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Background: Atypical peak alpha frequency (PAF) has been reported in children

with autism spectrum disorder (ASD); however, the relationships between PAF,

age, and autistic traits remain unclear. This study was conducted to investigate

and compare the resting-state PAF of young children with ASD and their typically

developing (TD) peers using magnetoencephalography (MEG).

Methods: Nineteen children with ASD and 24 TD children, aged 5-7 years,

underwent MEG under resting-state conditions. The PAFs in ten brain regions

were calculated, and the associations between these findings, age, and autistic

traits, measured using the Social Responsiveness Scale (SRS), were examined.

Results: There were no significant differences in PAF between the children with

ASD and the TD children. However, a unique positive association between age

and PAF in the cingulate region was observed in the ASD group, suggesting the

potential importance of the cingulate regions as a neurophysiological

mechanism underlying distinct developmental trajectory of ASD. Furthermore,

a higher PAF in the right temporal region was associated with higher SRS scores in

TD children, highlighting the potential role of alpha oscillations in social

information processing.

Conclusions: This study emphasizes the importance of regional specificity and

developmental factors when investigating neurophysiological markers of ASD.

The distinct age-related PAF patterns in the cingulate regions of children with

ASD and the association between right temporal PAF and autistic traits in TD
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children provide novel insights into the neurobiological underpinnings of ASD.

These findings pave the way for future research on the functional implications of

these neurophysiological patterns and their potential as biomarkers of ASD

across the lifespan.
KEYWORDS

autism spectrum disorder, peak alpha frequency, magnetoencephalography,
neurodevelopment, brain regions
1 Introduction

Autism spectrum disorder (ASD), as defined by the American

Psychiatric Association (1), is a group of neurodevelopmental

disorders characterized by challenges in social communication

and interaction, alongside restricted and repetitive behaviors.

These symptoms, which typically emerge in infancy, persist

throughout life. With the increasing prevalence of ASD and its

significant socioeconomic impact (2), identifying its unique and

reliable biomarkers has become crucial to public health. As

highlighted by Eapen et al. (3), these biomarkers are particularly

vital for developing personalized therapies.

Previous traditional imaging studies on ASD were

predominantly conducted using task-based methods. However,

given the clinical heterogeneity of ASD, reliance on task

performance may pose limitations that affect the universality and

applicability of identified biomarkers. In addition, task-based

assessments can be time-consuming, adding to the burden on

patients and clinicians. In contrast, analysis of resting-state data is

a promising alternative to task-based assessments. This is because

resting-state data analysis bypasses the abovementioned limitations

and potentially identifies more consistent biomarkers applicable

across diverse ASD populations, thereby paving the way for the

development of more effective and personalized interventions.

Neuroimaging technologies have offered new insights into the

biological mechanisms underlying ASD. Among the various

existing imaging modalities, electroencephalography (EEG) stands

out for its application in pediatric research. Unlike positron

emission tomography or computerized tomography, which

involve radiation, and magnetic resonance imaging (MRI), which

can be loud, EEG is non-invasive and silent, making it particularly

suitable for studying children, both with and without ASD. EEG

studies have revealed patterns potentially linked to ASD’s hallmark

difficulties in social communication. A key focus has been on alpha

oscillations (8–12 Hz), the predominant rhythms observed during

wakefulness, especially in the eyes-closed condition, as alpha power

diminishes when the eyes are open and visual input is received (4).

Alpha oscillations have been associated with social coordination (5,

6) and information processing across thalamocortical and cortico-

cortical networks (7–10). However, research on alpha power in ASD

presents a conundrum; findings vary widely, ranging from reports
02
of decreased (11–13) or increased (14) alpha power compared to

typically developing (TD) individuals, to reports of no significant

differences between individuals with ASD and their TD peers (15,

16). These inconsistencies could be attributed to various reasons,

including variations in study populations and methodological

approaches (17).

Peak alpha frequency (PAF) is an important measure in the field

of resting-state (RS) alpha oscillations. PAF indicates the frequency

at which RS alpha oscillations attain maximum power. PAF is a

clinically significant measure, as evidenced by its high heritability

(18, 19); twin studies estimate its heritability at 0.81, suggesting

minimal environmental influence (20). In TD individuals, a higher

PAF is correlated with improved cognitive performance, including

enhanced working memory and faster information processing (21–

23), and is linked to higher IQ test scores (24). Additionally, PAF is

associated with neurodevelopmental delays (25, 26). This

significance can be attributed to the inherent temporal structuring

of the brain through neural activity, where alpha rhythms are

pivotal for intra- and inter-regional brain communication (4).

Furthermore, PAF undergoes notable changes with age, which

indicate that it is a reliable indicator of brain maturation in TD

individuals (27, 28). Studies have documented a gradual shift from

an 8-9 Hz alpha peak in young children (5–7 years old) to an ‘adult-

like’ 10–12 Hz PAF that manifests at approximately 15 years of age

(29, 30), reflecting the increasing complexity of cortical

organization with age. Consequently, PAF is recognized as a

sensitive measure of alpha oscillatory development (31) and is

reported to provide a more precise assessment of alpha oscillatory

activity than alpha power alone (32). Considering the fundamental

role of alpha rhythms in various brain processes, investigating alpha

rhythms in neurodevelopmental disorders such as ASD is

particularly pertinent.

Several EEG and magnetoencephalography (MEG) studies have

demonstrated differences in PAF between younger individuals with

ASD and their TD peers (14, 16, 25, 26, 33–37). For instance,

Dickinson et al. (25) found that TD children (aged 5.97 ± 2.21

years) exhibited higher PAF than children with ASD (aged 5.78 ±

2.01 years), particularly in the frontal and central regions, using

EEG with an eyes-open condition involving the display of bubbles

on a computer screen. Conversely, Shen et al. (33) reported that

children with ASD (aged 7.8 ± 0.8 years) showed higher PAFs than
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TD children (aged 7.5 ± 0.8 years) using MEG under an eyes-closed

condition. Edgar et al. (26) analyzed resting state eyes-closed data

and showed significant PAF differences (higher PAF in children

with ASD than in TD children) only in children younger than 10

years. However, no study on participants with a mean age of over 10

years has indicated a significant difference in PAF between TD and

ASD populations (14, 16, 34–36). Additionally, Leno et al. (37)

found no significant PAF differences at 12 months of age in children

with and without a familial risk of ASD. These results suggest

possible age- or experimental condition-dependent differences in

PAF between children with ASD and TD children.

In addition to potential age-dependent group differences in

PAF, the relationship between age and PAF may vary by diagnosis.

In the TD population, PAF is positively correlated with age,

beginning as early as 12 months, regardless of familial ASD risk

(37), through childhood (5-10 years) (16, 25, 26, 33, 36) and into

adolescence (approximately 16 years) (35). In contrast, in children

with ASD, this association is reported to be non-significant during

early developmental stages (6-10 years old) (25, 26, 33, 34, 36) and

becomes significant only in later developmental stages, such as

adolescence (35). This ASD status-specific relationship between

PAF and age across developmental stages might indicate potential

differences in neural maturation between TD and ASD populations.

However, these results should be interpreted cautiously because the

ASD group was on medication in the abovementioned studies (25,

26, 34, 35, 38). In this regard, Shen et al. (33) did not observe a

significant Diagnosis-age interaction in medication-free

participants approximately 7 years old, whereas Dickinson et al.

(25) reported a significant Diagnosis-age interaction within a

similar age range in participants where the ASD group was on

medication. In addition to considering medication status, it should

also be noted that experimental conditions and participant

characteristics vary in the abovementioned studies, such as visual

stimuli versus eyes-closed conditions, IQ profiles, and sex ratios.

The fact that individuals with ASD exhibit differences in PAF

compared to their TD peers (14, 16, 25, 26, 33–37) suggests a

possible connection between PAF and the severity of autistic

symptoms. While the link between higher PAF and better non-

verbal IQ (NVIQ) outcomes is well established—observable from as

early as 24 months and persisting from childhood to adulthood in

both TD and ASD populations (25, 26, 33, 34, 39)—the potential

relationship between PAF and autistic symptoms remains

underexplored, particularly in younger populations. To date, few

studies have been conducted to directly examine the relationship

between PAF and autistic symptoms. One notable study by

Dickinson et al. (34) included adult participants (78 TD

individuals, aged 32.5 ± 12.3 years and 93 individuals with ASD,

aged 30.4 ± 13.6 years). The results indicated that in the non-ASD

group, ASD symptoms (quantified by ADOS scores) were

significantly negatively correlated with PAF, a relationship that

remained significant after controlling for age and NVIQ. However,

in the ASD group, ASD symptoms were not associated with PAF.

While this lack of association in adults with ASD might suggest that

PAF does not directly reflect symptom severity in this population, it

raises intriguing questions, based on findings in non-ASD adults,

about whether a relationship does exist between PAF and autistic
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traits earlier in development in children diagnosed with ASD. Since

differences in PAF have been reported between TD and ASD

populations in younger age groups (25, 26, 33), this study seeks

to determine whether a relationship between PAF and autistic traits

can be identified in young children. If such a correlation exists, it

could provide evidence of a developmental link between alpha

oscillations and autism that might evolve or diminish with age.

Therefore, we conducted this study to explore the relationship

between PAF and autistic symptoms in young children with ASD

and their TD peers. To approximate a resting-state condition, we

used an eyes-open setup in a dark room with a small fixation cross,

ensuring minimal visual input while keeping participants’ heads

stationary. This method differs slightly from the eyes-closed

condition used in other studies but has shown good reliability for

obtaining resting-state alpha measures in similar populations (see

Methods section for details).
2 Methods

2.1 Study design and participants

In this prospective, observational study, we recruited children

with ASD and TD children aged 5 to 7 years and obtained their

MEG recordings in a resting-state condition. To ensure the validity

and reliability of our findings, we excluded children who were

taking medication and those with evident intellectual disabilities.

Consequently, this study focuses on a narrow segment of the ASD

population, specifically young children without intellectual

disabilities or medication influences. While these criteria help

maintain a controlled sample, they also limit the generalizability

of our findings to the broader ASD population.

PAF was obtained using MEG, during which participants

focused on a fixation cross projected onto a screen in a dark

room to approximate a resting-state condition. Edgar et al. (40)

reported good reliability for resting-state eyes-closed and dark room

(with no visual stimulation) peak alpha frequency in TD children

and those with ASD, indicating the dark room exam as a viable

method to obtain resting-state alpha measures in these populations.

Our experimental condition differed slightly, as we collected data

with a small fixation cross in a dark room, introducing minimal

visual input. We chose this procedure to ensure the children kept

their heads stationary during the recordings, as staring at the

fixation cross helps them stay still. Given the younger age range

of our participants, it was necessary to strike a balance between the

ideal condition (eyes-closed or eyes-open in a completely dark

room) and practical considerations to minimize visual stimulation

while ensuring the children remained still. Considering the

experimental setup of this study, which is similar to that used by

Shen et al. (33)―MEG in an eyes-closed condition, an average

age of approximately 7.5 years, and exclusion of participants with

intellectual disabilities and those taking medications―our

hypotheses are twofold. First, we anticipated replicating the

findings of Shen et al. (33), specifically that children with ASD

would exhibit higher PAF than TD children within this age range

and that higher PAF would be significantly associated with older age
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only within the TD population. Second, considering the higher PAF

observed in the ASD population in the study by Shen et al. (33), we

hypothesized a significant association between more severe autistic

symptoms and higher PAF in both groups.

The clinical group comprised of 21 children diagnosed with ASD,

recruited from Kanazawa University and its affiliated hospitals. ASD

diagnoses were based on the DSM-IV criteria (41) and confirmed by

experienced psychiatrists and psychologists using the Diagnostic

Interview for Social and Communication Disorders (DISCO) (42)

and/or Autism Diagnostic Observation Schedule-2 (ADOS-2) (43,

44). Some participants in the ASD group were diagnosed using only

the ADOS-2, some using only the DISCO, and others using both. The

control group comprised of 25 TD children with no known

behavioral or language difficulties. Children who were blind and/or

deaf, had other neuropsychiatric disorders, or were on an ongoing

medication regimen ((including any type of medication) were

excluded. Family history of ASD was not screened for in the

control group. Written informed consent was obtained from the

parents of the children prior to their participation in the study.

The research methods and procedures were approved by the Ethics

Committee of Kanazawa University Hospital, and the study was

conducted in accordance with the principles outlined in the

Declaration of Helsinki. This research is a part of a broader

project known as the Bambi Plan at the Kanazawa University

Research Center for Child Mental Development (https://

kodomokokoro.w3.kanazawa-u.ac.jp/en/). It is important to note

that although some participants in this study were also included

in our previous research (45), there is no overlap in the results

presented. Moreover, the objectives and emphases of the previous

studies differ significantly from those of the present study.
2.2 MEG

MEG data were recorded using a 151-channel Superconducting

Quantum Interference Device (SQUID) whole-head coaxial

gradiometer MEG system (PQ 1151R; Yokogawa/KIT, Kanazawa,

Japan) (46) within a magnetically shielded room (Daido Steel Co.,

Ltd., Nagoya, Japan).

We utilized a custom-made, child-sized MEG system designed

to optimize the placement of sensors on children’s heads, which are

generally smaller than those of adults. This design not only

facilitates effective positioning but also limits head movements.

Recordings were obtained at a 2,000 Hz sampling rate and low-pass

filtered at 500 Hz.

We strived to keep the children stationary during recordings;

however, achieving extended stillness was particularly challenging

for those with ASD. Given these challenges, we determined a

compromise for the minimum recording duration. We established

a recording period of 130 seconds, aiming to secure a baseline of 50

seconds and allowing for some buffer time. This decision was

grounded in existing research suggesting that 38 seconds of

artifact-free data provides a reliable threshold for assessing

spontaneous EEG characteristics such as PAF (25, 47).

During the recording, the participants laid supine in a resting

state, focusing on a fixation cross mark projected onto a screen.
Frontiers in Psychiatry 04
Their eyes remained open throughout the recording. All recording

sessions were scheduled between 11 am and 3 pm, and no signs of

drowsiness were evident in the MEG waveforms of any child.
2.3 Assessment of intelligence and the
severity of autism symptoms

The Social Responsiveness Scale (SRS) was used for the

assessment of autism symptoms. This 65-item scale allows for the

assessment of children in natural social contexts, reflecting

observations over weeks or months (48). It comprises five

subscales: social awareness, social cognition, social communication,

social motivation, and autistic mannerisms. Higher scores indicate

greater severity of autism symptoms. In our study, the SRS was

completed by one of the child’s parents. Intelligence was assessed

using the Kaufman Assessment Battery for Children (K-ABC). In the

K-ABC, the Mental Processing Scale interprets problem-solving

abilities as intelligence, whereas the Achievement Scale measures

knowledge of facts (49, 50). These scores are standardized according

to age, with a mean of 100 and a standard deviation (SD) of 15.
2.4 Magnetic resonance imaging

Structural brain images were acquired using a 1.5 T MRI

scanner (SIGNA Explorer; GE Healthcare, USA). The T1-

weighted gradient echo and Silenz pulse sequence were utilized

(TR = 435.68 ms, TE = 0.024 ms, flip angle = 7°, FOV = 220 mm,

matrix size = 256 ×256 pixels, slice thickness = 1.7 mm; a total of

130 transaxial images). This provided the necessary anatomical

reference for this study. Obtaining MRI images from children aged

5-7 years can be challenging; however, due to the shorter recording

time afforded by the optimized protocol, all participants successfully

completed the MRI procedure.
2.5 Co-registration of MEG on MRI images

Co-registration of MEG and MRI images was based on specific

marker locations. Four distinct markers were identified on both

MEG and MRI: the midline frontal, vertex, and bilateral mastoid

processes. Magnetic field-generating coils served as the markers for

MEG, whereas lipid capsules acted as markers for MRI, owing to

their distinct appearance as high-intensity regions. Additionally,

points on the mastoid processes, nasion, and skull surface were

visually pinpointed on the MRI images. Typically, 15–25 points

were marked for each participant.
2.6 Preprocessing of MEG data

MEG data preprocessing was conducted according to the

guidelines of the Organization for Human Brain Mapping (51).

First, the data were downsampled to 500 Hz, and three sensors were

excluded because of their poor signal quality. Second, notch filters
frontiersin.org
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were applied at 60, 120, and 180 Hz to remove power-supply noise,

followed by the application of a band-pass filter (0.5–200 Hz).

Third, independent component analysis was conducted to remove

blink and cardiac artifacts. Finally, segments containing apparent

motion noise or radiofrequency interference were excluded from

the analyses after visual identification by an MEG expert blinded to

the identities of the participants. Data were segmented into

continuous segments of 5 s, with a minimum of 10 segments (50-

s recording period) accepted for each participant.
2.7 Atlas-guided source reconstruction
and segmenting

We performed signal source estimation using the original

anatomies of the participants. An anatomically constrained MEG

approach was used to estimate the brain signal sources (52). When

estimating sources, the recorded brain activity of each participant was

assumed to be located within the cortical mantle. A head model was

computed using the overlapping spheres algorithm (53) with the

default source space (a lower-resolution cortical surface

representation with 15,000 vertices). In addition, weighted

minimum-norm estimation was used to estimate source orientation

constraints (54). An identity matrix was used as the noise covariance

because no noise recording was available. Signal sources were grouped

into 68 regions represented in Desikan-Killiany atlases (55). Principal

component analysis was used to group the sources.
2.8 Computing spectral power

To compute the spectral power of the 68 regions defined using

the Desikan-Killiany brain atlas, we used Welch’s method, which

was implemented. Each epoch (5 s) was processed using a

Hamming window with an 80% overlap. The resulting power

spectra had an approximately 0.2 Hz frequency resolution.
2.9 Measurement of peak alpha frequency

Figure 1A depicts the typical power spectrum density of a signal

source, which was estimated to be localized to the left caudal

anterior cingulate. The PAF of this signal source was derived

according to established protocols from previous research (25, 35).

Our preliminary step was to counteract the inherently dominant 1/

f trend often observed in EEG/MEG power spectra (56), which

potentially obscures nuanced alpha peaks. This adjustment ensures

that the spectral peak is accurately identified without undue emphasis

on the lower alpha frequency spectrum. To neutralize the 1/f trend, we

performed a log-transformation of both the frequency and power

within the range of 1-55 Hz (Figure 1B). Consequently, the 1/f

component in the original power spectrum was represented with a

linear dependence on the log-frequency (Figure 1C).

Robust linear regression, performed using Huber’s method with

M set at 1.35, was employed for the prediction of log power using

log frequency. This approach is known for its resilience against
Frontiers in Psychiatry 05
outliers, particularly when juxtaposed with the traditional least

squares method (57, 58). The 1/f trend, depicted by the yellow

line in Figure 1C, was then subtracted from the original data, which

is represented by the blue curve in the same figure. The resulting

residual values were exponentiated, and the alpha band was isolated

in the 7-13 Hz range (26) (Figure 1D).

The isolated alpha-band spectra were fitted to a Gaussian curve

using the least-squares method (59). (Figure 1E). The peak of this

Gaussian curve was labeled as the PAF (Figure 1F). The peak of the

curve falling outside the predefined alpha band indicated the absence

of a distinct PAF for that region. Such data points were excluded from

further analysis. Our method offers definitive identification of PAF,

which is beneficial for participants with ambiguous single or double

peaks in their data. The PAF was calculated for each region in the

Desikan-Killiany atlas. Subsequently, the 68 regions from the atlas

were grouped into 10 broader categories corresponding to the

cingulate, frontal, occipital, parietal, and temporal regions in both

the left and right hemispheres (55) (Figure 2). Finally, the PAF values

for each of the ten regions were averaged.
2.10 Statistical analysis

Differences in age, K-ABC, and SRS scores between the ASD

and TD groups were evaluated using two-tailed Student’s t-tests.

Chi-square tests were used to assess the differences in sex

distribution and the ratio of valid PAFs to the total computed

PAFs across the 68 brain regions between the ASD and TD groups.

To assess whether the likelihood of obtaining a valid PAF differed

by brain region, we performed a chi-square test.

To examine variations in PAF across brain regions and between

diagnosis groups (TD vs. ASD), we performed a linear mixed model

with PAF as the dependent variable. The fixed effects included

region (cingulate, frontal, occipital, parietal, and temporal regions

in both hemispheres) and diagnosis (ASD vs. TD), along with their

interaction, with subject treated as a random effect.

To investigate the relationship between age and PAF, we

conducted separate linear regression analyses for each of the ten

predefined regions to predict regional PAF values, with age, ASD

diagnosis (TD vs. ASD), and diagnosis-age interaction as predictors.

The inclusion of this interaction term was informed by the results of

previous studies that indicated possible differential age-associated

effects on PAF depending on ASD status (25, 33, 36, 38). The

Benjamini-Hochberg procedure (60) was applied for the correction

of multiple comparisons controlling the false discovery rate at 0.05.

If a significant interaction between age and ASD diagnosis was

observed, separate regression analyses were conducted for each

group (ASD and TD) to further explore these effects.

To examine the relationship between autistic traits and PAF,

separate linear regression analyses were performed for each region,

to predict regional PAF from SRS t-scores, ASD diagnosis, and an

interaction between SRS t-score and diagnosis. The Benjamini-

Hochberg procedure (60) was also applied to correct for multiple

comparisons, controlling the false discovery rate at 0.05.

For completeness, we also calculated the relative alpha power for

the ten brain regions. Specifically, for each of the 68 regions in the
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Desikan-Killiany atlas, relative alpha power was calculated as the power

within the alpha band (7-13 Hz) divided by the total power across all

frequency bands. These values were then averaged for each of the ten

predefined regions. To examine whether relative alpha power was
Frontiers in Psychiatry 06
stronger in some regions than others and whether this differed by

group, we used a mixed-effects model with relative alpha power as the

dependent variable. The fixed effects included region (cingulate, frontal,

occipital, parietal, and temporal regions in both hemispheres),
FIGURE 1

Calculation of peak alpha frequency (PAF). (A) The spectral density of the signal sources was estimated to be localized in the left caudal anterior
cingulate cortex, showing a power spectral density in the range of 1-55 Hz. The horizontal and vertical axes represent the frequency and absolute
power values, respectively. (B) Logarithmic transformation of frequency and absolute power values within the same range (blue dotted line).
(C) Robust linear regression (Huber’s method, H=1.35) was applied to the log-transformed data indicated in (B) (dotted line). The linear regression
showed a 1/f trend (orange line). (D) Log-transformed data (blue dotted line in C) minus the 1/f trend (orange line in C). (E) Both power and
frequency are exponentiated in (D), with the alpha band isolated to the frequency range of 7-13 Hz. (F) Gaussian function fitting of the residual
(orange line) shown in (E). The frequency of the vertex of this curve is defined as the peak alpha frequency (PAF). These figures were created using
the Matplotlib library (72) in Python.
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diagnosis (TD vs. ASD), and their interaction. Subject was included as a

random effect.

Additionally, to explore the relationship between cognitive

abilities, as measured by the Mental Processing Scale (MPS) and

Achievement Scale (ACH), and PAF, we conducted separate linear

regression analyses for each region. These analyses predicted regional

PAF from MPS or ACH scores, ASD diagnosis, and the interaction

between MPS or ACH scores and diagnosis. The Benjamini-

Hochberg procedure (60) was also applied to correct for multiple

comparisons, controlling the false discovery rate at 0.05.

Prior to any regression analysis, we ascertained that our data

adhered to the requisite assumptions. We employed standard

procedures to check for linearity, normality, homogeneity of

variance, model specifications, and influential points. Notably, some

regression models did not satisfy the assumption of homogeneity,

necessitating the application of heteroscedasticity-robust standard

errors (61). All the statistical analyses were performed using Stata

(version 17.0, Stata Corp., College Station, TX, US).
3 Results

3.1 Participants

Overall, three children were excluded from the analyses: one

child diagnosed with ASD showed pronounced psychomotor

agitation and was unable to complete the K-ABC assessment;

another child with ASD had intellectual disability, reflected in a

K-ABC mental processing scale score < 70; and in the TD group,

one child exhibited significant body movement during the MEG

session, resulting in elevated noise levels in the results. Considering

these exclusions, the final sample consisted of 19 children with ASD

and 24 TD children. The age range of the children in the ASD group

was 60–89 months, whereas that of the children in the TD group

was 60–91 months. There were no significant differences in sex, age,

number of available epochs, or K-ABC achievement scale scores
Frontiers in Psychiatry 07
between the two groups. However, there were significant differences

in total SRS score and K-ABC mental processing scale score

between the two groups. These findings are summarized in

Table 1. The mean ADOS-2 Social Affect score for the ASD

group was 6.1 (SD = 3.4), the mean ADOS-2 Restricted and

Repetitive Behaviors score was 2.1 (SD = 1.4), the mean ADOS-2

total score was 8.2 (SD = 3.8), and the mean ADOS-2 Comparison

score was 4.5 (SD = 2.1).
TABLE 1 Characteristics of the participants.

ASD
mean ±

SD
(min-max)

TD
mean ±

SD
(min-max) c2 or t p

N 19 24

Sex (% Male) † 68.4 58.3 0.462 0.497

Age (months) ‡

72.5 ± 7.5
(60-89)

69.6 ± 9.0
(60-91) -1.127 0.266

Epoch number ‡

38.6 ± 8.1
(20-52)

42.3 ± 8.0
(24-52) -1.095 0.140

Total SRS
score ‡

67.6 ± 14.3
(41-96)

46.4 ± 6.4
(38-68) -6.493 < 0.001*

K-ABC scores

MPS ‡

103.1 ± 16.7
(77-137)

115.4 ± 12.4
(90-134) 2.619 0.012*

ACH ‡

98.0 ± 17.8
(68-134)

107.4 ± 13.7
(84-133) 1.986 0.054
fro
†Chi-square test.
‡Student’s t-test.
ASD, autism spectrum disorder; TD, typically developing children; K-ABC, Kaufman
Assessment Battery for Children; SRS, Social Responsiveness scale; MPS, Mental Processing
scale; ACH, achievement score.
The asterisks indicate significant results.
FIGURE 2

Brain regions for peak alpha frequency Analysis This figure depicts the major brain regions analyzed for peak alpha frequency, based on the Desikan-
Killiany atlas. 3D brain models were generated using Brainstorm software (73) and the ICBM152 MRI atlas (74, 75). Left panel: Lateral view highlighting
Frontal (blue), Parietal (pink), Temporal (cyan), and Occipital (orange) lobes. Right panel: Medial view showing the Cingulate cortex (green) alongside
other visible regions.
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3.2 Regional and group differences in PAF

From a total of 2,924 spectral densities (calculated as 68 × (19 +

24)), 2,826 (96.6%) were classified as valid PAFs. Specifically, 1,227

of 1,292 (95.0%) spectral densities were identified as valid PAFs in

the ASD group, whereas 1,599 of 1,632 (98.0%) were considered

valid PAFs in the TD group. A chi-squared test demonstrated a

significant difference between these proportions (c² = 19.2, p <

0.001), indicating disparities in PAF detection between the groups.

The significant differences in the proportion of valid PAFs

across brain regions, as indicated by the chi-square test (c²(9) =
31.4, p < 0.001), suggest that the likelihood of obtaining a valid PAF

varies by brain region. Notably, the frontal and temporal regions

had a lower rate of valid PAF estimations compared to the other

regions (cingulate, occipital, and parietal regions; Supplementary

Table 1). This finding aligns with the known distribution of alpha

oscillations, which are most prominent in the occipital, parietal, and

posterior temporal regions (62).

We used a linear mixed model to analyze the variations in PAF

across brain regions and between diagnosis groups (TD vs. ASD).

Significant effects were observed in the left occipital region (z =

-2.98, p = 0.0028), left temporal region (z = -2.93, p = 0.0034), right

occipital region (z = -3.64, p = 0.0003), and right temporal region (z

= -2.10, p = 0.036), indicating lower PAF in these regions compared

to the left cingulate region (used as a reference). There were no

significant main effects of diagnosis or an interaction between

region and diagnosis. These findings suggest that while alpha PAF

varied across different brain regions, it was similar across TD and

ASD groups in our dataset. Supplementary Table 2 provides a

detailed summary of the mixed-effects model results.
3.3 Association between PAF and age

We constructed models for each of the ten brain regions

(cingulate, frontal, occipital, parietal, and temporal areas in the

left and right hemispheres) to investigate the relationship between

age and the PAF in each region. These models predicted regional

PAF based on age, ASD diagnosis (TD vs. ASD), and an diagnosis-

age interaction. Utilizing the Benjamini-Hochberg procedure to

correct for multiple comparisons, we observed a significant

interaction effect between age and diagnosis in both the right (t

(39) = 2.76, p = 0.009) and left (t(39) = 2.93, p = 0.006) cingulate

regions. This indicates that the relationship between age and PAF in

these regions varies according to ASD status. No significant effects

of any predictors were observed in any of the other regions

examined. Table 2 provides a detailed summary of these model

findings, highlighting the unique impact of the diagnosis-age

interaction on PAF in the cingulate regions.

To analyze this interaction effect in the ASD and TD groups

further, we performed separate regression analyses to predict the

PAF in the right and left cingulate regions based on age. The results

indicated that there was no significant correlation between age and

PAF in either cingulate region in the TD group. In contrast, a

significant relationship between age and PAF was detected in both
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the left cingulate (t(17)=3.68, p=0.002; Figure 2) and right cingulate

(t(17)=3.88, p=0.004; Figure 3) regions in the ASD group (Table 3).
3.4 Association between PAF and
autistic traits

We constructed models for the ten analyzed brain regions to

examine the relationship between the PAF in each region and

autistic traits measured using the SRS. The models predicted

regional PAF based on SRS t-scores, ASD diagnosis (TD vs.

ASD), and an interaction between SRS t-scores and diagnosis.

Applying the Benjamini-Hochberg procedure for correction of

multiple comparisons, we identified a significant effect of SRS t-

scores on PAF in the right temporal region (t(39) = 3.17, p = 0.003),

indicating that more pronounced autistic traits correspond to

higher PAF in this area. No significant effects of any of the

predictors were observed in the other regions. Table 4 provides a

detailed summary of these findings, highlighting the specific impact

of autistic traits on PAF in the right temporal region of the brain.

To further investigate the nature of the significant effect of SRS t-

scores on PAF in the right temporal region, we conducted separate

linear regression analyses for each group. This approach allowed us to

interpret the relationship within each group independently. The results

revealed a significant effect of SRS t-scores on PAF in the right temporal

region only in the TD group (t(22) = 3.19, p = 0.004); the results for the

ASD group was non-significant (t(17) = -0.06, p = 0.950; Figure 4).

Despite these differences in associations, the interaction term in the

combined model was not significant, indicating that the difference in

associations between groups did not reach statistical significance.

As an exploratory analysis, we examined the relationship between

different types of autistic traits and PAF in TD children. We performed

separate linear regression analyses to predict PAF in the right temporal

region based on each SRS subscale (i.e., Social Awareness, Social

Cognition, Social Communication, Social Motivation, and Autistic

Mannerism). Considering the exploratory nature of this analysis, we

did not correct for multiple comparisons and set the statistical

significance at p < 0.05. The results revealed significant effects for

Social Awareness (t(22) = 3.40, p = 0.0026), Social Cognition (t(22) =

2.54, p = 0.019), Social Communication (t(22) = 4.12, p < 0.001), and

Autistic Mannerism (t(22) = 3.31, p = 0.003). Supplementary Table 3

provides a detailed summary of these findings, highlighting the

relationships between different aspects of autistic symptoms and PAF

in the right temporal region.
3.5 Regional and group differences in
relative alpha power

To examine whether alpha power was stronger in some regions

than others and whether this differed by group, we used a mixed-effects

model with alpha power as the dependent variable. The fixed effects

included region (cingulate, frontal, occipital, parietal, and temporal

regions in both hemispheres), diagnosis (TD vs. ASD), and their

interaction. Subject was included as a random effect. We found
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1419815
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Kameya et al. 10.3389/fpsyt.2024.1419815
TABLE 2 Relationship between age and peak alpha frequency.

vs. peak alpha frequency

Left parietal Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-2.736 1.308 -2.09 0.043 -5.383 -0.090 0.024 0.203

Age (months) 0.010 0.008 1.25 0.217 -0.006 0.027

Diagnosis-age interaction 0.037 0.017 2.09 0.043 0.001 0.073

Left occipital Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-2.802 1.618 -1.73 0.091 -6.077 0.473 0.035 0.234

Age (months) 0.013 0.008 1.53 0.134 -0.004 0.029

Diagnosis-age interaction 0.041 0.022 1.85 0.072 -0.004 0.086

Left frontal Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

1.106 2.061 0.54 0.595 -3.063 5.275 0.677 0.021

Age (months) 0.011 0.009 1.16 0.253 -0.008 0.043

Diagnosis-age interaction -0.163 0.291 -0.56 0.581 -0.075 0.043

Left temporal Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-1.811 1.883 -0.96 0.342 -5.621 1.997 0.698 0.060

Age (months) 0.002 0.010 0.26 0.794 -0.017 0.022

Diagnosis-age interaction 0.026 0.027 0.99 0.329 -0.027 0.080

Left cingulate Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-3.847 1.311 -2.93 0.006 -6.498 -1.196 0.007 0.301

Age (months) 0.005 0.009 0.56 0.578 -0.013 0.023

Diagnosis-age interaction 0.053 0.018 2.93 0.006* 0.016 0.089

Right parietal Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-3.508 1.440 -2.44 0.020 -6.422 -0.595 0.033 0.247

Age (months) 0.007 0.007 1.00 0.323 -0.007 0.020

Diagnosis-age interaction 0.048 0.020 2.43 0.020 0.080 0.089

Right occipital Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-2.129 1.636 -1.30 0.201 -5.438 1.181 0.102 0.137

Age (months) 0.012 0.008 1.60 0.117 -0.003 0.028

Diagnosis-age interaction 0.030 0.023 1.34 0.188 -0.015 0.076

Right frontal Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-2.466 1.783 -1.38 0.175 -6.072 1.141 0.228 0.156

Age (months) 0.009 0.010 0.83 0.411 -0.012 0.029

Diagnosis-age interaction 0.032 0.025 1.29 0.21 -0.018 0.081

(Continued)
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significant effects of left temporal region (z = -4.52, p < 0.001) and the

right cingulate region (z = -2.21, p = 0.0268), indicating that those two

regions show lower alpha power compared to left cingulate region

(used as a reference). There were no significant main effects of

diagnosis or an interaction between region and diagnosis. These

findings suggest that while alpha power distribution varied across

different brain regions, it was similar across TD and ASD groups in our

dataset. Supplementary Table 4 provides a detailed summary of the

mixed-effects model results.

It is noteworthy that the standard errors for the region factor

were identical due to the balanced nature of our data, where each

participant had measurements for all 10 brain regions.
3.6 Association between PAF
and intelligence

We constructed models for the ten analyzed brain regions to

examine the relationship between PAF in each region and

intelligence, as measured by the MPS and ACH scales in the K-

ABC. The models predicted regional PAF based on MPS (or ACH)

scores, ASD diagnosis (TD vs. ASD), and the interaction between
Frontiers in Psychiatry 10
MPS (or ACH) scores and diagnosis. After applying the Benjamini-

Hochberg procedure for correction of multiple comparisons, none

of the main or interaction effects were significant in any region.

These non-significant results suggest that we cannot conclude that

intelligence, as measured by the K-ABC, has a strong impact on

PAF in either the ASD or TD groups. A detailed summary of the

model results is provided in Supplementary Table 5.
4 Discussion

In this study, we investigated the relationship between PAF and

autistic symptoms in young children with ASD and their TD peers. The

children, aged 5 to 7 years, underwent MEG in a resting-state, focusing

on a fixation cross mark projected onto a screen with their eyes

remaining open throughout the recording session. The ASD group

was not on any medications and had no other neuropsychiatric

disorders. Our analyses revealed no statistically significant differences

in PAF between childrenwithASD and their TD peers across any of the

ten examinedbrain regions. This suggests that, in termsof PAF, children

withASDdonot exhibit significantneurophysiological differences in the

analyzed regions compared to TD children. This finding is particularly
TABLE 2 Continued

vs. peak alpha frequency

Right temporal Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-1.405 1.625 -0.86 0.393 -4.692 1.882 0.273 0.079

Age (months) 0.012 0.009 1.37 0.180 -0.006 0.030

Diagnosis-age interaction 0.019 0.023 0.81 0.422 -0.028 0.065

Right cingulate Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-3.884 1.406 -2.76 0.009 -6.727 -1.040 0.013 0.311

Age (months) 0.006 0.008 0.68 0.501 -0.011 0.023

Diagnosis-age interaction 0.053 0.019 2.76 0.009* 0.014 0.092
fro
Coeff, regression coefficient; SE, standard error; t: t-statistic; p: p-value; CI, confidence interval; ASD, autism spectrum disorder; TD, typically developing children.
Values in bold with an asterisk indicate significant results obtained after applying the Benjamini-Hochberg procedure to all regression tests.
FIGURE 3

Relationship between age and peak alpha frequency in the (A) left and (B) right cingulate regions TD, typically developing children; ASD, children
with autism spectrum disorder; PAF, peak alpha frequency.
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notable as it does not align with our expectation of replicating previous

studies that indicateddifferentPAFs inchildrenwithASDwithin this age

range (26, 33). Furthermore, although we hypothesized a significant

association between more severe autistic symptoms and higher PAF in

both groups, our analysis revealed that more pronounced autistic traits

were associated with higher PAF, specifically in the right temporal

region, and this relationship was significant only in TD children. This

finding differed from our expectations, highlighting the complexity of

the relationship between autistic traits and PAF. It is important to note
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that despite these differences in associations, the interaction term in the

combined model was not significant, indicating that the difference in

associations between autistic symptoms and PAF across groups did not

reach statistical significance.

Interestingly, our results also revealed a nuanced relationship

between age and PAF in the cingulate regions of the brain, which

varied according to ASD status. Contrary to our hypothesis of a

significant association between older age and higher PAF within the

TD population, we observed no significant association between age
TABLE 3 Regression analysis of the relationship between age and peak alpha frequency.

vs PAF Coeff. Robust SE t p 95% CI R2

Left cingulate ASD 0.58 0.16 3.68 0.002* 0.03 - 0.09 0.42

TD 0.01 0.01 0.56 0.578 -0.01 – 0.02 0.02

Right cingulate ASD 0.59 0.02 3.88 0.004* 0.02 – 0.10 0.42

TD 0.01 0.01 0.68 0.502 -0.02 – 0.02 0.02
fro
PAF, peak alpha frequency; Coeff, regression coefficient; SE, standard error; t: t-statistic; p: p-value; CI, confidence interval; ASD, autism spectrum disorder; TD, typically developing children.
Asterisks denote significant results obtained after applying the Benjamini-Hochberg procedure to all regression tests.
TABLE 4 Relationships between PAF and SRS scores in different brain regions.

Vs. Peak alpha frequency

Left parietal Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

0.65 0.84 0.78 0.440 -1.04 2.35 2.08 0.06

SRS t-score 0.02 0.01 2.28 0.028 0.00 0.04

Diagnosis-SRS t-score interaction -0.02 0.01 -1.22 0.230 -0.05 0.01

Left occipital Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-0.08 1.01 -0.08 0.937 -2.12 1.96 1.68 0.10

SRS t-score 0.02 0.01 1.80 0.080 0.00 0.03

Diagnosis-SRS t-score interaction 0.00 0.02 -0.02 0.986 -0.03 0.03

Left frontal Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-0.22 0.88 -0.25 0.805 -2.00 1.56 0.45 0.03

SRS t-score -0.01 0.01 -0.95 0.035 -0.04 0.01

Diagnosis-SRS t-score interaction 0.01 0.02 0.34 0.732 -0.03 0.04

Left temporal Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

1.02 1.16 0.88 0.385 -1.33 3.36 0.62 0.03

SRS t-score 0.02 0.01 1.28 0.207 -0.01 0.04

Diagnosis-SRS t-score interaction -0.02 0.02 -0.97 0.336 -0.58 0.02

Left cingulate Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-0.29 0.82 -0.36 0.721 -1.95 1.36 0.47 0.03

SRS t-score 0.01 0.01 0.69 0.495 -0.01 0.03

Diagnosis-SRS t-score interaction 0.00 0.01 0.15 0.882 -0.03 0.03

(Continued)
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and PAF in the TD group. This finding contrasts with the well-

established positive correlation between PAF and age in TD

children. This correlation has been consistently reported across

various developmental stages, from as early as 12 months,

irrespective of familial ASD risk (37), through childhood (5-10

years) (16, 25, 26, 36), and into adolescence (approximately 16

years) (35). Notably, there is a reversal in this trend in adulthood (at

approximately 30 years) (34). While recording conditions (i.e., eyes

open in a dark room focusing on a fixation cross) could influence

the results, the absence of a significant correlation in the present

study can likely be attributed to the narrow age range of the TD

group (5-7 years), which may not provide sufficient variability to

detect an age-PAF association. Additionally, the relatively small

sample size and the inherent variability in PAF even among

children of the same age likely contributed to this finding.

Notably, regions including the left and right occipital showed a

tendency towards a positive association between age and PAF (e.g.,

t = 1.53 for the main effect of age in the left occipital and t = 1.60 for

the main effect of age in the right occipital), suggesting a potential
Frontiers in Psychiatry 12
underlying trend that warrants further investigation. These region-

specific findings highlight the importance of considering anatomical

and functional distinctions within the brain when studying

neurophysiological markers such as PAF. The differential

associations observed across various brain regions may reflect

unique aspects of neural maturation and connectivity patterns

that are influenced differentially by age and ASD status. Further

investigation with a broader age range and larger sample size is

necessary to elucidate these complex relationships and their

implications for understanding the neurodevelopmental processes

underlying ASD.

In the ASD group, we observed a significant association between

age and PAF in both the left and right cingulate regions, suggesting an

unexpected distinct age-related trajectory of PAF in children with ASD.

This relationship is distinct from those reported in the existing

literature, which indicate varied associations between age and PAF

among individuals with ASD across different age groups. For instance,

some studies revealed an association between older age and higher PAF

in adolescents with ASD (16.6 ± 5.7 years old) (35) and a converse
TABLE 4 Continued

Vs. Peak alpha frequency

Right parietal Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

0.40 0.76 0.52 0.608 -1.15 1.94 2.07 0.04

SRS t-score 0.02 0.01 2.34 0.024 0.00 0.03

Diagnosis-SRS t-score interaction -0.01 0.01 -0.90 0.373 -0.04 0.01

Right occipital Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

-0.32 1.11 -0.29 0.774 -2.57 1.93 0.21 0.03

SRS t-score 0.00 0.01 0.36 0.721 -0.02 0.03

Diagnosis-SRS t-score interaction 0.00 0.02 0.26 0.793 -0.03 0.04

Right frontal Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

0.74 0.82 0.90 0.372 -0.913 2.39 0.43 0.03

SRS t-score 0.01 0.01 1.39 0.172 -0.01 0.04

Diagnosis-SRS t-score interaction -0.02 0.01 -1.27 0.213 -0.05 0.01

Right temporal Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

2.20 1.26 1.76 0.087 -0.33 4.74 3.36 0.13

SRS t-score 0.47 0.15 3.17 0.0029* 0.17 0.08

Diagnosis-SRS t-score interaction -0.48 0.02 -2.22 0.033 -0.91 0.00

Right cingulate Coeff. Robust SE t p 95% CI F R2

Diagnosis
(ASD:1, TD:0)

0.23 0.77 0.30 0.763 -1.32 1.78 2.37 0.05

SRS t-score 0.02 0.01 2.40 0.021 0.00 0.03

Diagnosis-SRS t-score interaction -0.01 0.01 -0.72 0.474 -0.03 0.02
fro
PAF, peak alpha frequency; Coeff, regression coefficient; SE, standard error; t: t-statistic; p: p-value; CI, confidence interval; ASD, autism spectrum disorder; TD, typically developing children;
SRS, Social Responsiveness Scale.
Asterisks denote significant results obtained after applying the Benjamini-Hochberg procedure to all regression tests.
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trend of older age correlating with lower PAF in adults with ASD (30.4

± 13.6 years old) (34). However, significant associations between age

and PAF in younger children, from as early as 12 months to childhood,

have not been reported previously (16, 25, 26, 33, 36, 39). It is

important to consider the medication status of the participants in

these studies because most individuals with ASD are prescribed

medications (16, 25, 26, 33–36, 39), adding complexity when

comparing our results with those of previous studies (63, 64). Our

study is the first to indicate a significant association between older age

and higher PAF specifically within the cingulate regions in children

aged 5–7 years. To the best of our knowledge, previous studies were not

specifically focused on PAF in the cingulate regions. However, research

on the power of alpha activity in this region has suggested associations

between alpha activity and various factors such as symptoms of pain

(65, 66), sleep deprivation (67), and the moderating effects of physical

exercise on negative emotions (68). Given that hypersensitivity to pain,

sleep disturbances, and emotional dysregulation are prominent

characteristics of ASD (69), the discovery of a region-specific

association between age and PAF in the cingulate region in children

with ASD is particularly compelling. These findings may suggest the

potential importance of the cingulate regions as a neurophysiological

mechanism underlying some of the core features of ASD. However,

further research is needed to explore these associations in larger and

more diverse samples. Additional studies are warranted to investigate

how these relationships might influence or reflect the developmental

trajectory of individuals with ASD.

We observed a significant association between higher PAF in the

right temporal region and more severe autistic symptoms, indicated by

higher SRS t-scores, exclusively in TD children. This significant
Frontiers in Psychiatry 13
association was driven by four of the five SRS subscales: Social

Awareness, Social Cognition, Social Communication, and Autistic

Mannerism, but not Social Motivation. This finding suggests

intriguing possibilities regarding the link between autistic traits and

the maturation of the right temporal region in relation to alpha

oscillatory development (27, 28, 31, 32). However, it is essential to

recognize that the SRS may not capture identical underlying

neurophysiological dynamics in TD individuals and in individuals

with ASD. For TD children, the SRS could reflect variations in

cognitive processing associated with autistic traits, whereas for

children with ASD, it may denote specific aspects of ASD pathology.

Consequently, the lack of a significant association between PAF and

SRS scores in children with ASD may indicate the presence of distinct

neurophysiological processes possibly influenced by ASD-specific

characteristics such as excitatory/inhibitory imbalances (70). These

findings highlight the need for further research to define the

neurophysiological factors correlated with SRS scores in both TD

and ASD populations and to clarify the relationship between neural

markers, such as PAF, and autism-related pathology and broader social

information processing constructs.

Overall, while we identified some significant relationships, most

of our findings suggest no significant associations between PAF and

either age or SRS scores across most brain regions. These null

findings highlight the complexity of neurophysiological

mechanisms underlying ASD and the need for further research to

define the neurophysiological factors correlated with SRS scores in

both TD and ASD populations. Future studies should also consider

the influence of experimental conditions and the importance of

larger, more diverse samples to provide a more comprehensive

understanding of these relationships.

This study has several limitations that should be considered

when interpreting the results. First, the modest sample size may

have limited our ability to detect subtle group differences in PAF.

Future studies with larger, more diverse samples are needed to

enhance the generalizability of our findings (71). Second, although

we excluded children with ASD who were taking medication or had

concurrent neuropsychiatric disorders, we did not obtain

comprehensive data on other potential comorbidities such as

anxiety or ADHD, which could potentially influence EEG

measures. Third, our focus on a narrow age range (5-7 years)

limits the generalizability of our findings to other developmental

stages. Longitudinal studies are needed to understand the trajectory

of PAF and its associations with age and autistic traits across the

lifespan. Fourth, we relied on a single measure, the SRS score, for

the assessment of autistic traits. A multidimensional approach

should be employed in future studies to capture the diverse

symptomatology of ASD. Fifth, we used a small fixation cross

during MEG recordings to help children remain still. Optimally,

recordings would have been conducted with eyes closed or in a

completely dark room devoid of visual stimulation, similar to the

conditions used in the study by Edgar et al. (40). Nevertheless, our

approach was necessary to maintain the children’s heads stationary,

albeit introducing visual input that could have influenced the

results. Sixth, family history of ASD was not screened for in the

control group. This could potentially influence the results, as

genetic factors associated with ASD might be present in the
FIGURE 4

Scatter plots and regression lines for PAF in the right temporal
region relative to the SRS T-scores of the TD children and the
children with ASD. Red markers and the red regression line
represent TD children, highlighting the significant positive
correlation between PAF and SRS t-scores in this group. Blue
markers and the blue regression line represent the children with
ASD, demonstrating the absence of a significant relationship
between these variables in the ASD group. Each point represents an
individual participant’s data, with the linear fit lines summarizing the
trend within each group. This visual comparison underscores the
differential impact of autistic traits on neural activity patterns in TD
children compared to those with ASD. TD, typically developing
children; ASD, children with autism spectrum disorder; PAF, peak
alpha frequency.
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control group. Seventh, several participants with ASD scored below

the clinical cutoff on the SRS, raising concerns about the sensitivity

and specificity of the SRS in capturing autistic symptoms in this

context. This highlights the inherent challenges in accurately

assessing autistic symptoms. While the SRS can be completed by

a parent, teacher, or other adult informant, thereby reflecting

behaviors observed consistently over weeks or months in natural

social contexts, it may not always align perfectly with clinical

diagnoses. The SRS assesses social abilities in a variety of real-

world communication settings, contrasting with the ADOS, which

evaluates behavior in a one-to-one clinical setting. The DISCO, on

the other hand, gathers historical information from informants who

have known the child since birth. These differences suggest that

each assessment tool may capture slightly different aspects of a

child’s behavior, contributing to variability in their sensitivity and

specificity. Future studies should consider these differences and

potentially use multiple assessment tools to provide a more

comprehensive evaluation of autistic traits. Finally, although our

findings highlight significant age-related differences in PAF in the

cingulate regions of children with ASD, the functional implications

of these results remain to be fully elucidated. Future research on the

link between these neurophysiological markers and specific

cognitive, behavioral, and clinical outcomes of ASD are warranted.

In conclusion, this study provides novel insights into the

relationship between PAF, age, and autistic traits in young

children with ASD and their TD peers. Contrary to our

hypotheses, we found no significant differences in PAF across

different brain regions between the ASD and TD groups.

However, we observed a unique association between age and PAF

in the cingulate regions of children with ASD, suggesting a distinct

developmental trajectory of alpha oscillations in this population.

Additionally, we identified a significant relationship between

autistic traits and PAF in the right temporal region, specifically in

TD children, indicating a potential role of alpha oscillations in

social information processing. These findings highlight the

complexity of neurophysiological mechanisms underlying ASD

and underscore the importance of considering regional specificity,

developmental factors, and the interplay between brain maturation

and autistic traits. The absence of significant differences in most

regions and the limited age range of our sample suggest that further

research with larger, more diverse samples and broader age ranges is

needed. Such studies could provide a more comprehensive

understanding of the neurophysiological patterns associated with

ASD and their potential as biomarkers.
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74. Collins DL, Zijdenbos AP, Baaré WFC, Evans AC. Animal+insect: Improved
cortical structure segmentation. In: Kuba A, Šámal M, Todd-Pokropek A, editors.
Information Processing in Medical Imaging. Berlin, Heidelberg: Springer Berlin
Heidelberg. (1999) p. 210–223

75. Fonov VS, Evans AC, McKinstry RC, Almli CR, Collins DL. Unbiased nonlinear
average age-appropriate brain templates from birth to adulthood. NeuroImage. (2009)
47:S102. doi: 10.1016/S1053-8119(09)70884-5
frontiersin.org

https://doi.org/10.1177/088307388700200102
https://doi.org/10.1038/s41593-020-00709-0
https://doi.org/10.1016/s0896-6273(00)81138-1
https://doi.org/10.1016/s0896-6273(00)81138-1
https://doi.org/10.1088/0031-9155/44/2/010
https://doi.org/10.1109/79.962275
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.jphysparis.2004.01.019
https://doi.org/10.1016/j.jphysparis.2004.01.019
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.2307/1912934
https://doi.org/10.1093/med/9780190228484.001.0001
https://doi.org/10.1016/j.clinph.2021.02.392
https://doi.org/10.1097/ALN.0000000000002046
https://doi.org/10.1097/ALN.0000000000002046
https://doi.org/10.1371/journal.pone.0078278
https://doi.org/10.1002/ejp.1136
https://doi.org/10.1038/s41598-020-79816-8
https://doi.org/10.1016/j.bbr.2014.04.017
https://doi.org/10.1016/s0140-6736(18)31129-2
https://doi.org/10.1016/j.neuron.2015.07.033
https://doi.org/10.1038/nrn3475
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.1155/2011/879716
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.3389/fpsyt.2024.1419815
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

	Relationships between peak alpha frequency, age, and autistic traits in young children with and without autism spectrum disorder
	1 Introduction
	2 Methods
	2.1 Study design and participants
	2.2 MEG
	2.3 Assessment of intelligence and the severity of autism symptoms
	2.4 Magnetic resonance imaging
	2.5 Co-registration of MEG on MRI images
	2.6 Preprocessing of MEG data
	2.7 Atlas-guided source reconstruction and segmenting
	2.8 Computing spectral power
	2.9 Measurement of peak alpha frequency
	2.10 Statistical analysis

	3 Results
	3.1 Participants
	3.2 Regional and group differences in PAF
	3.3 Association between PAF and age
	3.4 Association between PAF and autistic traits
	3.5 Regional and group differences in relative alpha power
	3.6 Association between PAF and intelligence

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


