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Objectives: SERINC2 has been associated with alcoholism, bipolar disorder and

autism, but the comparability and specificity issues of the findings remain

unaddressed. The present study aimed to comprehensively analyze various

neuropsychiatric disorders pinpoint the most reliable conditions predisposed

by SERINC2.

Methods: A total of 2,187 imputed SNPs across SERINC2 were examined in

1,167,439 subjects from 72 independent cohorts with 18 different

neuropsychiatric disorders. SNP-disease associations were tested and then

meta-analyzed, followed by FDR correction, to identify significant disease-risk

SNPs. Finally, functional studies on the differential SERINC2 mRNA expression in

brains and the potential regulatory effects of disease-risk alleles on SERINC2

mRNA expression, gray matter volumes (GMVs) of subcortical structures, cortical

surface area (SA) and average thickness (TH) were conducted.

Results: In European descent, alcoholism was most significantly associated with

SERINC2 variants (245 SNPs with 5.5×10-8
≤p ≤ 0.049 and 4.9×10-5

≤q ≤ 0.034)

that were largely shared across cocaine dependence, marijuana dependence,

nicotine dependence, polysubstance dependence, schizophrenia, OCD, and

autism (8.2×10-8
≤p ≤ 0.050 and 1.9×10-5

≤q ≤ 0.049); in Chinese population,

bipolar disorder was also significantly associated with SERINC2 variants (10 SNPs:

1.3×10-4
≤p ≤ 4.7×10-4 and 0.025≤q ≤ 0.031). Furthermore, the disease-risk

alleles had highly similar regulatory effects on mRNA expression (8.1×10-7
≤p ≤

0.046), subcortical GMVs (7.0×10-4
≤p ≤ 0.048) and cortical TH and SA

(1.3×10-3
≤p ≤ 0.050) in brains across alcoholism, schizophrenia, OCD and

autism. The bipolar disorder-risk alleles had these regulatory effects but with
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different effect patterns. Finally, SERINC2 mRNA was differentially expressed in

several brain regions between alcoholism or schizophrenia and controls.

Conclusion: SERINC2 is primarily linked to substance use disorders,

schizophrenia, OCD, autism and bipolar disorder, not only statistically but

also biologically.
KEYWORDS

SERINC2, phenome, alcoholism, schizophrenia, OCD, autism, bipolar disorder,
mRNA expression
1 Introduction

Several genome-wide association studies (GWAS) have identified

serine incorporator 2 gene (SERINC2) as a genome-wide significant

risk gene for alcohol dependence in European descent (1–3). Further,

the common SERINC2 variants and rare SERINC2 variant

constellations have both been reported to be “specific” to risk for

alcohol dependence in European descent among 12 diverse

neuropsychiatric disorders (1, 4). Following these studies, SERINC2

variants have also been associated to bipolar disorder (BP) in a

Chinese population (5) and autism spectrum disorder (ASD) in a

Thai population (6). In a family-based sample with multiple BP-

affected Chinese pedigrees, whole-exome sequencing identified

several rare SERINC2 variants significantly associated with BP,

which was confirmed by a larger population-based Chinese cohort

(5). In a Thai sample with ASD, microarray experiment identified a

rare de novo duplication of a pathogenic copy number variation

(CNV) in SERINC2 predisposing risk for ASD (6).

SERINC2 encodes a transmembrane protein that facilitates

incorporation of serine into phosphatidylserine and sphingolipids

(7). The concentration of sphingolipids is highest in the brain; they

play important roles in neural plasticity, signaling and axonal

guidance (8). MRI image results show that SERINC2 variants

affect the brain structures such as white matter volume of

cerebellum (5). These physiological functions support a potential

role of SERINC2 in multiple neuropsychiatric, neurodegenerative

and neurodevelopmental diseases such as alcoholism, bipolar

disorder and autism.

However, whether SERINC2 is most significantly associated

with alcoholism, whether SERINC2 is also associated with

alcoholism-comorbid disorders, whether SERINC2 is associated

with more other neuropsychiatric disorders than alcoholism, BP

and ASD, and how to make the findings from different studies with

diverse study design, genetic marker sets, and analytic

methodologies comparable remains to be answered. To answer

these questions, here, we proposed a single study to

comprehensively analyze a huge dataset harboring a total of
02
1,167,439 subjects from 72 independent cohorts with 18 different

neuropsychiatric disorders, by standardizing study design, genetic

marker sets, and analytic methodologies across phenome.
2 Materials and methods

2.1 Subjects

We conducted a comprehensive analysis involving 1,167,439

participants from 72 independent cohorts, each representing one of

18 distinct neuropsychiatric disorders. These disorders spanned a

broad spectrum, including schizophrenia (12 cohorts), bipolar

disorder (BP; 10 cohorts), major depression (7 cohorts), autism

(1 cohort), alcoholism (4 cohorts), nicotine dependence (7 cohorts),

cocaine dependence (2 cohorts), marijuana dependence (2 cohorts),

opioid dependence (3 cohorts), ADHD (7 cohorts), Alzheimer’s

disease (2 cohorts), Parkinson’s disease (4 cohorts), multiple

sclerosis (4 cohorts), amyotrophic lateral sclerosis (1 cohort), and

stroke (3 cohorts). In particular, in European populations, there

were nine separate cohorts dedicated to the study of substance

dependence, including two cohorts for alcoholism, one cohort for

cocaine dependence, one cohort for marijuana dependence, four

cohorts for nicotine dependence, and one cohort for multi-

substance dependence; and there were eight separate cohorts for

schizophrenia, one for OCD, and one for autism. In Chinese

populations, there were two separate cohorts for bipolar disorder.

All participants provided written informed consent or assent, and

all study procedures were rigorously reviewed and approved by the

Human Investigation Committee of the respective institutions.

Supplementary Table S1 provides comprehensive information for

each cohort, including sample types, microarray platforms, cohort

numbers, dataset names, diagnoses, ethnicities, study designs, sample

sizes, grant support numbers, principal investigators, references, and

dbGaP accession numbers. Detailed demographic data for these

cohorts have been previously published and can be accessed via the

PMID# listed in Supplementary Table S1.
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2.2 Genotyping and imputation

All study participants underwent genotyping using microarray

technologies; however, different cohorts were genotyped using

distinct array panels. To ensure consistency in the genetic marker

sets across all cohorts, we performed imputation for untyped SNPs

across the entire SERINC2 (5’, ORF, and 3’) separately for each

ethnicity, utilizing reference panels from the 1000 Genomes Project

and HapMap3 Project. The imputation was conducted using the

IMPUTE2 program (9), following a well-established protocol from

previous literature (10). This rigorous approach ensured the accuracy

and quality of the imputed genotype data. For internal cross-

validation, each cohort was divided into case and control groups,

and imputation was performed separately for cases, controls, and the

total group. Only imputed SNPs with high imputation accuracy

(INFO > 0.8) across all three groups were included in the following

SNP-disease association analysis. After the association analysis, the

phase of each imputed risk SNP was re-checked across the groups to

further confirm the accuracy of imputation.
2.3 Summary of analytic strategy

Before conducting the association analysis, we thoroughly cleaned the

phenotype and genotype data, as previously described (10, 11). The SNP-

disease associations within each cohort were analyzed using the PLINK

software (12), incorporating appropriate analytical approaches. To

account for population stratification and admixture (11), the first 10

principal components (PCs) of ancestry were included as covariates. The

p-values from these associations were then combined through meta-

analysis to generate combined p-values for each of the 18 disorders across

three distinct ethnic groups: Chinese, Europeans, and African Americans.

To further ensure the robustness of our findings, we calculated q-values,

adjusting the combined p-values using an optimized false discovery rate

(FDR) approach (13) to identify significant disease-risk alleles.

We also examined SERINC2 mRNA expression in postmortem

human brains using the GTEx dataset (14) and performed a cis-eQTL

analysis to explore the regulatory effects of disease-risk variants on

SERINC2 expression. To support the potential functional significance of

the SERINC2 risk SNPs, we conducted differential expression analysis of

SERINC2 mRNA across 10 independent cohorts of postmortem brain

tissues. These cohorts included one for alcoholism (15), one for cocaine

dependence (16), one for nicotine dependence (17), two for bipolar

disorder (18, 19), and five for schizophrenia (19–22), along with

respective controls. Detailed information on these cohorts is available

in the published literature (15–22).

Finally, we assessed the regulatory effects of disease-risk alleles

on intracranial volume (ICV), subcortical grey matter volumes

(GMVs), cortical surface area (SA), and cortical thickness (TH) to

explore their potential biological functions. Comprehensive details

on the data cleaning procedures, SNP-disease association analysis,

differential expression of SERINC2 mRNA, cis-eQTL analysis, and

the analysis of regulatory effects on ICV, GMVs, cortical SA, and

average TH can be found in the Supplementary Materials and

Methods of the study by Guo et al. (2024) (23).
Frontiers in Psychiatry 03
3 Results

3.1 SNP-disease association

3.1.1 SNP-disease association in each cohort
A total of 2,187 imputed SNPs across 5’, open reading frame

and 3’ of SERINC2 were examined in all 72 cohorts. Variants

numbered from 1 to 313 were found to be nominally associated

with a disease in each of the 72 cohorts (8.0×10-11≤p<0.05), except

for cohorts #53, #57, and #58 (ADHD) and #71 (Stroke), where no

significant associations were observed (Supplementary Table S1).

3.1.2 SNP-disease association for each disease
After meta-analysis of 2,187 SNP-disease associations for each

of all 18 neuropsychiatric disorders within the same ethnicity,

variants ranging from 2 to 251 remained nominally associated

with their respective diseases (meta: 5.9×10-9≤p ≤ 0.028; some

data are provided in Table 1), except for Stroke in Europeans

(p>0.05; data not shown).

Followed by FDR correction, alcoholism was most significantly

associated with SERINC2 variants in EAs (245 SNPs with 5.5×10-8≤p

≤ 0.049 and 4.9×10-5≤q ≤ 0.034; Table 1A). Interestingly, multiple

other substance dependence in EAs was significantly associated with

SERINC2 variants too, including cocaine dependence (107 SNPs with

2.6×10-5≤p ≤ 0.020 and 6.6×10-4≤q ≤ 0.046; Table 1A), marijuana

dependence (213 SNPs with 1.6×10-4≤p ≤ 0.049 and 1.7×10-3≤q ≤

8.5×10-3; Table 1A), nicotine dependence (85 SNPs with 6.9×10-4≤p

≤ 0.016 and 0.026≤q ≤ 0.049; Table 1A), and multi-substance

dependence (rs28742121 and rs28759069: p=1.7×10-3 and q=0.033;

data not shown).

The second most significant disease associated with SERINC2

variants was schizophrenia in EAs (187 SNPs with 8.2×10-8≤p ≤

0.018 and 1.9×10-5≤q ≤ 0.049; Table 1A), followed by OCD in EAs

(150 SNPs with 1.3×10-6≤p ≤ 0.050 and 6.5×10-5≤q ≤ 0.028; Table 1A).

Additionally, a much smaller number of SERINC2 variants was

significantly associated with autism in EAs (rs10798856 and

rs10158864: 2.0×10-7≤p ≤ 7.2×10-5 and 2.9×10-5≤q ≤ 5.3×10-3;

Table 1A) and bipolar disorder in Chinese population (10 SNPs with

1.3×10-4≤p ≤ 4.7×10-4 and 0.025≤q ≤ 0.031; Table 1B). Notably, these

risk variants were largely shared across various substance dependence,

schizophrenia, OCD and autism (Table 1A), but not bipolar

disorder (Table 1B).

Finally, the phase of each imputed risk SNP listed in Table 1 is

the same across cases, controls, and total group, confirming the

accuracy of imputation.
3.2 Differential expression of SERINC2
mRNA in brains

In GTEx cohort, SERINC2 mRNA is significantly expressed in

two brain regions, including substantia nigra (median TPM = 1.8)

and cerebellum (1.4) (Figure 1).

Three independent cohorts showed SERINC2 mRNA was

differentially expressed in several other brains between alcoholism
frontiersin.org
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TABLE 1A Significant associations between SERINC2 variants and neuropsychiatric disorders in European descent.

Nicotine Dep. Schizophrenia OCD

p-value q-value p-value q-value p-value q-value

(meta) (FDR) (meta) (FDR) (meta) (FDR)

>0.05 >0.05 5.8×10-5 3.4×10-4 0.023 0.024

>0.05 >0.05 3.6×10-5 2.2×10-4 0.012 0.024

>0.05 >0.05 3.0×10-5 2.0×10-4 0.014 0.024

>0.05 >0.05 1.7×10-5 1.4×10-4 0.015 0.024

>0.05 >0.05 2.2×10-5 1.6×10-4 0.016 0.024

>0.05 >0.05 1.4×10-5 1.2×10-4 0.014 0.024

>0.05 >0.05 2.5×10-5 1.8×10-4 0.010 0.024

>0.05 >0.05 2.6×10-5 1.8×10-4 0.017 0.024

5.0×10-3 0.029 2.6×10-5 1.8×10-4 0.042 0.026

9.0×10-4 0.026 >0.05 >0.05 0.031 0.024

>0.05 >0.05 8.2×10-8 1.9×10-5 >0.05 >0.05

>0.05 >0.05 1.0×10-7 1.9×10-5 >0.05 >0.05

>0.05 >0.05 1.3×10-7 1.9×10-5 >0.05 >0.05

>0.05 >0.05 1.4×10-7 1.9×10-5 >0.05 >0.05

>0.05 >0.05 5.1×10-7 3.7×10-5 >0.05 >0.05

>0.05 >0.05 5.4×10-7 3.7×10-5 >0.05 >0.05

6.5×10-3 0.029 7.2×10-7 3.7×10-5 0.040 0.026

7.9×10-3 0.032 7.3×10-7 3.7×10-5 >0.05 >0.05

>0.05 >0.05 7.8×10-7 3.7×10-5 0.029 0.024

1.8×10-3 0.026 8.0×10-7 3.7×10-5 0.027 0.024

(Continued)
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Position Risk Protective Z-score

Alcoholism Cocaine Dep. Marijuana Dep.

p-value q-value p-value q-value p-value q-value

(B37) Allele Allele (meta) (meta) (FDR) (meta) (FDR) (meta) (FDR)

Top 10 associations for Alcoholism in Europeans

rs12132936 31895931 g a 5.435 5.5×10-8 4.9×10-6 3.5×10-4 1.6×10-3 2.3×10-4 1.7×10-3

rs4949403 31898279 a c 5.422 5.9×10-8 4.9×10-6 1.1×10-4 6.6×10-4 1.6×10-4 1.7×10-3

rs4949401 31898162 c t 5.054 4.3×10-7 1.7×10-5 4.0×10-4 1.7×10-3 7.2×10-4 1.7×10-3

rs10914383 31894402 g a 5.038 4.7×10-7 1.7×10-5 2.1×10-4 1.2×10-3 1.2×10-3 1.7×10-3

rs4949209 31897963 c t 5.028 5.0×10-7 1.7×10-5 3.5×10-4 1.6×10-3 7.3×10-4 1.7×10-3

rs1320584 31897063 g t 4.984 6.2×10-7 1.7×10-5 3.0×10-4 1.5×10-3 9.7×10-4 1.7×10-3

rs12037108 31895394 c t 4.944 7.6×10-7 1.8×10-5 3.5×10-4 1.6×10-3 1.8×10-3 2.0×10-3

rs10798850 31892148 a t 4.826 1.4×10-6 2.6×10-5 8.5×10-5 6.6×10-4 1.0×10-3 1.7×10-3

rs4478858 31883925 t c 4.823 1.4×10-6 2.6×10-5 3.1×10-4 1.5×10-3 6.4×10-4 1.7×10-3

rs6690908 31910089 t c 4.556 5.2×10-6 8.8×10-5 >0.05 >0.05 0.012 3.5×10-3

Top 10 associations for Schizophrenia in Europeans

rs114737875 31859959 a t 5.362 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05

rs12117387 31862346 a g 5.326 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05

rs7515829 31856064 g a 5.282 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05

rs6425745 31864323 g a 5.266 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05

rs10914374 31872581 g t 5.023 0.022 0.020 9.3×10-5 6.6×10-4 5.6×10-3 3.1×10-3

rs4949402 31898234 t c 5.013 6.7×10-3 0.011 2.6×10-4 1.4×10-3 5.5×10-4 1.7×10-3

rs10798848 31874162 a g 4.956 0.017 0.018 1.2×10-4 6.9×10-4 0.010 3.5×10-3

rs4949393 31851875 g a 4.954 1.4×10-4 5.0×10-4 3.0×10-3 8.9×10-3 3.7×10-3 3.1×10-3

rs12145450 31862949 c t 4.941 0.024 0.021 7.4×10-5 6.6×10-4 5.5×10-3 3.1×10-3

rs12563669 31858067 a g 4.937 3.0×10-4 8.6×10-4 3.5×10-3 0.010 4.5×10-3 3.1×10-3
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TABLE 1A Continued

ocaine Dep. Marijuana Dep. Nicotine Dep. Schizophrenia OCD

alue q-value p-value q-value p-value q-value p-value q-value p-value q-value

eta) (FDR) (meta) (FDR) (meta) (FDR) (meta) (FDR) (meta) (FDR)

.05 >0.05 >0.05 >0.05 >0.05 >0.05 2.6×10-5 1.8×10-4 1.3×10-6 6.5×10-5

10-3 0.012 1.6×10-3 1.9×10-3 >0.05 >0.05 1.5×10-5 1.2×10-4 2.3×10-6 6.5×10-5

10-3 0.012 1.6×10-3 1.9×10-3 >0.05 >0.05 1.7×10-5 1.4×10-4 2.3×10-6 6.5×10-5

.05 >0.05 >0.05 >0.05 >0.05 >0.05 0.017 0.049 3.9×10-6 8.2×10-5

.05 >0.05 0.049 8.4×10-3 >0.05 >0.05 3.2×10-5 2.1×10-4 5.8×10-6 9.9×10-5

10-3 0.011 1.6×10-3 1.9×10-3 >0.05 >0.05 2.2×10-5 1.6×10-4 7.6×10-6 1.1×10-4

.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 2.9×10-4 3.6×10-3

.05 >0.05 9.5×10-3 3.5×10-3 >0.05 >0.05 >0.05 >0.05 9.3×10-4 9.8×10-3

.05 >0.05 9.5×10-3 3.5×10-3 >0.05 >0.05 >0.05 >0.05 1.1×10-3 0.011

10-4 2.2×10-3 9.0×10-4 1.7×10-3 >0.05 >0.05 1.1×10-4 6.3×10-4 1.2×10-3 0.011

.05 >0.05 >0.05 >0.05 3.5×10-3 0.026 >0.05 >0.05 7.2×10-5 5.3×10-3

.05 >0.05 0.012 3.5×10-3 >0.05 >0.05 >0.05 >0.05 2.0×10-7 2.9×10-5

discovery rate (FDR). *, odd ratio (OR) values.
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Alcoholism C

p-value q-value p-v

(B37) Allele Allele (meta) (meta) (FDR) (m

Top 10 associations for OCD in Europeans

rs7545902 31884936 c g 1.095* >0.05 >0.05 >

rs4949397 31879462 c g 1.101* 5.4×10-4 1.5×10-3 4.4

rs4949396 31879417 t c 1.101* 3.3×10-4 9.5×10-4 4.4

rs1977657 32031651 a t 1.205* >0.05 >0.05 >

rs4949395 31879284 c t 1.131* 0.018 0.019 >

rs10798849 31876615 t c 1.094* 1.7×10-5 1.8×10-4 3.9

rs56332792 31974308 t g 1.160* 7.2×10-3 0.012 >

rs10753251 31975820 g a 1.097* 0.019 0.019 >

rs10798861 31975832 g a 1.095* 0.020 0.019 >

rs2839939 31881637 c t 1.065* 0.011 0.015 5.3

Top 2 associations for Autism in Europeans

rs10798856 31951092 g a 1.193* >0.05 >0.05 >

rs10158864 31977299 g a 1.238* >0.05 >0.05 >

Bold values, only top 10 associations are listed for each disease; Meta, meta-analysis; q value, adjusted p values by false
0
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×

0
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×

0

0

0

×
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or schizophrenia and controls. The expression in hippocampus was

increased in alcoholism (p=0.010), but the expression in neurons

was decreased in schizophrenia in two cohorts (p=0.041 and 0.039,

respectively), when compared to controls (Table 2). No differential

expression was detected in other 7 cohorts (data not shown).
3.3 SNP-mRNA associations:
cis-eQTL analysis

The disease-risk alleles had highly similar association patterns

with mRNA expression in brain regions and effect directions across

alcoholism, schizophrenia, OCD and autism (Table 3A). In

substantia nigra, the disease-risk alleles decreased SERINC2

mRNA expression (5.3×10-3≤p ≤ 0.046), but in other brain

regions, including anterior cingulate cortex, cerebellar

hemisphere, cortex and hippocampus, they increased mRNA

expression (8.1×10-7≤p ≤ 0.042; Table 3A).
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The bipolar disorder-risk alleles decreased SERINC2 mRNA

expression in caudate, cerebellar hemisphere and hypothalamus

(0.007≤p ≤ 0.044) but increased it in frontal cortex (0.024≤p ≤

0.027; Table 3B). Additionally, one autism-risk allele decreased

SERINC2 mRNA expression in cerebellar hemisphere and cortex

(1.6×10-4≤p ≤ 0.020; Table 3B).
3.4 The disease-risk alleles decreased the
ICV and the GMV of caudate and pallidum
but increased the GMVs of accumbens
and putamen

The disease-risk alleles had highly similar association patterns

with GMVs of caudate and putamen across alcoholism,

schizophrenia, OCD and autism (Table 4A). These alleles

decreased caudate GMVs across two independent cohorts

(7.0×10-4≤p ≤ 0.048) and increased putamen GMV in one cohort
TABLE 1B Significant associations between SERINC2 variants and bipolar disorder in Asian descent.

SNP

Position Risk Protective Z-score p-value q-value

(B37) Allele Allele (meta) (meta) (FDR)

rs12734726 31975609 c t 3.717 2.0×10-4 0.025

rs56214663 32006715 g a 3.517 4.4×10-4 0.031

rs60788028 32009880 g a 3.670 2.4×10-4 0.025

rs58654289 32004752 t g 3.650 2.6×10-4 0.025

rs72881860 31989332 c t 3.496 4.7×10-4 0.031

rs4949429 32003454 c g 3.693 2.2×10-4 0.025

rs4949430 32003488 c t 3.693 2.2×10-4 0.025

rs59170272 32005323 t c 3.830 1.3×10-4 0.025

rs72881892 32005636 t a 3.693 2.2×10-4 0.025

rs10798871 32009436 a g 3.578 3.5×10-4 0.029
Meta, meta-analysis; q value, adjusted p values by false discovery rate (FDR).
FIGURE 1

SERINC2 mRNA expression in brains [TPM, Transcripts Per Million; Median, median TPM value; TPM>1 indicates the presence of mRNA expression].
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(9.1×10-3≤p ≤ 0.041; Table 4A). Furthermore, the alcoholism-risk

allele T of rs6690908 decreased ICV in one cohort (p=0.017) but the

schizophrenia-risk alleles increased accumbens GMVs across two

independent cohorts (0.011≤p ≤ 0.017; Table 4A). Additionally,

the bipolar-risk alleles decreased caudate and pallidum GMVs

(0.026≤p ≤ 0.048; Table 4B).
3.5 The disease-risk alleles regulated the
cortical SA and TH of multiple
brain regions

The disease-risk alleles had highly similar association patterns

with cortical SA/TH across alcoholism, schizophrenia, OCD and

autism (Table 5). These alleles decreased SA/TH of fusiform, inferior

temporal, precuneus, superior parietal, superior temporal,

supramarginal, transverse temporal, caudal anterior cingulate,

entorhinal, parahippocampal, parstriangularis and temporal pole

cortices (1.3×10-3≤p ≤ 0.048; Table 5A) and increased SA/TH of

bankssts, caudal middle frontal, insula, lateralorbitofrontal, middle

temporal, paracentral, parsopercularis, parsorbitalis, parstriangularis,

posterior cingulate, precentral, caudal middle frontal, cuneus, lateral
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occipital, superior temporal and superior parietal cortices (5.4×10-

3≤p ≤ 0.050; Table 5B).

The bipolar-risk alleles decreased TH/SA of precentral and inferior

temporal cortices, and increased TH/SA of fusiform, superior parietal,

caudal anterior cingulate, rostral anterior cingulate, precuneus, temporal

pole, parstriangularis and posterior cingulate cortices (7.8×10-3≤p ≤

0.050; Table 5C). Additionally, one autism-risk allele increased TH/SA

of fusiform, precuneus, temporal pole, parstriangularis and

posteriorcingulate cortices (0.026≤p ≤ 0.047; Table 5C).
4 Discussion

As introduced above, we ever phenome-wide scanned a total of

49,268 subjects of European or African descent with 12 different

neuropsychiatric disorders and reported that the common SERINC2

variants and the rare SERINC2 variant constellations were “specific”

to alcoholism in European descent (1, 4). In this study with an

expanded sample size of a total of 1,167,439 participants of European,

African or Asian descent with 18 diverse neuropsychiatric disorders,

and harmonized genetic marker sets, analytical methods, meta-

analysis and FDR correction, we confirmed that alcoholism was
TABLE 2 Differential expression of SERINC2 mRNA in brains with alcoholism or schizophrenia.

Cohort 1 Cohort 2 Cohort 3

Organism Human Human Human

Brain region Hippocampus Neuron Neuron

Dataset names GEO GEO GEO

Accession number GSE44456 GSE12679 GSE25673

References PMID: 23981442 PMID: 19088852 PMID: 21490598

Experiment methods Affymetrix Human Affymetrix Human Affymetrix Human

Genome U133A Array Genome U133A Array Genome U133A Array

Measurement of expression Log2(normalized intensity) Log2(normalized intensity) Log2(normalized intensity)

Control subjects:

Phenotype healthy healthy healthy

Tissue types post-mortem brain tissue post-mortem brain tissue post-mortem brain tissue

Sample sizes 19 6 12

Expression levels 6.2 ± 0.18 1.1 ± 0.22 7.5 ± 0.14

Case subjects:

Phenotype alcoholism schizophrenia schizophrenia

Tissue types post-mortem brain tissue post-mortem brain tissue post-mortem brain tissue

Sample sizes 20 5 12

Expression levels 6.4 ± 0.18 0.8 ± 0.21 7.2 ± 0.32

p-values for t-test 0.010 0.041 0.039
GEO, Gene Expression Omnibus database.
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still the most significant disease associated with SERINC2 variants in

European descent among all neuropsychiatric disorders. Meanwhile,

more other substance use disorders that usually are comorbid and

share common pathogenesis with alcoholism were also significantly

associated with SERINC2 variants in European descent, including

cocaine dependence, marijuana dependence, nicotine dependence,

and polysubstance dependence. Additionally, we found that

schizophrenia, OCD, and autism in European descent and bipolar
Frontiers in Psychiatry 08
disorder in Chinese were also significantly associated with SERINC2

variants, supporting the findings in literatures. Interestingly,

substance use disorders, schizophrenia, OCD and autism but not

bipolar disorder had highly similar patterns in association with

SERINC2 variants and regulation by risk SERINC2 alleles,

suggesting potential common mechanism related to SERINC2

underlying the former four diseases and distinct mechanism from

bipolar disorder.
TABLE 3A Associations between disease-risk alleles and SERINC2 mRNA expression in brains.

Associated

disorders SNP

Disease-

risk

alleles

Decreasing mRNA Increasing mRNA by disease-risk alleles

Effective

alleles

Substantia

nigra
Effective

allele

Anterior

cingulate

Cerebellar

hemisphere Cortex Hippocampus

NES P NES P NES P NES P NES P

Alcoholism rs12132936 g a 0.190 0.046 g 0.250 3.6×10-3 0.330 8.1×10-7 0.170 0.022

rs4949403 a c a 0.260 2.4×10-3 0.340 1.1×10-6 0.210 2.9×10-3

rs4949401 c t c 0.260 2.1×10-3 0.340 1.1×10-6 0.210 2.9×10-3

rs10914383 g a g 0.250 3.3×10-3 0.340 1.6×10-6 0.160 0.026

rs4949209 c t c 0.270 2.1×10-3 0.340 7.1×10-7 0.220 2.9×10-3

rs1320584 g t g 0.260 2.5×10-3 0.160 0.042 0.320 2.2×10-6 0.210 2.9×10-3

rs12037108 c t 0.190 0.046 c 0.250 3.6×10-3 0.330 8.1×10-7 0.170 0.022

rs10798850 a t 0.190 0.046 a 0.250 3.5×10-3 0.330 8.1×10-7 0.170 0.022

rs4478858 t c t 0.250 2.3×10-3 0.300 6.5×10-6 0.180 0.014

rs6690908 t c t 0.170 0.021 0.250 2.0×10-3

Schizophrenia rs12117387 a g 0.320 0.010 a 0.210 6.7×10-3

rs7515829 g a 0.350 5.3×10-3 g 0.210 6.7×10-3

rs10914374 g t 0.320 0.010 g 0.210 6.7×10-3

rs4949402 t c t 0.270 2.1×10-3 0.340 7.8×10-7 0.220 2.9×10-3

rs10798848 a g 0.320 0.010 a 0.200 0.010

rs4949393 g a 0.230 0.019 g 0.160 0.043 0.270 9.3×10-5

rs12145450 c t 0.320 0.010 c 0.210 6.7×10-3

rs12563669 a g 0.230 0.021 a 0.180 0.042 0.280 6.7×10-5

OCD rs7545902 c g c 0.260 1.9×10-3 0.160 0.041 0.310 7.7×10-6 0.160 0.026

rs4949397 c g 0.210 0.026 c 0.210 0.013 0.170 0.027 0.300 1.1×10-5 0.160 0.025

rs4949396 t c 0.210 0.026 t 0.210 0.013 0.170 0.026 0.290 2.7×10-5 0.160 0.023

rs1977657 a t a 0.220 0.013

rs4949395 c t 0.210 0.026 c 0.210 0.013 0.170 0.030 0.290 2.3×10-5 0.160 0.023

rs10798849 t c 0.210 0.026 t 0.210 0.013 0.170 0.030 0.290 2.3×10-5 0.160 0.023

rs56332792 t g t 0.160 0.038

rs10753251 g a g 0.200 8.6×10-3

rs10798861 g a g 0.200 8.6×10-3

rs2839939 c t c 0.260 2.2×10-3 0.310 4.4×10-6 0.180 0.016

Autism rs10158864 g a g 0.200 8.6×10-3
front
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A series of functional studies substantiated the above disease-

SERINC2 associations, which included (i) the significant expression of

SERINC2 mRNA in brain regions, (ii) differential expression of

SERINC2 mRNA in the brains of individuals with alcoholism and

schizophrenia compared to controls, and (iii) the regulation of

SERINC2 mRNA expression in the brain, intracranial volume (ICV),

subcortical grey matter volumes (GMVs), and cortical surface area

(SA) and thickness (TH) by disease-risk alleles. Although much of this

nominal functional evidence became only suggestive after correction

for multiple testing, a group of suggestive evidence still retains clinical

significance. Literature has extensively reported the significant

alteration of GMVs in alcoholism, schizophrenia, OCD, autism, and

bipolar disorder (24–32). SERINC2 alleles may play critical roles in the

pathogenesis of these diseases via altering the GMVs. Therefore, our
Frontiers in Psychiatry 09
conclusion is that SERINC2 predominantly predisposes individuals to

substance dependence, schizophrenia, OCD, autism and bipolar

disorder, a conclusion supported not only by statistical evidence but

also by biological findings.

Specifically, SERINC2mRNA exhibited its highest expression levels

in the substantia nigra, followed by the cerebellum (Figure 1), and the

expression in the substantia nigra and cerebellar hemisphere was

down-regulated and up-regulated, respectively, by risk alleles for

substance dependence, schizophrenia, OCD, and autism (Table 3A).

These disease-risk alleles also up-regulated expression in the anterior

cingulate, hippocampus, and other cortical regions (Table 3A).

Additionally, these disease-risk alleles decreased caudate GMV but

increased putamen GMV (Table 4A). Enlarged putamen GMV has

been frequently observed in dopamine-related phenotypes associated
TABLE 4A p-values for SNP-GMV associations in subcortical structures.

Associated
disorders SNP

Disease-
risk

allele*

Decreasing GMVs by disease-risk alleles Increasing GMVs by disease-risk alleles

Effective
Allele**

CHARGE “unrestricted” ENIGMA2
Effective
Allele

“restricted” ENIGMA2 “restricted”

ICV Caudate Caudate Accumbens Accumbens Putamen

Alcoholism rs12132936 g a 5.8×10-3 0.025 g 0.016

rs4949403 a c 7.6×10-3 0.030 a 0.013

rs4949401 c t 8.4×10-3 0.030 c 0.012

rs10914383 g a 7.0×10-3 0.026 g 0.016

rs4949209 c t 7.8×10-3 0.028 c 0.015

rs1320584 g t 6.6×10-3 0.027 g 0.016

rs12037108 c t 6.0×10-3 0.026 c 0.016

rs10798850 a t 6.5×10-3 a 0.016

rs4478858 t c 8.4×10-3 0.028 t 0.012

rs6690908 t c 0.017 t 0.041

(Continued)
TABLE 3B Associations between disease-risk alleles and SERINC2 mRNA expression in brains.

Associated
disorders SNP

Disease-
risk alleles

Decreasing mRNA by disease-risk alleles Increasing mRNA

Effective
alleles

Caudate Cerebellar
hemisphere

Cortex Hypothalamus

Effective
allele

Frontal
Cortex

NES P NES P NES P NES P NES P

Autism rs10798856 g a 0.200 0.020 0.260 1.6×10-4 g

Bipolar rs12734726 c t 0.300 0.028 c

rs56214663 g a 0.560 0.043 0.500 0.044 g 0.530 0.024

rs60788028 g a 0.720 0.014 g 0.530 0.027

rs58654289 t g 0.440 0.029 0.530 0.007 t

rs72881860 c t 0.560 0.043 0.500 0.044 c 0.530 0.024

rs4949429 c g 0.440 0.029 0.530 0.007 c

rs4949430 c t 0.440 0.029 0.530 0.007 c

rs59170272 t c 0.440 0.029 0.530 0.007 t

rs72881892 t a 0.440 0.029 0.530 0.007 t

rs10798871 a g 0.440 0.029 0.530 0.007 a
frontie
NES, normalized effect size.
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TABLE 4A Continued

Associated
disorders SNP

Disease-
risk

allele*

Decreasing GMVs by disease-risk alleles Increasing GMVs by disease-risk alleles

Effective
Allele**

CHARGE “unrestricted” ENIGMA2
Effective
Allele

“restricted” ENIGMA2 “restricted”

ICV Caudate Caudate Accumbens Accumbens Putamen

Schizophrenia rs114737875 a t a 0.014

rs12117387 a g 0.013 a 0.014 0.034

rs7515829 g a 0.043 9.2×10-3 g 0.016 0.040

rs6425745 g a 0.013 g 0.017 0.015

rs10914374 g t 0.016 g 0.013 0.039

rs4949402 t c 8.3×10-3 0.032 t 0.012

rs10798848 a g 0.022 a 0.011 0.039

rs4949393 g a 7.0×10-4 0.012 g 0.045

rs12145450 c t 0.013 c 0.014 0.036

rs12563669 a g 8.1×10-4 0.016 a 0.040

OCD rs7545902 c g 8.6×10-3 c 0.013

rs4949397 c g 1.1×10-3 c 0.027

rs4949396 t c 9.7×10-4 t 0.028

rs4949395 c t 8.2×10-4 0.048 c 0.034

rs10798849 t c 8.4×10-4 t 0.039

rs10753251 g a g 0.028

rs10798861 g a g 0.028

rs2839939 c t 9.3×10-3 0.022 c 9.1×10-3

Autism rs10158864 g a g 0.026
F
rontiers in Psyc
hiatry
 10
*disease-risk alleles increase risk for diseases (Table 1); **effective alleles increase GMVs. CHARGE, CHARGE-ENIGMA cohort; ENIGMA2, ENIGMA2 cohort; GMV, grey matter volume; ICV,
intracranial volume.
TABLE 4B p-values for SNP-GMV associations in subcortical structures.

Associated
disorder SNP

Disease-
risk allele*

Decreasing GMVs

Effective Allele**

ENIGMA2 ENIGMA2

Pallidum Caudate

Bipolar rs12734726 c t >0.05 >0.05

rs56214663 g a 0.038 >0.05

rs60788028 g a 0.026 0.048

rs58654289 t g 0.045 >0.05

rs72881860 c t 0.043 >0.05

rs4949429 c g – –

rs4949430 c t 0.046 >0.05

rs59170272 t c 0.044 >0.05

rs72881892 t a – –

rs10798871 a g 0.031 >0.05
* disease-risk alleles increase risk for diseases (Table 1A); ** effective alleles increase GMVs. ENIGMA2, ENIGMA2 cohort; “-”, missing values.
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TABLE 5A p-values for negative associations between disease-risk alleles and TH/SA in brains.

TH

ENG3 ENG3 ENG3 UKBB ENG3

Entor-hinal

Para-
hippo-
campal

Pars-
triangularis

Pars-
triangularis

Temporal-
pole

2.9×10-3 0.022 5.2×10-3 3.9×10-3

2.7×10-3 0.015 3.1×10-3 4.8×10-3

2.6×10-3 0.015 3.2×10-3 5.4×10-3

2.6×10-3 0.023 4.0×10-3 6.0×10-3

2.3×10-3 0.017 3.4×10-3 5.3×10-3

2.3×10-3 0.018 3.4×10-3 5.2×10-3

3.2×10-3 0.024 4.6×10-3 3.7×10-3

2.8×10-3 0.025 5.0×10-3 3.4×10-3

5.1×10-3 0.028 3.6×10-3 3.1×10-3

4.2×10-3 0.023 1.8×10-3

4.4×10-3 0.017 1.4×10-3

4.2×10-3 0.023 1.8×10-3

4.0×10-3 0.023 1.7×10-3

2.5×10-3 0.014 3.2×10-3 5.2×10-3

3.6×10-3 0.020 1.3×10-3

6.7×10-3 0.026 0.042

4.5×10-3 0.028 1.8×10-3

9.3×10-3 0.039

3.9×10-3

3.3×10-3 0.010 0.030

3.9×10-3 0.010 0.030

0.048

3.7×10-3 0.011 0.030

(Continued)
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SNP
Risk
allele

Effective
allele

SA

ENG3 ENG3 ENG3 ENG3 ENG3 ENG3 ENG3 ENG3 UKBB

Fusi-
form

Inferior-
temporal

Pre-
cuneus

Superior-
parietal

Superior-
temporal

Supra-
marginal

Transverse-
temporal

Caudal-
anterior-
cingulate

Caudal-
anterior-
cingulate

rs12132936 g a 0.031 9.4×10-3 6.4×10-3 0.010

rs4949403 a c 0.030 0.010 1.7×10-3 0.013

rs4949401 c t 0.033 0.010 1.8×10-3 0.012

rs10914383 g a 0.042 0.010 3.5×10-3 0.013

rs4949209 c t 0.027 9.0×10-3 4.6×10-3 0.016

rs1320584 g t 0.032 9.2×10-3 3.6×10-3 0.013

rs12037108 c t 0.034 0.010 5.5×10-3 0.011

rs10798850 a t 0.038 0.010 4.8×10-3 0.010

rs4478858 t c 0.013 0.046 3.1×10-3 9.4×10-3

rs6690908 t c 0.017 5.2×10-3 0.038 0.014

rs12117387 a g

rs7515829 g a

rs6425745 g a

rs10914374 g t

rs4949402 t c 0.031 8.7×10-3 2.7×10-3 0.012

rs10798848 a g

rs4949393 g a 0.040 1.9×10-3 8.7×10-3

rs12145450 c t

rs12563669 a g 0.044 3.0×10-3 0.012

rs7545902 c g 9.4×10-3

rs4949397 c g 0.018 2.4×10-3 8.3×10-3

rs4949396 t c 0.020 3.1×10-3 8.4×10-3

rs1977657 a t

rs4949395 c t 0.018 4.1×10-3 0.011
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TABLE 5A Continued

TH

G3 ENG3 ENG3 ENG3 UKBB ENG3

rior-
poral Entor-hinal

Para-
hippo-
campal

Pars-
triangularis

Pars-
triangularis

Temporal-
pole

3.7×10-3 0.015 0.031

021 0.012 0.012

023 0.012 0.013

035 4.8×10-3 0.035 0.042 2.3×10-3 4.4×10-3

022 0.012 0.015

MA3 co

een d

TH

ENG3 BB ENG3 ENG3 UKBB ENG3 ENG3 UKBB

ateral-

rbito-

frontal

ra-

tral

Bank-

ssts cuneus cuneus

Lateral-

occipital

Superior-

temporal

Superior-

parietal

015 0.017 0.010 0.027

014 9.3×10-3 0.010 0.026 0.047

014 0.010 0.011 0.033

020 0.013 0.010 0.027

018 0.012 0.011 0.030 0.047

016 0.012 0.011 0.029

018 0.014 0.010 0.027

019 0.018 8.7×10-3 0.031 0.046

015 0.016 9.3×10-3 0.035

0.043 0.019
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ENG3

Pre-
cuneus

0.024

0.017

0.026

hort.

isease-risk

ENG3

Middle-

tempora

0.037
SNP
Risk
allele

Effective
allele

ENG3 EN

Fusi-
form

Infe
tem

rs10798849 t c

rs10753251 g a 0.019 0.

rs10798861 g a 0.015 0.

rs2839939 c t 0.

rs10158864 g a 0.018 0.

TH, cortical thickness; SA, cortical surface area; ENG3, ENIG

TABLE 5B p-values for positive associations betw

SNP

Risk/

Effect

allele

ENG3 ENG3 ENG3

Bank-

ssts

Caudal-

top-

frontal insula

L

rs12132936 g 0.026

rs4949403 a 0.021

rs4949401 c 0.021

rs10914383 g 0.024

rs4949209 c 0.022

rs1320584 g 0.024

rs12037108 c 0.025

rs10798850 a 0.024

rs4478858 t 0.016

rs6690908 t 0.049
o

SA

ENG3 ENG3 ENG3 ENG3 ENG3 UKBB

Superior-
parietal

Superior-
temporal

Supra-
marginal

Transverse-
temporal

Caudal-
anterior-
cingulate

Caudal-
anterior-
cingulate

0.015 4.5×10-3 0.011

0.016 0.027 0.010 0.012

alleles and TH/SA in brains.

SA

ENG3 ENG3 ENG3 ENG3 ENG3 ENG3 UKBB U

l

Para-

central

Pars-

oper-

cularis

Pars-

orbitalis

Pars-

tri-

angularis

Posterior-

cingulate

Pre-

central

Caudal-

top-

frontal

Pa

ce

0.033 0.022 0

0.034 0.044 0.028 0

0.026 0.028 0

0.021 0.025 0

0.020 0.035 0.026 0

0.029 0.027 0

0.030 0.024 0

0

0.033 0.027 0.014 0

0.028
K

n

.

.

.

.

.

.

.

.

.
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TABLE 5B Continued

TH

G3 ENG3 UKBB UKBB ENG3 ENG3 UKBB ENG3 ENG3 UKBB

terior-

ulate

Pre-

central

Caudal-

top-

frontal

Para-

central

Bank-

ssts cuneus cuneus

Lateral-

occipital

Superior-

temporal

Superior-

parietal

0.029 0.035 0.028 0.023

0.037 0.040 0.038 0.024

0.034 0.040 0.013

0.027 0.026 0.027 0.028

0.015 0.010 0.011 0.033 0.049
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TABLE 5C p-values for positive associations between disease-risk alleles and TH/SA in brains.
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impulsive behaviors, such as substance use disorders (24),

schizophrenia (25, 26), autism (27, 28), and OCD (28–31). This

supports our hypothesis that SERINC2 alleles may increase the risk

for these disorders by enlarging putamen GMV.

In contrast, bipolar disorder-risk alleles down-regulated

SERINC2 mRNA expression in the caudate, hypothalamus, and

cerebellar hemisphere, while up-regulating it in the frontal cortex

(Table 3B). These bipolar-risk alleles also decreased caudate and

pallidum GMVs (Table 4B), consistent with reports of reduced

GMVs in these regions in bipolar disorder (33–36). This supports

the hypothesis that SERINC2 alleles may increase the risk for

bipolar disorder by reducing caudate and pallidum GMVs.

Additionally, one autism-risk allele down-regulated mRNA

expression in both the cerebellar hemisphere and cortex (Table 3B).

An alcoholism-risk allele was also found to decrease ICV

(Table 4A), aligning with evidence of widespread brain shrinkage in

alcoholism (37–41), supporting the hypothesis that this SERINC2 allele

may increase the risk for alcoholism by reducing brain volume.

Furthermore, several schizophrenia-risk alleles were associated with

increased accumbens GMVs (Table 4A), consistent with prior findings

of enlarged nucleus accumbens GMV in schizophrenia (42). This

suggests that SERINC2 alleles may contribute to schizophrenia risk

through accumbens GMV enlargement. Lastly, the disease-risk

SERINC2 alleles were found to regulate the SA/TH of various cortical

regions (Table 5), consistent with previous reports of cortical alterations

in psychiatric disorders, such as schizophrenia (43, 44). This supports

the idea that SERINC2 alleles may play key roles in the pathogenesis of

these psychiatric diseases by altering cortical SA/TH too.

The sharing of risk SERINC2 variants and their functional

patterns among alcoholism, cocaine dependence, marijuana

dependence, nicotine dependence, polysubstance dependence,

schizophrenia, OCD, and autism may be interpreted by the high

comorbidity rates among these diseases. For example, there is a

higher incidence of alcoholism in the family members of ASD

patients compared with the general population; also, there is a link

between the autism susceptibility candidate 2 gene (AUTS2) in the

regulation of alcohol consumption (45–47).

In summary, these findings indicate that SERINC2 is primarily

linked to substance dependence, schizophrenia, OCD, autism and

bipolar disorder, a conclusion that is supported by both statistical

and biological evidence and published literatures.
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