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Resting-state brain networks
alterations in adolescents with
Internet Gaming Disorder
associate with cognitive
control impairments
Tao Zhao, Yibo Zhang, Yange Li, Jie Wu, Ruiqi Wang, Qiyan Lv,
Dingyi Li and Yan Lang*

Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
Objective: Research indicates that cognitive control is compromised in

individuals with internet gaming disorder (IGD). However, the neural

mechanisms behind it are still unclear. This study aims to investigate alterations

in resting-state brain networks in adolescents with IGD and the potential

neurobiological mechanisms underlying cognitive dysfunction.

Materials and methods: A total of 44 adolescent IGD subjects (male/female: 38/

6) and 50 healthy controls (male/female: 40/10) were enrolled. Participants

underwent demographic assessments, Young’s Internet Addiction Scale, Barratt

Impulsiveness Scale 11 Chinese Revised Version, the Chinese Adolescents’

Maladaptive Cognitions Scale, exploratory eye movement tests, and functional

magnetic resonance imaging (fMRI). FMRI data were analyzed using the GIFT

software for independent component analysis, focusing on functional

connectivity within and between resting-state brain networks.

Results: In comparison to the control group, impulsivity in adolescent IGD subjects

showed a positive correlation with the severity of IGD (r=0.6350, p < 0.001), linked

to impairments in the Executive Control Network (ECN) and a decrease in

functional connectivity between the Salience Network (SN) and ECN (r=0.4307,

p=0.0021; r=-0.5147, p=0.0034). Decreased resting state activity of the dorsal

attention network (DAN) was associated with attentional dysregulation of IGD in

adolescents (r=0.4071, p=0.0017), and ECN increased functional connectivity with

DAN. The degree of IGD was positively correlated with enhanced functional

connectivity between the ECN and DAN (r=0.4283, p=0.0037).

Conclusions: This research demonstrates that changes in the ECN and DAN

correlate with heightened impulsivity and attentional deficits in adolescents with

IGD. The interaction between cognitive control disorders and resting-state brain

networks in adolescent IGD is related.
KEYWORDS
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1 Introduction

Internet Gaming Disorder (IGD) is characterized as a distinct

behavioral addiction marked by the excessive and compulsive

engagement with video games (1). Recent epidemiological studies

(2, 3) have shown that the morbidity of IGD among adolescents is

approximately 5.5%. In China’s urban regions, it is estimated that

approximately 14% of adolescents are affected by IGD, totaling

around 24 million individuals (3, 4). The notion of Internet Gaming

Disorder (IGD) was initially introduced in the fifth edition of the

Diagnostic and Statistical Manual of Mental Disorders (DSM-5) (5).

In 2018, the 11th revision of the International Classification of

Diseases (ICD-11) officially recognized gaming disorder as a mental

disorder stemming from addictive behaviors (6). Cognitive control

deficits are viewed as a significant risk factor for behavioral

addictions, characterized by inadequate emotional regulation,

compromised cognitive skills, attention deficits, and impulsive

behavior. The progression of IGD further deteriorates an

individual’ s cognitive capacities, creating a vicious cycle (7, 8).

Currently, there is a lack of high-quality evidence-supported

effective treatment measures (9), which may be related to the still

unknown pathophysiology and cognitive mechanisms of IGD (10).

A neural network model derived from functional magnetic

resonance imaging (fMRI) data holds promise for elucidating the

pathogenesis of IGD. Menon et al. proposed the triple network

model (11). The salience network (SN) is believed to be associated

with detection and coordination (12), including regulating the

activities of the default mode network (DMN) and the executive

control network (ECN). DMN is active during an individual’s

resting state, participating in processes such as introspection,

memory integration, emotional processing, and social cognition

(13). ECN participating in multiple advanced cognitive tasks and

playing an important role in cognitive control. Networks are widely

connected and influence each other. The neurobiological

mechanisms of various mental disorders, including addiction, can

be explained using a triple network model (14). However, there is

less research on other intrinsic connectivity networks (ICNs) (15),

although these ICNs have been proven to be related to cognitive

functions (16), such as the dorsal attention network (DAN)

involved in top-down action and perception processes and

attention control, and the ventral attention network (VAN)

related to stimulus-driven attention control. In network analysis

techniques, the independent component analysis (ICA) method

allows for better identification of ICNs, and then studying how

functional connectivity related to these networks is regulated (17).

Zhang et al. found that compared with HCs, IGD had

significantly increased SN-DMN connectivity, suggest that the

deficient modulation of ECN versus DMN by SN (18). One study

suggested that the diminished cognitive control during real-time

gameplay was associated with FC alterations, involving a weak FC

in the cognitive control network, suggesting that individuals with

IGD may have less cognitive control (19).Recent resting-state fMRI

studies indicating that IGDs show enhanced rsFC between the

ventral attention network and regions within the somatomotor

network, suggesting that the interaction between stimuli-driven
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attention and addictive behavior might be facilitated (20, 21).

However, The specific pathological mechanisms of these network

interactions in IGD cognitive control disorders are uncertain and

therefore require more research. Since the prevalence of IGD is

highest during adolescence (2), the developmental characteristics of

the brain in adolescents should be considered when exploring the

pathogenesis of IGD. The Executive Control Network is still not

fully developed during adolescence (22), so it may play a different

role in the neural mechanisms of adolescent IGD compared to adult

IGD. Diverging from prior research, this study investigates

alterations within and among resting-state brain networks,

emphasizing the association between these changes in brain

networks and impaired cognitive control abilities. It is the first

study to examine the role of modifications in the ECN in the

mechanism of IGD in adolescents.

In this study, we examined the resting-state functional connectivity

within and between ICNs in adolescents with IGD and HC. We

analyzed the differences in internal interactions of ICNs between the

IGD and HC groups and assessed the functional connectivity between

ICNs. Drawing on prior resting-state functional magnetic resonance

imaging (rs-fMRI) research, we investigated the DMN, ECN, SN,

VAN, and DAN. We hypothesized that compared to the HC group,

the functional connectivity between these networks would be reduced

in adolescent IGD, indicating neurodevelopmental changes that may

be associated with cognitive dysfunction.
2 Materials and methods

2.1 Study participants

The study recruited adolescent participants from the outpatient

and inpatient units of the Department of Psychiatry at the First

Affiliated Hospital of Zhengzhou University between September

2021 and September 2023. Inclusion Criteria for the IGD Group: 1.

Age range of 12-18 years, regardless of gender. 2. Asian ethnicity

and right-handedness. 3. Diagnosis of internet gaming disorder as

per DSM-5 criteria by a psychiatrist. 4. A total score of ≥40 on

Young’s Internet Addiction Scale. Inclusion Criteria for the HC

Group: 1. Age range of 12-18 years, regardless of gender. 2. Asian

ethnicity and right-handedness. 3. A total score of <40 on Young’s

Internet Addiction Scale. Common Exclusion Criteria: 1. History of

severe brain trauma or organic brain diseases (e.g. encephalitis,

epilepsy). 2. Mental retardation. 3. Comorbid or past history of

psychiatric disorders (e.g. schizophrenia, depression, anxiety

disorders, bipolar disorder). 4. Family history of psychiatric

illnesses or hereditary diseases. 5. History of substance or drug

abuse. 6. Contraindications to MRI scanning. Additional Exclusion

Criteria for the IGD Group: 1. Use of psychiatric medications or

other treatments such as physical therapy or psychotherapy within

the past month. The study received approval from the Ethics

Committee of the First Affiliated Hospital of Zhengzhou

University and was conducted in accordance with the Declaration

of Helsinki. Informed consent was obtained from all participants

and/or their guardians, who signed the consent form.
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2.2 Methodology

2.2.1 General data collection
Psychiatrists evaluated all study subjects based on the IGD criteria

to determine their eligibility and exclusion. Basic information,

including gender, age, educational background, ethnicity, history of

mental and physical health conditions, and family history, was gathered

from all participants. Moreover, participants were assessed using

various scales, and their rs-fMRI data were collected.

2.2.2 Psychological scale assessments
Young’s Internet Addiction Scale: All subjects were evaluated using

the Young’s Internet Addiction Scale (23), a 20-item questionnaire

scored on a 5-point scale, resulting in a maximum score of 100. The

scale categorizes addiction severity into mild (40 ≤ Young score < 60),

moderate (60 ≤ Young score < 80), and severe (Young score ≥ 80), with

higher scores indicating more severe internet gaming disorder.

Barratt Impulsiveness Scale 11 Chinese Revised Version (BIS-

11): The BIS-11 (24) is composed of three subscales: cognitive

impulsiveness, motor impulsiveness, and non-planning

impulsiveness. Each subscale has scores ranging from 10 to 50,

where higher scores denote increased impulsivity.

The Chinese Adolescents’ Maladaptive Cognitions Scale

(CAMCS) (25): This scale comprises 12 items, each rated on a

Likert scale from 1 (strongly agree) to 5 (strongly disagree), with

higher scores reflecting greater maladaptive cognitions. It

demonstrates good internal consistency (alpha = 0.81) and validity.

The scales were filled out by the patient themselves, and the

evaluation work was completed by a professional psychiatrist from

the First Affiliated Hospital of Zhengzhou University.

2.2.3 Exploratory eye movements monitoring
All subjects participated in EEM testing utilizing the Shanghai

Dekang DEM-2000 eye movement detection system. EEM studies

may facilitate understanding of the neurobiology of populations with

mental disorders, and evaluate mechanisms involved in attention

processes. For example, reflexive saccades are considered to be type of

cognitive parameter that evaluates attention (26). In this study, assess

the presence of attentional deficit in subjects by analyzing the number

of eye fixations (NEF), search score responses (RSS), and

discriminant (D) values within the initial 15 seconds of observing a

target image.

2.2.4 MRI data collection
MRI data were acquired using a Siemens Magnetom Prisma 3.0T

MRI scanner equipped with a 64-channel head coil. Participants were

advised to lie in a supine position, keep their eyes open, breathe calmly,

and refrain from any spontaneous mental activities. Initially, a standard

MRI head scan sequence was conducted to eliminate individuals with

notable brain structural abnormalities. Subsequently, rs-fMRI scans

were performed utilizing single-shot echo-planar imaging (EPI)

technology. The detailed scanning sequences and parameters were as

follows: 1. Routine MRI scan: T1-weighted imaging (T1WI) sequence

with a repetition time (TR) of 190 ms, echo time (TE) of 2.6 ms,

interslice spacing of 1 mm, slice thickness of 5 mm, flip angle of 70°,
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and field of view (FOV) of 240 mm × 240 mm, covering 20 slices. Rs-

fMRI scans were performed on subjects with no abnormal T1WI

sequence. 2. Rs-fMRI scan: Blood-oxygen-level-dependent (BOLD)

sequence with a TR of 1000 ms, TE of 30 ms, flip angle of 70°, slice

thickness of 2.2 mm, covering 52 slices. The total scan duration was

360 seconds.

2.2.5 fMRI data preprocessing
The preprocessing of data was conducted using the DPABI

toolkit on the MATLAB platform, involving the following steps: (1)

Conversion of data format: Transforming files from DICOM to

NIFTI format. (2) Elimination of initial images: Discarding the first

10 time points to mitigate noise in the early scan phase. (3) Timing

of slices: Adjusting for differences in timing between slices, using the

middle slice as the reference point. (4) Realignment: Excluding

participants with head movement exceeding 3 mm in displacement

or 3° in rotation; however, no participants were excluded for

excessive head motion in this study. (5) Normalization: Adapting

rs-fMRI images to fit the EPI template and resampling them to a

resolution of 3 mm × 3 mm × 3 mm. (6) Smoothing: Applying a

Gaussian filter with a full width at half maximum (FWHM) of

6 mm for spatial smoothing of the images.

2.2.6 Resting-state activity analysis within ICNs
Group ICA (gICA) was performed using the GIFT software

(SedDB, RRID: SCR_024416), a method for decomposing a set of

images into statistically independent components. The process

involved data decomposition, ICA computation, reconstruction of

individual components, and Fisher z transformation. For each

participant, The minimum description length (MDL) algorithm is

used to determine the number of independent components (ICs) to

30, decompose 30 ics and generate independent spatial maps. IC

selection was based on visual inspection and spatial correlation

values between ICs and templates. Spatial maps of selected ICNs for

each participant were converted to Z values, indicating their

contribution to the temporal dynamics of the independent

components. Resting-state brain network analyses for each group

were performed using SPM 12 software in MATLAB. Firstly, the

voxel single sample t test (P<0.05, FDR correction) was performed

on the spatial maps of all subjects, and the independent component

of the network were selected to obtain the corresponding mask.

Statistical analysis (two-sample t test) was then performed for each

component to compare the differences between the IGD and HC

groups (P<0.05, FDR correction), using the mask obtained in the

previous step.

2.2.7 Functional connectivity analysis
between ICNs

Multivariate analysis of covariance (Mancovan) module in

GIFT software, Pearson correlation coefficients between brain

functional networks in IGD group and HC group were calculated,

respectively, which is functional network correlations (FNC), after

Fisher Z transformation to ensure the normality of the data, the

differences in FNC values between the groups were calculated (test

level p < 0.05, FDR correction, two-tailed).
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2.3 Statistical analysis

Statistical analysis was conducted using SPSS software (version

25.0, Chicago, Illinois) to compare the general and clinical

characteristics of the two groups of participants, with a

significance threshold set at P<0.05. Independent sample t-tests

were used for continuous variables, and chi-square tests were

utilized for categorical variables. Additionally, Pearson correlation

analysis was performed to evaluate the association between scale

scores and functional connectivity in both groups.

3 Results

3.1 Demographics and scales

The adolescent IGD group consisted of 44 participants, with 38

males and 6 females, while the HC group had 50 participants,

including 40 males and 10 females. No significant differences were

observed between the adolescent IGD and HC groups in terms of

age, gender, and educational background. The scores on Young’s

Internet Addiction Scale were significantly different between the

two groups (P<0.05). On the Barratt Impulsiveness Scale, the

adolescent IGD group exhibited significantly higher scores than

the HC group in all three dimensions: motor impulsiveness,

cognitive impulsiveness, and non-planning impulsiveness

(P<0.05). The NEF and RSS scores also showed significant

differences, with the adolescent IGD group scoring lower than the

HC group in both measures (P<0.05). Additionally, there was a

significant difference in CAMCS scores between the two groups,

with the adolescent IGD group scoring higher than the HC group

(P<0.05). Refer to Table 1 for details.
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3.2 Spatial distribution of ICNs

From the 30 components derived using GIFT, five were selected

based on our criteria: IC17, IC4, IC10, IC9, and IC15, which are

represented in Figure 1 as significant neural networks. The spatial

maps of these five chosen ICN are depicted in Figure 1. Within these

networks, the DMN consists of regions such as the medial prefrontal

cortex, anterior cingulate cortex, posterior cingulate cortex,

precuneus, and angular gyrus. The ECN encompasses areas like the

medial prefrontal cortex, inferior frontal gyrus, and inferior parietal

lobule, with the dorsolateral prefrontal cortex (dlPFC) being its

central region. The SN comprises the insular cortex, dorsal anterior

cingulate cortex, amygdala, and temporal pole. The VAN includes the

ventral frontal cortex and temporo-parietal junction. Lastly, the DAN

contains the bilateral intraparietal sulcus and the junction area of the

precentral sulcus and superior frontal sulcus (frontal eye field).
3.3 Resting-state activity differences within
ICNs related to adolescent IGD

To assess differences in resting-state activity within ICNs

associated with adolescent IGD, a two-sample t-test was utilized.

Figure 2 displays brain regions with significant differences between

groups. Adolescent IGD participants exhibited enhanced resting-

state activity in the middle frontal gyrus (MFG) and precentral

gyrus, part of the dLPFC, a key node of the ECN, compared to the

HC group. In contrast, resting-state activity in the frontal eye field

(FEF) of the DAN was diminished. Refer to Table 2. No differences

in resting-state activity related to adolescent IGD were detected in

other ICNs at the same significance threshold.
3.4 FC differences between networks
related to adolescent IGD

Figure 3 depicts the functional connectivity among all five

networks. It was observed that in comparison to the HC group,

the interaction between the ECN and SN was reduced(t = -3.1, p <

0.01), whereas the interaction between the ECN and DAN was

heightened (t = 2.4, p < 0.01). No notable differences in interactions

involving these networks were detected between the two groups (all

p-values > 0.01), suggesting that these connections might not be

linked to IGD.
3.5 Correlation analysis

Pearson correlation analysis (refer to Figure 4) in IGD group

showed correlations between BIS-11 scores and three measures:

YIAS scores(r=0.6350, P<0.0001), abnormal resting-state activity in

ECN(r=0.4307,p=0.0021), and abnormal functional connectivity in

SN-ECN(r=0.-5147,p=0.0034). The abnormal resting-state activity

of DAN was correlated with NEF value(r=0.4071,p=0.0017), and

the abnormal functional connectivity of ECN-DAN was correlated

with YIAS score(r=0.4283, P=0.0037).
TABLE 1 Demographic and clinical characteristics of participants.

IGD
(n=44)

HC
(n=50)

T P

Age (years)a 14.55 ± 2.02 14.70 ± 3.74 -0.253 0.801

Years of Education(years)a 8.75 ± 1.74 9.06 ± 2.37 -0.753 0.453

Gender(male: female)b 38∶6 40∶10 0.706 0.401

YIASa 64.23 ± 10.82 25.58 ± 5.97 21.049 <0.001

BIS-11a 38.52 ± 3.27 22.02 ± 4.20 33.798 <0.001

Motor impulsivenessa 38.23 ± 3.53 22.30 ± 6.49 17.100 <0.001

Cognitive impulsivenessa 40.80 ± 5.80 21.99 ± 7.30 20.984 <0.001

Non-
planning impulsivenessa

36.39 ± 8.00 21.60 ± 6.70 22.814 <0.001

NEFa 27.77 ± 0.94 30.76 ± 5.17 -13.405 <0.001

RSSa 6.61 ± 1.65 8.50 ± 0.99 -6.614 <0.001

Da 2.73 ± 1.34 0.54 ± 0.97 8.967 <0.001

CAMCSa 44.26 ± 5.44 32.11 ± 4.19 12.00 <0.001
arepresents independent sample t-test, brepresents c2 Inspection. YIAS, Young Internet
Addiction Scale; BIS-11, Barratt Impulse Scale 11 Chinese Revised Edition; NEF, number
of eye fixation; RSS, responsive of search scores; D, discriminant; CAMCS, the Chinese
Adolescents’ Maladaptive Cognitions Scale.
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FIGURE 2

Resting-state activity differences within ICNs. Notes: (A) Resting state activity in the frontal gyrus and precentral gyrus within the executive control
network(ECN) was significantly higher in the adolescent group with Internet Gaming Disorder (IGD) than in the healthy control group (HC). (B) In
contrast, resting state activity in the frontal eye area within dorsal attention network(DAN) was significantly reduced compared to the HC group.
Areas in red or blue indicate increased or decreased resting state activity, respectively.
FIGURE 1

Extracted independent components. From the group ICA of resting-state data, five independent components were identified and classified as
follows: DMN (default mode network), ECN (executive control network), SN (salience network), VAN (ventral attention network), and DAN (dorsal
attention network).
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4 Discussion

Relative to the HC group, adolescents with IGD displayed

increased resting-state activity within the ECN and reduced

functional connectivity between the ECN and SN, linked to

heightened impulsivity, which correlates positively with IGD

severity. Studies have shown that participants with IGD exhibit

enhanced functional connectivity in the ECN during cognitive

tasks, which is related to a decline in the ability of IGD subjects

to control impulsivity (27). Our results show that the CAMCS

scores of the adolescent IGD group were higher than those of the

HC group (P<0.05), indicating impaired cognitive function in

adolescent IGD. In the Barratt Impulse Scale, the IGD group had

the highest score for cognitive impulsivity factors and the highest

standard deviation for unplanned impulsivity factors. This indicates

that adolescents with IGD have higher variability in cognitive

impulsivity and unplanned behavior, suggesting that the increased

resting-state activity in the ECN cannot effectively suppress their

impulsivity. One possible reason is that the ECN in adolescents is

still not fully developed, and even if the resting-state activity within

this network increases, it still cannot suppress impulsivity as

effectively as in adults. Yuan et al. found that the interaction

between the SN and the right ECN during the Stroop task was
Frontiers in Psychiatry 06
reduced in 28 IGD subjects compared to the control group (28).

Our results show that the interconnection between the SN and ECN

is reduced, indicating that adolescents with IGD cannot adequately

suppress ECN activity in the switching process within the brain

network during rest, leading to poor impulse control.

In comparison to the HC group, adolescents with IGD showed

decreased resting-state activity in the frontal eye field (FEF) within

the DAN and elevated functional connectivity between the ECN

and DAN, linked to attentional deficits. The strengthened

functional connectivity between the ECN and DAN was positively

associated with the severity of IGD. The FEF is activated during

finger pointing and saccade tasks (29). Eye movements are related

to the control of attention and decision-making (30). Exploratory

eye movement tests can serve as an objective behavioral indicator

for detecting higher cognitive processes in the cerebral cortex and

subcortex (31). NEF (number of eye fixations) and RSS (response

exploration score) reflect an individual’s cognition, memory, and

attention. Results showed that the NEF and RSS scores of the

adolescent IGD group were significantly lower than those of the HC

group (P<0.05), indicating attentional deficits related to weakened

resting-state activity within the DAN. A possible explanation is that

the extensive attentional shifts through multitasking, a

characteristic of IGD, may impair cognitive function through

habituation (32). The ECN is extensively connected with the

DAN and plays a role in regulating perceptual attention (33).

Studies have found (34) that reduced functional connectivity

between the ECN and DAN is related to attentional development

in adolescents with Attention-deficit/hyperactivity disorder

(ADHD). Our study is the first to find increased functional

connectivity between the ECN and DAN in adolescent IGD,

related to attentional deficits. Dixon (35) et al.’s study found that

the ECN can prioritize involvement in DAN connections during

attentional deficits. Our results show that the DAN exhibits

weakened resting-state activity, while the functional connectivity

between the ECN and DAN is increased, related to attentional

deficits in adolescent IGD subjects. Compared to adults, the effect
TABLE 2 Brain regions with differences in resting-state activity in the
IGD group.

Abnormal
brain area

ICN Peak
MNI

coordinates

T Voxel
size

X Y Z

Middle frontal gyrus ECN 44 33 42 3.2771 31

precentral gyrus ECN 34 -17 60 4.3327 86

Frontal eye region DAN -9 37 -22 -3.6770 99
P<0.05, FDR correction, clump ≥ 30, MNI, Montreal Institute of Neurology; ECN, executive
control network; DAN, dorsal attention network.
FIGURE 3

Functional connectivity differences between networks. Notes: (A) Heat map of functional connectivity between brain networks in the IGD group.
Warm and cool colors represent areas with higher or lower functional connectivity between networks. (B) Display the statistical significance of
functional connectivity between networks in brain 3D rendering of networks. The functional connectivity between ECN-SN decreased, while the
functional connectivity between ECN-DAN increased (P<0.05, FDR corrected). (C) Use a two sample t-test to display the bar plot of functional
connectivity between IGD and HC networks (P<0.05). The upper figure shows that compared with the HC group, the IGD group shows a decrease
in the functional connections of ECN-SN, while the lower figure shows an increase in the functional connections of ECN-DAN. IGD, internet gaming
disorder; HC, healthy controls; ECN, executive control network; SN, salience network; DAN, dorsal attention network.
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size of attentional deficits in adolescents is lower (36). A possible

reason is that the ECN in adolescents may not be as flexible as in

adults in regulating prioritization of DAN connections, and

attentional abilities continue to develop during adolescence. Fair

et al. highlighted the significance of network segregation in the

brain and cognitive development during adolescence (37), with

attentional performance potentially improving as the ECN becomes

more segregated from other brain networks. Enhancing the

autonomy of the ECN and diminishing its connections with the

DAN could contribute to the advancement of attentional

development in adolescents. The functional connectivity between

the ECN and DAN is positively correlated with the score on

Young’s Internet Addiction Scale, suggesting that attentional

deficits could result in increased functional connectivity between

these networks, potentially leading to extended gaming behavior.

This increased functional connectivity may serve as a predictor of

the severity of adolescent IGD.

Brewer et al. found that decreased cognitive control ability can

predict treatment outcomes and relapse of drug use (38). Therefore,

understanding the neural mechanisms behind cognitive control in

IGD is very important. Currently, there is limited understanding of

the changes in connectivity within the ECN and between the ECN

and DAN in behavioral and cognitive impairments (39). However,

this seems to be a different area of functional connectivity in cognitive
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control for adolescent IGD. Changes in functional connectivity may

specifically distinguish between adolescent IGD individuals with and

without cognitive control impairments, and altered functional

connectivity may predict the severity of adolescent IGD, which

may be beneficial in developing specific treatment plans for

adolescent IGD. Our study further demonstrates changes in the

ECN, SN, and DAN and their interactions in individuals with

adolescent IGD. Future treatments may enhance brain network

connectivity through cognitive behavioral therapy (CBT) or

external stimuli like transcranial magnetic stimulation, thereby

enhancing the cognitive control ability of IGD (40), which may be

an important goal of IGD treatment.
5 Limitations

This study has two limitations. Firstly, as a case-control study, it

does not establish a causal link between adolescent IGD and

compromised cognitive function. Longitudinal studies are

required to explore this causal relationship. Secondly, the study

predominantly involved male adolescents, potentially reflecting the

higher incidence of IGD among males. Future research should

examine the variations in resting-state brain networks of adolescent

IGD across different genders.
FIGURE 4

Correlation analysis in IGD group. Notes: (A) Abnormal resting-state activity of ECN was positively correlated with BIS-11 score. (B) Abnormal
functional connections of SN-ECN were correlated with the score of BIS-11. (C) The abnormal resting-state activity of DAN was correlated with NEF
value. (D) The abnormal functional connection strength of ECN-DAN was positively correlated with the total score of Young scale. ECN: executive
control network; BIS-11: Barratt Impulse Scale 11 Chinese Revised Edition; SN: salience network; DAN, dorsal attention network; NEF, number of
eye fixation.
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6 Conclusion

This research demonstrates that changes in the ECN and DAN

correlate with heightened impulsivity and attentional deficits in

adolescents with IGD. The interaction between cognitive control

disorders and resting-state brain networks in adolescent IGD

is related.
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