52 1.17E−02

Thalamus Medial
Dorsal (0,−20,−2) CPT Partial 4.89 1.04E−06 3.36 7.85E−04 2.73 6.34E−03 2.07 3.89E−02
fro
The table shows the central coordinate of the ROI used to sample SPECT data (Brain Region), condition the result applies to (i.e., Resting or CPT), mediation type (i.e., Full or Partial), t-score
(1,7207), and FDR-corrected p-values for each path in the mediation model. p-values for each link in the mediation model that are significant at p < 0.05 FDR-corrected are shown in bold.
ntiersin.org

https://doi.org/10.3389/fpsyt.2024.1401745
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Keator et al. 10.3389/fpsyt.2024.1401745
that regions of the cognitive control network in both resting and

CPT conditions were mediators between ACEs and substance

abuse, substance dependence, and alcohol-related disorders at the

uncorrected significance level (see Supplementary Table S3). One

interpretation is that having more ACEs as a child is related to

altered brain function as an adult in areas of the cognitive control

network that mediate the association between ACEs and these

specific diagnoses. Because each of these disorders is related to

drugs of abuse, and because we know that drug abuse damages the

brain (50–54), an alternative interpretation is that having more

ACEs as a child is associated with an increased risk of abusing

drugs, which results in aberrant functioning in cognitive control

networks. There is support in the literature for this alternative

interpretation by studies showing that ACEs are associated with

increased drug abuse (55–57). Interestingly, we found that

substance abuse, substance dependence, and alcohol-related

disorders were all associated with ACE question 8, which asks

whether the individual grew up in a household with drugs of abuse.

These data suggest that having substance abuse in the household,

when young, may impart a higher risk of developing related

disorders in adulthood.

Sub-cortically, we found consistent negative associations in the

dorsal striatum as a function of increasing ACEs, in both resting

and CPT scans, yet these negative associations were more

widespread in the CPT condition, due to the addition of the

caudate. The putamen has been associated with learning and

motor control, speech articulation, reward, cognitive function,

and addiction (58). The caudate has been associated with

coordinating decision processes, balancing external evidence, and

internal preferences, along with a variety of executive processes

such as goal-directed action (59, 60). Our results suggest that

impaired decision-making may be associated with increasing

ACEs, in part through the aberrant function of the dorsal

striatum (61). Impaired decision-making is often associated with

substance abuse (62, 63) and has also been associated with major

depressive disorder (64, 65). Furthermore, substance abuse has been

associated with decreased left putamen activation (66) and so has

major depressive disorder in response to reward cues (67), both of

which we found to implicate reduced function in the left putamen as

either full or partial mediators but did not survive FDR correction

(see Supplementary Table S3).

In the thalamus, we found negative associations in areas near

the medial and lateral dorsal nuclei on the right and in the left

pulvinar at rest. In the CPT condition, the negative associations in

the left pulvinar were consistent, yet the associations in the medial

dorsal nucleus were positive. The pulvinar is a component of the

visual attention network, with connections to areas of the dorsal

visual stream and posterior parietal cortex (68). The lateral dorsal

nucleus has been associated with motivation, attention, and sensory

processes with connections to the posterior cingulate and parietal

cortex, both of which are positively associated with ACEs at rest,

results that may be related given the projections between the

posterior cingulate, lateral dorsal nucleus, and parietal cortex (69,

70). The medial dorsal nucleus has been associated with awareness,

mood, motivation, sleep/wake cycles, and chronic pain and has

connections with the anterior cingulate (70–72). Interestingly, we
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found the activation of the medial dorsal nucleus in the CPT

condition to be a partial mediator of ACE associations with mood

disorders, along with the pons. Our findings in the medial and

lateral thalamic nuclei may indicate lower awareness, motivation,

and emotional arousal at rest, which are then hyperactivated in the

CPT condition as a function of increasing ACEs. Furthermore, the

pons has been associated with sleep/wake cycles (73), and

disruptions in circadian rhythms in mood disorders (74) and

ACEs have been associated with sleep disturbances (75),

suggesting that decreased function in the medial dorsal thalamus

and pons may be associated with sleep disturbances, particularly in

patients with mood disorders, although we did not find any

mediating associations with these regions in the primary sleep

disorder diagnostic group.

In the cingulate, we found positive associations in the superior

anterior cingulate and posterior cingulate across both resting and

CPT scans. In the CPT condition, we found positive associations

in the ventral anterior cingulate and, at rest, in the middle

cingulate. Each of these regions is part of the default mode

network and appears to be overactive in both conditions with

increasing ACEs. The anterior cingulate, along with its

connections to the amygdala, ventral striatum, and orbitofrontal

cortex, has been associated with motivation, context-dependent

behavior, cognitive control, and conflict processing (76, 77),

although we found no relationships with the amygdala. The

posterior cingulate may play a role in regulating the focus of

attention (78). In both substance abuse and dependence disorders,

we found that the posterior cingulate was involved in mediating

the relationship with ACEs, along with the superior aspect of the

anterior cingulate at rest. These results suggest that there may be

overactivity of these cingulate regions with increasing ACEs and

may be related to behavioral phenotypes seen in substance abuse-

related disorders such as lack of motivation, impaired reasoning,

and altered cognitive function (79).

In the cerebellum, we found negative associations in both

resting and CPT conditions. The negative associations are

bilateral and consistent in spatial location in both conditions. The

cerebellum has historically been associated with motor functions

but more recently has received attention for its role in social

cognition (80). Cerebellar activation has been associated with

tasks ranging from attention, executive control, language, working

memory, learning, pain, emotion, and addiction (81). Using a

cerebellar atlas created from resting-state functional connectivity

data from 1,000 subjects (82, 83), we overlaid the seven network

atlas and found that the negative associations in the cerebellar

regions overlap with the ventral attention network, which Yeo et al.

describe as an aggregate of salience networks found in the literature.

The ventral attention network comprises the temporoparietal

junction and the ventral frontal cortex (84). The temporoparietal

junction has been associated with reorienting attention to

unexpected stimuli (85). In our results, we see positive

associations in the temporoparietal junction area (stronger at

CPT than at rest) and negative associations in the ventral frontal

cortex (i.e., BA 47). These results lead us to speculate that there may

be a dysfunction in stimulus-driven attention and the switching of

attention from internal to exogenous stimuli as a function of
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increasing ACEs, which is more evident in SPECT scans acquired

during an attention task but also evident, to a lesser extent, at rest.
4.2 Clinical manifestations and
practical implications

The study’s findings indicate that ACEs are linked to altered

brain function in several critical regions, including the cognitive

control network, the default mode network, and areas of the dorsal

striatum and cerebellum. These brain changes are associated with

an increased risk of psychiatric disorders such as PTSD, anxiety

disorders, substance use disorders, and depression. Clinically, this

suggests that individuals with high ACE scores may present with

more complex and treatment-resistant forms of these conditions

due to the underlying neurobiological alterations.

Clinicians should be aware that the altered brain activity

patterns observed in this study may manifest as difficulties in

decision-making, emotional regulation, and cognitive control. For

instance, overactivity in the medial frontal lobe and anterior

cingulate cortex (parts of the cognitive control network) may lead

to heightened emotional responses and difficulty in regulating

emotions, which are common in PTSD and mood disorders.

Similarly, decreased activity in the dorsal striatum may contribute

to impaired reward processing and motivation, which are often seen

in substance use disorders and depression.

To integrate these findings into clinical practice, clinicians should:
Fron
• Screen for ACEs: Implement routine screening for ACEs in

psychiatric evaluations to identify individuals at higher

risk for complex mental health issues. Tools like the ACE

questionnaire used in this study can be easily administered

during patient intake.

• Personalize Treatment Plans: Recognize that patients

with high ACE scores may benefit from personalized

treatment plans that address both the psychological and

neurobiological aspects of their conditions. This

could involve a combination of psychotherapy, such as

trauma-focused cognitive behavioral therapy (CBT),

and neurobiologically-informed interventions like

neurofeedback or brain stimulation therapies.

• Monitor Brain Function: Consider using functional

neuroimaging, such as SPECT scans, to monitor

brain activity in patients with high ACE scores. This

can provide valuable information on brain regions

that may need targeted intervention and help track

treatment progress.

• Adopt a Holistic Approach: Adopt a holistic approach to

treatment that includes addressing lifestyle factors known

to influence brain health. Encourage patients to engage in

regular physical activity, maintain a healthy diet, and

practice stress-reduction techniques such as mindfulness

and meditation, which can improve overall brain function

and resilience.

• Practice Interdisciplinary Collaboration: Collaborate with

other healthcare providers, including primary care
tiers in Psychiatry 12
physicians, neurologists, and social workers, to create

comprehensive care plans that address the multifaceted

needs of patients with high ACE scores.
4.3 Study limitations

This study has several limitations. First, the study group consists

of a large clinical sample with varying diagnoses (see Supplementary

Table S1.1) and comorbidities, across a wide range of ages and

differing sex at birth. We have tried to reduce these confounders by

adding regressors to our models, but we know that linear models

alone will not mitigate these effects on our results. We saw some of

this reflected in the small effect sizes of the neuroimaging

associations with ACEs, suggesting that a large sample is needed

to produce the statistically significant associations as we have shown

here. Although no patients with dementia or mild cognitive

impairment were included in this sample, the cohort did include

older adults and some who reported having brain trauma in their

lives. It is possible that their self-report of ACEs was inaccurate as

they may have undiagnosed age or trauma-related memory

problems. Furthermore, a subset of patients (N = 588) reported

taking psychiatric medications prescribed prior to visiting the

Amen Clinics (see Supplementary Table S5.1), which could alter

perfusion in these patients and increase the overall variability of the

neuroimaging data. We ran a sensitivity analysis, removing these

588 patients, and found the results to be consistent with those

reported in the manuscript (see Supplementary Figures S5.2 and

S5.3). Next, treating physicians gave each patient the DSM-based

diagnoses used in this study. The physicians had access to all

available data, including patient-reported symptoms and reports

on large regions in the SPECT neuroimaging data that were deemed

over- or underactive by trained scan readers. Although this is

certainly a confounding factor, none of the physicians had access

to the quantitative results shown here or made a diagnosis based

solely on the SPECT scan data. In interpreting the SPECT scan

associations with ACEs, we identified brain regions using a brain

atlas and MNI-space coordinates of the largest (i.e., peak-level)

associations after whole-brain thresholding. Some of these

anatomical regions are very small (e.g., medial dorsal thalamus),

and the SPECT scan resolution (~6.5 mm) was not sufficient to

definitively say that such signals originate from these small regions.

Additional studies should be done to validate these findings and to

understand whether these effects are unique to SPECT imaging or

are reproducible in related technologies such as PET and functional

MRI. In addition, we attempted to interpret the neuroimaging

findings with respect to the anatomical regions implicated by the

maximum statistical strength and associate these with prior

literature, but we acknowledge that the brain is a highly

interconnected organ and there are likely more complex

interactions occurring between brain regions that would require

other modalities to investigate. Furthermore, we know that each

DSM-based diagnosis includes a variety of symptoms that are not

necessarily consistent across patients with the same diagnosis. If we

assume that a patient’s symptoms are related to their brain function,
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we would expect these problems to increase the variability of the

SPECT scans. Our results show the most consistent patterns

associated with ACEs across the diagnostic groups included in the

cohort and may not reflect patterns that could be seen by

radiologists on individual patient scans in isolation. Despite these

limitations, we believe that the results presented here show the

common brain functional features associated with increasing ACEs

and their relationship with the diagnoses in a heterogeneous clinical

dataset, using data-driven approaches.
5 Conclusions

The findings from this study highlight the critical role of brain

function in mediating the relationship between ACEs and

psychiatric diagnoses. By understanding these neurobiological

underpinnings, clinicians can better tailor interventions to

address the specific needs of individuals with high ACE scores.

This approach not only improves diagnostic accuracy but also

enhances treatment efficacy, ultimately leading to better patient

outcomes. Future research should continue to explore the

neurobiological mechanisms underlying the impact of ACEs on

mental health, with an emphasis on longitudinal studies, to track

changes over time and the effectiveness of targeted interventions. By

advancing our understanding of these complex interactions, we can

develop more effective strategies to mitigate the long-term effects of

childhood adversity on mental health.
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