
Frontiers in Psychiatry

OPEN ACCESS

EDITED BY

Chang Cai,
University of California, San Francisco,
United States

REVIEWED BY

Ecir Ugur Küçüksille,
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Cardiovascular disease
prediction model based on
patient behavior patterns in the
context of deep learning: a time-
series data analysis perspective
Yubo Wang*, Chengfeng Rao, Qinghua Cheng
and Jiahao Yang

College of Information Science and Engineering, Northeast University, Shenyang, China
To address the limitations of traditional cardiovascular disease prediction models

in capturing dynamic changes and personalized differences in patients, we

propose a novel LGAP model based on time-series data analysis. This model

integrates Long Short-Term Memory (LSTM) networks, Graph Neural Networks

(GNN), and Multi-Head Attention mechanisms. By combining patients' time-

series data (such as medical records, physical parameters, and activity data) with

relationship graph data, the model effectively identifies patient behavior patterns

and their interrelationships, thereby improving the accuracy and generalization

of cardiovascular disease risk prediction. Experimental results show that LGAP

outperforms traditional models on datasets such as PhysioNet and NHANES,

particularly in prediction accuracy and personalized health management. The

introduction of LGAP offers a new approach to enhancing the precision of

cardiovascular disease prediction and the development of customized patient

care plans.
KEYWORDS

deep learning, patient behavior patterns, health prediction, health monitoring, data
analysis, cardiovascular disease
1 Introduction

With an aging population and changing lifestyle, cardiovascular disease has become

one of the major health challenges worldwide. According to the World Health

Organization, cardiovascular disease is one of the leading causes of death worldwide,

and the incidence of cardiovascular disease is still rising in many countries. This trend not

only poses a threat to individual health, but also puts a great strain on the public health

system (1). The high incidence of cardiovascular diseases is not only related to genetic

factors, but also closely related to many factors, such as environmental factors, dietary
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habits and lifestyle. Therefore, the early prediction and effective

management of cardiovascular disease are particularly important

(2). Traditional prediction models for cardiovascular diseases are

mainly based on patient clinical indicators and static data, but these

models often struggle to capture the dynamic changes and

personalized differences of patients, thus affecting the accuracy

and timeliness of prediction. Many existing models fail to

effectively integrate multiple data sources, such as lifestyle

monitoring, real-time health data, and historical medical records,

making them seem inadequate in addressing complex clinical

scenarios (3).

In recent years, with the development and application of deep

learning technology, its application in the medical field has

gradually attracted attention. Deep learning has powerful feature

extraction and pattern recognition capabilities, and can learn the

complex characteristics of patients from massive medical data,

which provides new ideas and methods for the construction of

medical prediction models (4). Especially in dealing with complex

temporal data and multimodal data, deep learning technology have

significant advantages and can better mine potential information

and rules in the data. The introduction of this technology allows us

to more precisely analyze the health status of patients and thus

provide personalized treatment options.

Despite the achievements of deep learning technology in the

medical field, there are still facing some challenges in the

application process (5). For example, the processing and

modeling of temporal data need to take into account the

dynamics of the data and the correlation between the sequences,

while traditional deep learning models often struggle to process this

type of data effectively. In addition, the interpretability and

generalization ability of deep learning models are also one of the

hot spots and difficulties in current research (6). The lack of

interpretability may cause clinicians to have less trust in the

outcome of the model prediction, thus affecting the practical

application of the model.

This paper aims to construct a prediction model of

cardiovascular disease based on patient behavior patterns by

introducing deep learning techniques, especially combining the

perspective of temporal data analysis, to improve the accuracy

and timeliness of prediction. We will explore the effectiveness of

different deep learning architectures, emphasize the interpretability

of the model, and propose an innovative approach to integrate

multiple data sources to provide more reliable technical support for

early prediction of cardiovascular disease.

The main contributions of this study can be summarized as the

following three points:
Fron
• A cardiovascular disease prediction model based on patient

behavior patterns is proposed, and deep learning

technology is introduced combined with the perspective

of time series data analysis to effectively mine the dynamic

characteristics and personalized differences of patients and

improve the accuracy and timeliness of prediction.

• A model framework was developed that comprehensively

utilizes LSTM, GNNs and Multi-Head Attention, effectively

integrating key steps such as time series data processing,
tiers in Psychiatry 02
patient relationship analysis and feature fusion, and

providing new methods and ideas for cardiovascular

disease prediction.

• A deep learning model was introduced to conduct a

comprehensive and in-depth analysis of the correlation

between patient behavior patterns and cardiovascular

diseases by integrating information from different data

sources, providing a more comprehensive and multi-angle

perspective for the prediction of cardiovascular diseases.
Our discussion will unfold through structured sections. Initially,

we’ll present an overview of the latest developments and research

findings from around the globe related to our topic. Following that, the

third section will detail our methodology and the conceptual

framework of our model. In the fourth section, we dive into

the specifics of our experimental design, including the dataset we

employed, the configuration of our experiments, and a comprehensive

analysis of the results we obtained. We will wrap up our paper by

summarizing our findings, reflecting on the implications of our

research, and suggesting directions for future investigations in this

domain. This structured approach aims to provide a clear and

thorough understanding of our research process and findings.
2 Related work

2.1 Application of deep learning in
disease prediction

The evolution of deep learning technology has notably gained

momentum in recent times, marking a significant impact on the

healthcare sector. Its capability to intuitively discern patterns from

voluminous datasets through sophisticated neural network

architectures has been commendable. Specifically, in the realms of

medical imaging and predictive diagnostics, deep learning models

have demonstrated exceptional proficiency, offering promising

avenues for advancing patient care and disease management

strategies (7). These developments underscore the transformative

potential of deep learning in reshaping medical analysis and

intervention methods, fueling a shift towards more data-driven

and efficient healthcare solutions. In the field of cardiovascular

disease prediction, deep learning technology can extract advanced

features from patients’ multi-modal data, helping doctors more

accurately assess patients’ risks and conduct personalized health

management. Deep learning models such as Convolutional Neural

Networks (CNN) and Recurrent Neural Networks (RNN) are

widely used in the prediction and diagnosis of various diseases (7).

Convolutional neural network (CNN) is a deep learning model

specifically designed to process image data and has achieved great

success in the field of medical imaging diagnosis (8). Through CNN,

doctors can quickly and accurately identify abnormalities in

medical images, such as tumors, lesions, etc., thereby enabling

early diagnosis and treatment of diseases (9). For example, for the

diagnosis of breast cancer, CNN can automatically analyze

mammograms or MRI images to assist doctors in accurately

determining the location, size and malignancy of the tumor.
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In addition to CNN, recurrent neural networks (RNN) also play

an important role in the medical field. RNN is suitable for

processing time series data and can capture temporal correlations

and long-term dependencies in the data, so it performs well when

analyzing patients’ long-term medical history data (10). For

example, in cardiovascular disease prediction, RNN can effectively

use multi-source time series data such as patients’ medical records,

physiological parameters, and exercise data to mine potential

disease risk factors, providing an important basis for early

prevention and intervention of the disease (11).

In addition, Recursive Neural Networks (RecNN) are also used

for medical data analysis and disease prediction. RecNN can process

data with a tree structure, such as molecular structures or diagnostic

procedures in medical records, to better mine potential patterns in

the data (12). In the field of drug research and development, RecNN

can analyze molecular structure data, predict drug activity and side

effects, and accelerate the development process of new drugs (13).

In addition, generative models such as Variational Autoencoder

(VAE) are also used for medical data analysis and disease prediction

(14). VAE can learn the distribution characteristics of data and

generate new samples, so it has potential applications in medical

image analysis and disease prediction (15). For example, VAE can

learn the distribution characteristics of patients’ MRI image data

and generate new MRI image samples, thereby expanding the data

set and improving the performance and generalization ability of

the model.

Although the application of deep learning models in the

medical field has made significant progress, it still faces some

challenges and dilemmas (16). These include issues such as data

quality and data scarcity, model interpretability and reliability, and

data privacy and security (17). Therefore, how to effectively process

and utilize medical data and improve the performance and

generalization ability of the model are still issues that need to be

solved in current research.
2.2 Patient behavior pattern recognition
and disease prediction

Patient behavior pattern recognition is a process of analyzing

and identifying patient behavior patterns through data mining and

machine learning technology based on patient lifestyle, medical

records and other behavioral data. In recent years, more and more

studies have combined patient behavior patterns with disease

prediction (18). By analyzing patients’ behavioral data, the

patient’s health status and disease risk can be more accurately

assessed, providing an important reference for personalized

prevention and treatment. With the continuous increase of health

data and the rapid development of deep learning technology,

patient behavior pattern recognition and disease prediction have

become research hotspots in the medical field.

Currently, research in the field of patient behavior pattern

recognition and disease prediction is booming (19). The use of deep

learning technology, especially models such as recurrent neural

networks (RNN) and convolutional neural networks (CNN), can
Frontiers in Psychiatry 03
better mine hidden information in patient behavioral data and

improve the accuracy and reliability of prediction models (20). For

example, by analyzing patients’ daily behavioral data, such as sleep

patterns, exercise habits, etc., combined with medical records and

physiological parameters, the patient’s risk of chronic diseases such as

cardiovascular disease and diabetes can be more accurately predicted,

providing scientific evidence for early intervention. in accordance with.

However, despite significant progress in patient behavior

pattern recognition and disease prediction, there are still some

challenges and dilemmas. Among them, one of the main issues is

data quality and data scarcity. There are certain difficulties in

obtaining and processing patient behavioral data, including

incomplete data collection and noise interference, resulting in

unstable data quality (21). The quality and integrity of medical

data are crucial to model training and prediction results. However,

current medical data often suffers from strong heterogeneity, lack of

standardization and labeling, which brings certain challenges to

model training and application (22). In addition, because medical

data involves sensitive information such as privacy and security,

data acquisition and sharing are also subject to strict restrictions,

resulting in insufficient data scale and diversity, limiting the

performance and generalization capabilities of the model.
2.3 Time series data analysis in medicine

Time series data analysis is of great significance in the medical

field, especially in disease prediction and health monitoring. In

recent years, with the continuous advancement of deep learning and

artificial intelligence technology, researchers have proposed many

new methods and models for processing time series data in

medicine (23). For example, a 2022 study proposed a deep

learning-based time series data analysis method that can

automatically identify the characteristics of arrhythmias and other

heart diseases, providing doctors with more accurate diagnosis and

treatment recommendations.

Under the current development status, time series data analysis

in medicine has made significant progress. Traditional statistical

methods are gradually being replaced by deep learning models that

are better able to capture complex relationships and features in time

series data (24). For example, models such as recurrent neural

networks (RNN) have demonstrated excellent performance in the

analysis of medical time series data, can effectively handle data of

different frequencies and irregular sampling, and provide new

solutions for disease prediction and health monitoring.

However, time series data analysis in medicine still faces some

challenges and dilemmas. First of all, the quality and reliability of

medical data directly affect the accuracy and credibility of analysis

results. Secondly, time series data often have the characteristics of

high dimensionality and irregular sampling, which brings

challenges to model training and optimization (25). In addition,

medical data involves sensitive information such as privacy and

security, and the acquisition and sharing of data are strictly

restricted, limiting the application scope and performance of

the model.
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3 Methods

As mentioned above, although deep learning technology has made

significant progress in the fields of behavioral pattern recognition and

health prediction, it still faces many challenges, such as data quality and

scarcity, model interpretability and reliability, and data privacy and

security. Therefore, this article proposes the LGAP model, which uses

deep learning technologies such as LSTM, GNNs, and Multi-Head

Attention mechanisms to extract patient behavioral pattern features

from different data sets, and comprehensively considers these features

through model fusion to achieve more accurate predictions Risk of

cardiovascular disease. Next, we will introduce in detail the overall

framework and design of the LGAP model, as well as the role of these

components in the model.
3.1 Overview of our network

The LGAP model is a cardiovascular disease prediction model

based on deep learning. It achieves accurate prediction of

cardiovascular disease risk by integrating patient behavior patterns

and relationship diagram data. As shown in Figure 1, the model

consists of three main components: Long Short-Term Memory

(LSTM), Graph Neural Networks (GNNs) and Multi-Head Attention.

The LSTM component is used to process patients’ time series

data, such as medical records, physiological parameters, motion data,

etc., to extract key features of patient behavior patterns. The LSTM

model can effectively capture long-term dependencies in time series

data, model patient behavior patterns, and provide important feature

representation for subsequent predictions. The GNNs component is

used to process the relationship graph between patients or the patient
Frontiers in Psychiatry 04
behavior graph to mine the behavioral patterns and correlations

between patients. The GNNs model can learn information transfer

and relationship modeling between nodes from the graph structure,

further enriching the representation ability of patient behavior

patterns and providing a more comprehensive feature

representation for the model. The Multi-Head Attention

mechanism is used to fuse the output of LSTM and GNNs models

to dynamically learn the importance between different modal data

and weighted fusion of the feature representations of different modal

data. This helps the model better comprehensively consider the

patient’s time series data and relationship diagram data, improving

the performance and accuracy of the model.

During the network construction process, we first input the

patient’s relevant data into the LSTM model, and then performed

feature extraction and representation through multi-layer LSTM

units. Then, we input the relationship graph data between patients

into the GNNs model to perform node feature updating and graph

structure modeling. Then, the output of the LSTM and GNNs

models will be feature fused through the Multi-Head Attention

mechanism to obtain a more comprehensive feature representation.

Finally, we input the fused feature representation into the classifier

to learn the mapping relationship between feature representation

and labels to achieve accurate prediction of cardiovascular diseases.

The advantage of the LGAP model is that it can comprehensively

consider patients’ time-series behavior patterns and relationship

diagram data between patients, and make full use of patients’

behavioral data, medical records and other information to improve

the accuracy and robustness of the prediction model. At the same

time, the model uses multiple deep learning components and

performs feature fusion through the Multi-Head Attention

mechanism, giving the model stronger representation and
FIGURE 1

Overall flow chart of the model.
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generalization capabilities and is suitable for different types of medical

data and patient groups. The structural diagram of the overall model

is shown in Figure 1.

Algorithm 1 represents the operation process of the

LGAP Model.
Fron
Initialize LSTM parameters qLSTM, GNNs parameters qGNNs,

Multi-Head Attention parameters qMHA, and classifier

parameters qclsrandomly;

for each mini-batch b in training dataset do

Extract time-series data Xtime and graph data Xgraph

from B;
Forward pass through LSTM: Htime = LSTM(Xtime,qLSTM);

Forward pass through GNNs: Hgraph = GNNs(Xgraph,qGNNs);

C o m b i n e f e a t u r e s u s i n g M u l t i - H e a d

Attention: Hcombined = MHA(Htime,Hgraph,qMHA);

Predict with classifier: Ŷ = Classifier(Hcombined,qcls);

Calculate loss: L = MSE(Y, Ŷ )

Backpropagate gradients: ∇qLSTM ,∇qGNNs ,∇qMHA ,∇qcls=

Backpropagation(L);

U p d a t e

parameters: qLSTM = qLSTM − a∇qLSTM , qGNNs = qGNNs − a∇qGNNs , qMHA =

qMHA − a∇qMHA , qcls = qcls − a∇qcls ;

end
Algorithm 1. LGAP Model Training.
3.2 Long short-term memory

Long Short-Term Memory (LSTM) is a variant of Recurrent

Neural Network (RNN) commonly used to process sequence data.

Its main purpose is to capture long-term dependencies and process
tiers in Psychiatry 05
time series data (5, 26). In this model, the LSTM component is used

to process patients’ time series data to extract important features of

patients’ behavioral patterns. This paper designs a multi-layer

LSTM structure, and each layer of LSTM units contains several

neurons. In each layer, we set up a dropout layer to prevent

overfitting and use an activation function (such as ReLU or

Sigmoid) to introduce nonlinearity. In addition, in order to better

capture the complex features of patient behavior patterns, we set the

dimensions of the output layer relatively large to increase the

representation ability of the model.

During the model training process, the patient’s time series data

is first passed into the LSTM network as an input sequence. The input

of each time step includes the patient’s medical records, physiological

parameters, motion data and other information. The LSTM network

will gradually process the input of each time step and output a hidden

state at each step. These hidden states contain important information

about the patient’s behavioral pattern. Through the stacking of

multiple layers of LSTM, the model is able to gradually learn and

extract higher-level feature representations to better understand the

patient’s behavioral patterns.

The structure diagram of the LSTM is shown in Figure 2.

The main formula of LSTM is as follows:

it = s (Wxixt +Whiht−1 + bi) (1)

where it is the input gate’s activation at time step t,xt is the input

at time step t,ht−1 is the hidden state at time step t−1,Wxi and Whi

represent the weight matrices for input and hidden state, bi is the

bias vector for the input gate.

ft = s(Wxf xt +Whf ht−1 + bf ) (2)

where ft is the forget gate’s activation at time step t,Wxf ,Whf is

the weight matrices for input and hidden state, bf is the bias vector

for the forget gate.
FIGURE 2

Flow chart of the LSTM.
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ot = s(Wxoxt +Whoht−1 + bo) (3)

where ot is the output gate’s activation at time step t, Wxo and

Who are the weight matrices for input and hidden state, bo is the bias

vector for the output gate.

gt = tanh (Wxgxt +Whght−1 + bg) (4)

where gt : candidate cell’s activation at time step t,Wxg andWhg

represent the weight matrices for input and hidden state, bg is the

ias vector for the candidate cell.

ct = ft ⊙ ct−1 + it ⊙ gt (5)

where ct is the cell state at time step t, ⊙ is the element-wise

multiplication (Hadamard product).

ht = ot ⊙ tanh (ct) (6)

where ht is the hidden state at time step t.

MSE =
1
No

N

i=1
(yi − ŷ i)

2 (7)

where N is the number of samples, yi is the true label of sample

i, ŷ i is the predicted label of sample i.
3.3 GNNs

Graph neural networks (GNNs) are a neural network model

specifically designed to process graph data and are widely used in

the medical field to model and analyze relationships between

patients (27). Its main principle is to learn and reason about the

structure of the entire graph through the information transfer of
Frontiers in Psychiatry 06
nodes and edges, thereby revealing the correlation and feature

representation between nodes (28).

In this model, the GNNs component is used to analyze the

relationship graph between patients and mine the behavioral patterns

and correlations between patients. This paper designs a multi-layer

GNNs structure, each layer contains several graph convolution layers

and pooling layers. In each layer, a graph convolution layer with a

nonlinear activation function (ReLU) is used to aggregate the

information of neighbor nodes, while a pooling layer is used to

reduce the size and complexity of the graph. In order to improve the

generalization ability and noise resistance of the model, this study

introduced a dropout layer in each layer to prevent overfitting. In

addition, this model also optimizes the model training process by

setting appropriate learning rates and optimizers.

The structure diagram of the GNNs model is shown in Figure 3.

The main formula of GNNs is as follows:

h(l)v = s o
u∈N(v)

W(l)h(l−1)u + b(l)
 !

(8)

where h(l)v is the hidden state of node v at layer l, N(v) is the set

of neighboring nodes of node v, W(l) is the weight matrix at layer l,

b(l) is the bias vector at layer l.

hv = ReLU o
u∈N(v)

Whu + b

 !
(9)

where hv is the hidden state of node v, N(v) is the set of

neighboring nodes of node v, W is the weight matrix, b is the bias

vector.

hv = max(AGGREGATE( hu, ∀u ∈ N(v)f g)) (10)
FIGURE 3

Flow chart of the GNNs model.
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where hv is the hidden state of node v, AGGREGATE is the

aggregation function (e.g., max pooling).

hv = mean(AGGREGATE( hu, ∀u ∈ N(v)f g)) (11)

where hv is the hidden state of node v, AGGREGATE is the

aggregation function (e.g., mean pooling).

zvu = LeakyReLU o
K

k=1

W(k)h(k−1)v + b(k)
 !

(12)

where zvu is the edge feature from node v to node u, W(k) is the

weight matrix at layer k, b(k) is the bias vector at layer k.

avu = softmax(zvu) (13)

where avu is the attention weight from node vto node u

hv = ReLU( o
u∈N(v)

avuhu) (14)

where hv represents updated hidden state of node v.
3.4 Multi-head attention

The Multi-Head Attention mechanism is a variant of the

attention mechanism designed to improve the model’s ability to

pay attention to different parts (29). It mainly projects the input

features multiple times, then calculates multiple attention

distributions in parallel, and finally weights the average of these

distributions to obtain a more comprehensive and rich feature

representation (30).

In this model, we use the Multi-Head Attention mechanism to

fuse the output of the two components of LSTM and GNNs to

obtain more comprehensive and rich patient behavior pattern

features. Specifically, this paper designs multiple independent
Frontiers in Psychiatry 07
attention heads, each of which is responsible for focusing on

different aspects of features. In each head, the input features are

first linearly projected, then the attention weights are calculated,

and finally these weights are weighted and summed with the

corresponding features. During the training process of the model,

the parameters of the attention head are optimized through the back

propagation algorithm so that the model can automatically learn

the optimal feature representation.

The structure diagram of the Multi-Head Attention is shown

in Figure 4.

The main formula and main variables of Multi-Head Attention

are as follows:

headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ) (15)

where QWQ
i , KW

K
i and VWV

i represent the linear projections of

query, key, and value respectively for the i -th head.

Attention(Q,K ,V) = softmax
QKTffiffiffiffiffi

dk
p

 !
V (16)

where Q is the query matrix, K is the key matrix, V is the value

matrix, dk is the dimensionality of key vectors.

MultiHead(Q,K ,V) = Concat(head1, head2,…, headh)W
O (17)

where h is the number of heads, headi is the i -th attention head,

WO is the output weight matrix.

Concat(head1, head2,…, headh)

= Concatenate(head1, head2,…, headh) (18)

where Concatenate is the function to concatenate multiple

attention heads.

LayerNorm(x) = LayerNormalization(x) (19)
FIGURE 4

Flow chart of the multi-head attention.
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where x is the input to the layer normalization operation.

LayerNormalization(x) = g
x − m
s

� �
+ b (20)

where g , b is the learnable parameters, m is the mean of x, s is

the standard deviation of x.

FeedForward(x) = ReLU(xW1 + b1)W2 + b2 (21)

where W1 and W2 represent the weight matrices of the

feedforward network, b1, b2: bias vectors.
4 Experiment

4.1 Experimental datasets

In the experimental part of this article, we used four main data

sets, namely PhysioNet, Framingham Heart Study Dataset,

NHANES and UK Biobank.

The PhysioNet dataset is a public medical physiology database

that contains rich physiological signal data and clinical data. The

data comes from medical institutions and research institutions

around the world and covers patients of different ages, genders

and health conditions (31). Data collection methods mainly include

clinical observation, medical testing instrument records, etc. The

PhysioNet dataset provides us with rich medical time series data for

model training and evaluation.

The Framingham Heart Study Dataset is a dataset from a long-

running cardiovascular disease research project spanning several

decades. This data set collects medical records, lifestyle, genetic

information and other data from residents of the Framingham area

in the United States (32). Data collection methods include regular

health surveys, medical tests, home visits, etc. This dataset provides

us with the opportunity to gain insights into the development and

associated factors of cardiovascular disease.

The NHANES dataset is part of the National Health and Nutrition

Examination Survey and covers health and nutrition information

nationwide. The dataset contains extensive demographic,

physiological, and health data collected through home visits, health

surveys, and medical testing (33). The NHANES dataset provides us

with a data source to comprehensively understand patient health status

and behavioral patterns.

UK Biobank is a large UK biomedical database that collects rich

biomedical data from 500,000 participants aged over 50 across the

UK. This data set contains participants’ physiological parameters,

biological samples, medical records and other information, and is

obtained through hospital records, questionnaires, biological

sample collection and other methods (34). The UK Biobank

dataset provides us with large-scale population data that can be

used to deeply explore the association between patient behavioral

patterns and cardiovascular disease.

To present the structure of each dataset more clearly, Table 1

provides detailed information on the independent variables and

dependent variables for each dataset.
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When using these data sets for experiments, we will strictly

follow the principles of data privacy protection to ensure the

security and confidentiality of patients’ personal information. We

will adopt appropriate data processing and anonymization

technologies to desensitize sensitive information to protect the

privacy rights of participants.
4.2 Experimental setup and details

To enhance the reliability and reproducibility of our research,

we meticulously designed the experiments and undertook thorough

testing across various datasets.

Step 1: Data preprocessing
• Data cleaning: Remove samples that contain missing values

in any row in the data. If a row has more than 30% missing

data, it is removed from the dataset. For other missing

values, the mean, median or mode is used to fill. Data points

outside of 3 standard deviations are considered outliers and

removed from the data set.

• Data standardization: Implement data normalization by

applying Z-score transformation, adjusting each attribute

so that it aligns with a distribution characterized by a mean

of 0 and a standard deviation of 1.

• Data splitting: Divide the data set into a training set and a

test set at a ratio of 7:3, and ensure that the samples in the

training set and test set are randomly selected to ensure the

generalization ability of the model on different

data distributions.

• Data augmentation: For categories with fewer samples, data

augmentat ion techniques are used to generate

additional samples.
Step 2: Model training
• Network parameter settings: The model starts with a

learning rate of 0.001, utilizing a strategy where the

learning rate decreases by a factor of 0.1 every 20 epochs

to optimize performance. The batch size is chosen to be 64,
TABLE 1 Overview of independent and dependent variables for
different datasets.

Dataset Independent Variables Dependent
Variables

PhysioNet Age, gender, blood pressure, heart rate,
and other physiological signals

Cardiovascular
disease risk

Framingham
Heart Study

Age, gender, cholesterol levels, smoking
status, diabetes, and other factors

Occurrence of
cardiovascular

events

NHANES Age, gender, body mass index, dietary
habits, physical activity frequency, etc.

Cardiovascular
health status

UK Biobank Age, gender, genetic data, lifestyle
factors, etc.

Cardiovascular
disease risk
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that is, 64 samples are used for training in each iteration. Set

the total number of iterations to 200, and each epoch

contains a complete traversal of the entire training set.

• Model architecture design: For the LSTM layer, the number

of hidden units of the model is 128, and two LSTM layers

are set up to extract long-term dependencies in time series

data. The GNNs layer adopts graph convolutional network

(GCN) as the basic component of GNNs, sets the number

of hidden units to 64, and uses 2 layers of GCN to learn the

complex relationships between patients. For the

Multi-Head Attention layer, set the number of Attention

heads to 4 and the number of hidden units in each head to

32 to improve the model’s utilization of multiple

attention mechanisms.

• Model training process: Select the Adam optimizer to

update the model parameters, set the initial momentum

to 0.9, and the decay rate to 0.999. The cross-entropy loss

function is chosen as the loss function of the model to

measure the difference between the predicted value and the

actual label. In order to prevent the model from overfitting,

an early stopping strategy is set. When the loss on the

validation set does not decrease for 10 consecutive epochs,

the training is stopped.
Step 3: Model validation and tuning
• Cross-validation: Use the K-fold cross-validation method to

divide the data set into K subsets. K-1 subset was used as the

training set each time and the remaining 1 subset as the

validation set. Repeat training and validation K times, and

the final average was taken as an evaluation indicator of

model performance. In this experiment, the K value was

chosen as 5, which divides the dataset into five subsets for

cross-validation.

• Model fine-tuning: Based on the cross-validation results,

fine-tune the model to further improve performance. It

mainly includes adjustments in the following aspects:

adjusting network structure parameters, such as

increasing or decreasing the number of hidden layer

units; adjusting regularization parameters, such as the

weight of the L2 regularization term; adjusting optimizer

parameters, such as adjustment of the learning rate; and

increasing or decreasing the number of hidden layer units.

Reduce the number of training rounds, etc. Select the model

configuration with the best performance by evaluating the

effects of different adjustments on the validation set.
Step 4: Ablation experiment

During the experimental process of this article, we conducted a

series of ablation experiments with the purpose of in-depth study of

the impact of each component of the model on model performance.

The specific experimental settings are as follows:
• Remove LSTM:We will remove the LSTM component from

the LGAP model, retaining GNNs and Multi-Head

Attention. That is, instead of using LSTM to process and
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extract features from patient time series data, the original

data is directly input into GNNs and Multi-Head Attention

to observe changes in model performance. During this

process, we will keep other parameters and settings

unchanged and record the experimental results.

• Removing GNNs: In this experimental setup, we will

remove the GNNs component from the LGAP model,

retaining the LSTM and Multi-Head Attention. That is,

GNNs are no longer used to process relationship diagrams

between patients or patient behavior diagrams. Instead, the

features extracted by LSTM are directly input into Multi-

Head Attention to observe changes in model performance.

Likewise, other parameters and settings will remain

unchanged and the experimental results will be recorded.

• Remove Multi-Head Attention: In this experimental setup,

we will remove the Multi-Head Attention component from

the LGAP model, retaining the LSTM and GNNs. That is,

the Multi-Head Attention mechanism is not used to fuse

the output of the LSTM and GNNs models, but the outputs

of the LSTM and GNNs are directly used as the final output

of the model to observe changes in model performance.

Likewise, other parameters and settings will remain

unchanged and the experimental results will be recorded.

• Compare the results of the above three sets of experiments

with the results of the model with complete architecture and

parameter settings, observe the changes in the results, and

then analyze and discuss the impact of each component on

the model performance.
Step 5: Comparative Experiment

This paper focuses on optimization strategies, comparing the

optimization performance of different attention mechanisms. We

compare the performance of four different attention mechanisms in

this model: Self-Attention Mechanism (Self-AM), Dynamic

Attention Mechanism (Dynamic-AM), Cross Attention

Mechanism (Cross-AM), and Multi-Head Attention.

The Self-Attention Mechanism refers to the model’s ability to

focus on different positions in the input sequence by calculating the

correlations between various positions to generate representations.

The advantage of this mechanism is that it captures long-distance

dependencies in the sequence, improving the model ’s

understanding of contextual information. The Dynamic Attention

Mechanism is an improved version of the attention mechanism,

dynamically adjusting attention weights based on the features of the

input data. Compared to Self-Attention, Dynamic Attention is more

adaptable to changes in different inputs, enhancing the model’s

flexibility and adaptability. Cross Attention Mechanism calculates

attention across different input sequences, effectively utilizing

information from multiple sources. Multi-Head Attention

computes several attention heads in parallel, capturing diverse

features from the input more comprehensively. The parameter

settings for the experiments are as follows:
• Self-AM vs. Multi-Head Attention: Set the number of

attention heads for Self-Attention to 4, with 128 hidden

units, and compare the differences between the two
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mechanisms in terms of prediction accuracy, convergence

speed, and computational efficiency. The settings for Multi-

Head Attention remain unchanged.

• Dynamic-AM vs. Multi-Head Attention: Set the number of

attention heads for Dynamic-Attention to 8, with 256

hidden units, and compare the performance differences

between the two mechanisms. The settings for Multi-

Head Attention remain unchanged.

• Cross-AM vs. Multi-Head Attention: Set the number of

attention heads for Cross-Attention to 6, with 192 hidden

units, and compare the performance differences between

the two mechanisms. The settings for Multi-Head Attention

remain unchanged.
Step 6: Model Evaluation

In this phase of our research, we rigorously evaluated the LGAP

Model’s performance, with a special focus on its predictive accuracy

and operational efficiency.
• To assess accuracy, we employed a suite of widely

recognized metrics, such as Mean Absolute Error (MAE),

Mean Absolute Percentage Error (MAPE), Root Mean

Square Error (RMSE), and Mean Square Error (MSE).

These metrics provided a holistic view of the model’s

precision in forecasting cardiovascular diseases.

• For efficiency evaluation, we examined aspects including

the model’s parameters, the number of floating point

operations (Flops), and the times required for inference

and training. These measures allowed us to gauge the

model’s computational efficiency and the trade-off

between its predictive capabilities and resource demands.
4.3 Experimental results

According to Table 2, we compared and analyzed the

performance of different models on various indicators. As can be

seen from the table, our model achieved the lowest MAE, MAPE,

RMSE andMSE values on all datasets, indicating that our model has

higher accuracy in cardiovascular disease prediction. Taking the

PhysioNet data set as an example, compared with other models, our

model reduced MAE and MAPE by 12.15 and 5.00 percentage

points respectively, while reducing RMSE and MSE by 1.47 and

16.66 respectively, highlighting the significant advantages of

our model.

Our model also performed well on the Framingham Heart

Study Dataset, NHANES and UK Biobank data sets, with lower

error values than other models, demonstrating its universality and

robustness on different data sets. Especially on the NHANES data

set, our model reduces the MAE and RMSE values by nearly 30%

compared to other models, showing its potential in health status

monitoring and prediction of large-scale patient groups.

According to the data in Table 2, our model performs well on

various indicators. In order to display the comparison results more

intuitively, we visualized the table contents to show in detail the
tiers in Psychiatry 10
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performance differences of each model on different data sets.

Figure 5 clearly presents the advantages of our model over other

models, further confirming its excellent performance in

cardiovascular disease prediction.

The results displayed in Table 3 outline a comparative analysis

of various models across different datasets, focusing on key metrics

such as the number of parameters, computational complexity, and

the duration of inference and training phases. Notably, our LGAP

model shows clear advantages under all metrics.

First, in terms of the number of parameters, the number of

parameters of the LGAP model is significantly lower than that of

other models. Taking the PhysioNet data set as an example, the

parameter amount of our model is only 338.45M, while other

models such as the jain model and the li model are as high as

495.49M and 670.81M respectively, which shows the advantages of

the LGAP model in saving storage space.

In terms of computational complexity, the LGAP model also

highlights its advantages. Taking the Flops indicator as an example,

the computational complexity of our model is low, only 3.53G, while

other models such as the liu model and the li model are 771.67G and

624.08G respectively, which shows that the LGAPmodel can perform

the inference and training process more efficiently.

In addition, the LGAP model also shows better performance in

terms of inference time and training time. In terms of inference

time, our model shows shorter inference time on various data sets,

such as only 5.64ms on the Framingham Heart Study Dataset,

which is far better than other models. In terms of training time, the
Frontiers in Psychiatry 11
LGAPmodel also shows stable performance and the training time is

relatively short, which helps to improve the training efficiency of

the model.

In order to present the experimental results more clearly, we

visualized the results, as shown in Figure 3), which visually shows

the performance differences of each model under different

indicators. The LGAP model in the context of deep learning

Demonstrated significant advantages in cardiovascular disease

prediction tasks based on patient behavior patterns.

As shown in Table 4, in the ablation experiment, we gradually

removed different components of the LGAP model to study the

impact of each component on model performance.

First, after removing the LSTM component, the performance of

the model generally decreases on all datasets. Taking the MAE

indicator as an example, after removing LSTM, the MAE value of

the model increased from the original 16.12 to 39.13. This shows

that LSTM plays an important role in the model. It can effectively

extract important features in time series data and help improve the

prediction accuracy of the model.

Secondly, after removing the GNNs component, the model is

greatly affected in processing the relationship graph between

patients or the patient behavior graph. Experimental results show

that after removing GNNs, the MAE value of the model increases

significantly, for example from the original 16.12 to 42.35. This

indicates that GNNs play an important role in mining behavioral

patterns and correlations between patients, and their absence leads

to a decline in model performance.
FIGURE 5

Model accuracy verification comparison chart of different indicators of different models.
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Finally, after removing the Multi-Head Attention component,

the model was greatly affected in fusing the output of LSTM and

GNNs. Experimental results show that after removing Multi-Head

Attention, the MAE value of the model also increased significantly,

for example from the original 16.12 to 26.02. This shows that Multi-

Head Attention plays a key role in dynamically learning the

importance between different modal data, and its absence leads to

a decline in model performance. Figure 6

In order to present the comparison results more intuitively, we

visually display the table contents, as shown in Figure 7. The figure

can provide a clearer understanding of the performance of the

LGAP model in the ablation experiment, as well as the impact of

different components on the model performance.

Based on the above experimental results, the ablation

experimental results further verify the importance of each

component in the LGAP model. LSTM’s processing and feature

extraction of time series data, GNNs’ mining of relationships

between patients, and Multi-Head Attention’s fusion of different

modal data all play a crucial role in model performance.

Focusing on optimizing the attention mechanism, we compared

the differences in model performance among four different

attention mechanisms: Self-AM, Dynamic-AM, Cross-AM and

Multi-Head Attention. Table 5 outlines the outcomes from our

comparative analysis, detailing key performance indicators such as

model parameters, computational complexity, and the times for

inference and training across various datasets. Figure 8 intuitively

displays these experimental results through visualization.

First, compare the differences in the number of model

parameters and computational complexity of different attention

mechanisms. We can observe that the three attention mechanisms

of Self-AM, Dynamic-AM and Cross-AM have relatively high

parameter amounts and computational complexity, while Multi-

Head Attention has a lower parameter amount and computational

complexity. For example, on the PhysioNet data set, the parameter

amount of Self-AM is 363.55M, while Multi-Head Attention is only

213.87M, which reflects the advantages of Multi-Head Attention in

saving storage space and computing resources.

Secondly, compare the performance of different attention

mechanisms in terms of inference time and training time. In

terms of inference time, Multi-Head Attention generally exhibits

faster inference speed, which can be seen from the inference time

data in Table 4. For example, on the Framingham Heart Study

Dataset, the inference time of Multi-Head Attention is 105.43ms,

which is significantly lower than other attention mechanisms. In

terms of training time, the differences between various attention

mechanisms are not obvious, but the general trend is that Multi-

Head Attention usually has shorter training time, which helps to

improve the training efficiency of the model.

Finally, compare the differences in model prediction accuracy

between different attention mechanisms. By comparing the

performance metrics of each model on different data sets, we can

evaluate their performance in terms of model prediction accuracy.

Generally speaking, Multi-Head Attention shows better performance

on indicators such as MAE, MAPE, RMSE, and MSE, which shows

that Multi-Head Attention has certain advantages in improving

model prediction accuracy.
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FIGURE 6

Model efficiency verification comparison chart of different indicators of different models.
FIGURE 7

Ablation experiments on the LGAP model.
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TABLE 4 Ablation experiments on the LGAP model using different datasets.
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Based on the above experimental results, it is shown that our

choice of Multi-Head Attention as the optimization mechanism of

the model is very suitable. It can coordinate other components of

the model and greatly improve the performance of the model.
5 Conclusion and discussion

In the research of this article, deep learning technology is

mainly used to solve the challenges in cardiovascular disease

prediction. To address this problem, we established the LGAP

model, which combines key components such as Long Short-

Term Memory Network (LSTM), Graph Neural Networks

(GNNs), and Multi-Head Attention. The integration of this

component enables us to extract key features from patients’

time-series data and dig deeper into behavioral patterns and

correlations between patients. Experimental results show that

the LGAP model has significant advantages in cardiovascular

disease prediction. In ablation experiments and comparative

analysis, we found that the LGAP model performed well in

terms of prediction accuracy and performance stability. Taken

together, the model in this article provides an effective solution for

cardiovascular disease prediction.

However, although the LGAP model has shown many

advantages in cardiovascular disease prediction, it also has some

shortcomings. For example, when processing large-scale data, the
Frontiers in Psychiatry 15
model may face a certain computational burden, which may affect

the real-time performance and efficiency of the model. In order to

overcome this challenge, the structure and algorithm of the LGAP

model need to be further optimized to improve its processing

capabilities on large-scale data sets, including optimizing the

utilization of computing resources and improving the parallel

computing capabilities of the model. In addition, for certain

specific types of data, such as sparse data or data with complex

nonlinear relationships, the prediction effect of the LGAP model

may be limited, which requires more data and experimental

verification for further exploration and improvement.

Future research will further deepen the application and

optimization of the LGAP model to achieve more precise and

personalized health management and prevention work. In

addition, it will be combined with advanced technologies in other

fields, such as bioinformatics, medical image processing, etc., to

further expand the application scenarios and functions of the LGAP

model, so as to better provide support and services for health

management and medical prevention.
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