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Context: This study proposes a Bayesian network model to aid mental health

specialists making data-driven decisions on suitable treatments. The aim is to

create a probabilistic machine learning model to assist psychologists in selecting

the most suitable treatment for individuals for four potential mental disorders:

Depression, Panic Disorder, Social Phobia, or Specific Phobia.

Methods: This study utilized a dataset from 1,094 individuals in Denmark

containing socio-demographic details and mental health information. A

Bayesian network was initially employed in a purely data-driven approach and

was later refined with expert knowledge, referred to as a hybrid model. The

model outputted probabilities for each disorder, with the highest probability

indicating the most suitable disorder for treatment.

Results: By incorporating expert knowledge, the model demonstrated enhanced

performance compared to a strictly data-driven approach. Specifically, it

achieved an AUC score of 0.85 vs 0.80 on the test data. Furthermore, we

evaluated some cases where the predictions of the model did not match the

actual treatment. The symptom questionnaires indicated that these participants

likely had comorbid disorders, with the actual treatment being proposed by the

model with the second highest probability.

Conclusions: In 90.1% of cases, the hybrid model ranked the actual disorder

treated as either the highest (67.3%) or second-highest (22.8%) on the test data.

This emphasizes that instead of suggesting a single disorder to be treated, the

model can offer the probabilities for multiple disorders. This allows individuals

seeking treatment or their therapists to incorporate this information as an

additional data-driven factor when collectively deciding on which treatment

to prioritize.
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1 Introduction

Identifying the right treatment for mental disorders often

requires assessments performed by trained professionals, making

the intake time-consuming and costly. Furthermore, it is crucial to

consider how to deliver these treatments in a scalable manner to

ensure they reach those in need efficiently.

Data-driven models for referral to treatment are of particular

interest because it has long been observed that clinicians tend to place

more trust in their intuition than is justified by the available evidence

(1). However, even the most accurate estimates from experts can

result in unsatisfactory outcomes. For instance, several sophisticated

and complex psychotherapy studies were conducted to identify

subtypes of patients who responded better to alcoholism treatment.

Unfortunately, none of these approaches succeeded (2).

Therefore, the implementation of a data-driven referral system

for matching treatments with patients can be beneficial for both

clinicians and patients. The utilization of machine learning (ML)

provides psychologists with a robust framework for making

decisions faster based on empirical data rather than relying solely

on subjective assessments.

Traditionally, ML models have been designed and employed

with the purpose of predicting individual mental disorders one at a

time (3–5). This approach, while effective, has limitations in

capturing the complexity of mental health conditions that are

characterized by overlapping symptoms. Analyzing one disorder

at a time overlooks the opportunity to examine comorbid disorders.

This makes it difficult to determine which disorder is more likely

given the overlapping symptoms (6).

A few studies have used ML to predict mental disorders in

multiclass classification problems (7–9). However, many of these

lack explainability (10, 11), rendering it challenging for humans to

comprehend the recommendations. Some attempts have been made

to use more explainable techniques, but they often neglect

probabilistic approaches (12–14), which are beneficial for

handling uncertainty. One approach to addressing both issues in

one model is by utilizing Bayesian networks (BN).

A BN is a graph-based technique that visually represents the

interactions among variables, facilitating a clear understanding of

their mutual impacts. The use of BNs permits the calculation of

conditional probabilities, allowing the model to update its posterior

probabilities based on new evidence (15). Due to their probabilistic

nature, BNs by default allow the user to obtain quantitative

information on the uncertainty associated with predictions. This

ability to quantify uncertainty is invaluable in the context of mental

health diagnoses, as it enhances the explainability of the model.

The existing literature does not provide a comprehensive

understanding of how applying explainable probabilistic machine

learning models for multiclass classification scenarios of mental

disorders addresses uncertainty and can enhance clinical practice.

Our proposed method aims to address these gaps. This study

explores probabilistic machine learning to aid mental health

specialists in making informed decisions on suitable treatments,

offering an objective path to decision-making.
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The goal is to create an explainable probabilistic machine

learning model to assist therapists in selecting the most

appropriate treatment for individuals experiencing Depression,

Panic Disorder, Social Phobia, or Specific Phobia.
2 Material and methods

2.1 Data

The data was gathered from patients, who applied to

Internetpsykiatrien for treatment between November 14th 2019 and

December 31st 2022. Internetpsykiatrien is a routine care iCBT clinic

with nationwide coverage in Denmark. This internet-delivered health

care service is funded publicly and is free of charge at the point of use

(16). The data comprises individuals over 18 years old, based in

Denmark. It includes information about sociodemographic factors

such as age, gender, civil status, number of children, education, and

income, as well as health questionnaires including the Patient Health

Questionnaire (PHQ-9), Panic Disorder Severity Scale-Self Report

(PDSS-SR), Generalized Anxiety Disorder (GAD-7), Social

Interaction Anxiety Scale (SIAS), and Fear Questionnaire (FQ). These

variables serve as inputs for developing the model. All input data is self-

reported by patients upon application. Additionally, the data contains

our outcome of interest: the “Treatment” prescribed by the clinic for:

Depression, Panic Disorder, Social Phobia, and Specific Phobia. In order

to determine which treatment to prescribe, a licensed psychologist or a

psychologist under supervision of a licensed psychologist conducts a

one-hour video assessment with the patient using the Mini

International Neuropsychiatric Interview (M.I.N.I.) (17).

Table A2 in the Supplementary Material provides a summary of

the characteristics of the socio-demographic variables.
2.2 Data processing

We partitioned the data with 1,094 observations into training and

testing sets. The split was stratified by “Treatment”, ensuring that

each treatment category was represented proportionally in both sets.

Specifically, 85% of the data was allocated for training the model,

while the remaining 15% was reserved for testing its performance. To

avoid any bias, all investigations to determine the categorization of

variables were carried out exclusively on the training data. When it

was time to evaluate the performance of the model on unseen data,

we replicated the same data processing steps on the test data.

Initially, we filtered only the individuals who completed the

PDSS-SR, SIAS, and FQ questionnaires. When applying for

treatment, patients indicate whether they seek treatment for 1)

anxiety, 2) depression, 3) anxiety and depression, or 4) they do not

know. If an individual only seeks treatment for depression, they

only receive the PHQ-9 and GAD-7 at application. It is unlikely that

these individuals will receive an anxiety treatment and hence the

utility of a machine learning model that recommends treatment for

such individuals is low. Therefore, we focused on cases with all five

questionnaires were completed.
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For the SIAS questionnaire, it was necessary to reverse the order

of the values for items 5, 9, and 11. This adjustment was made

because these specific questions follow the opposite direction in

terms of severity scale compared to the rest of the items.

Additionally, we de-constructed the FQ questionnaire into

“MAINPHOBIA”, “TOTALPHOBIA”, “AGORAPHOBIA”,

“BLOODPHOBIA”, “SOCIALPHOBIA”, “GLOBALPHOBIA”,

and “FQANXIETY”, following the methodology outlined in (18).

Subsequently, we calculated the sum of the values for the

original questionnaires and the de-constructed ones, and then we

discretized them into groups (SIASgroup, PHQgroup, PDSSgroup,

FQgroup, GADgroup, MAINPHOBIAgroup, TOTALPHOBIA

group, AGORAPHOBIAgroup, BLOODPHOBIAgroup, SOCIAL

PHOBIAgroup, GLOBALPHOBIAgroup, FQANXIETYgroup).

In the data-driven approach, we used the original range values

for the socio-demographic variables “Gender,” “Civil Status,”

“Education,” and “Income” from the gathered data. For “Age”

and “Number of Children,” we categorized the values as

illustrated in Table 1. For PHQgroup, GADgroup, and

PDSSgroup, we utilized predefined groups from the literature

(19–21), respectively. For the remaining variables, we aggregated

them by “Treatment”, calculated their averages, and defined the

groups based on these averages to differentiate the treatments for

each disorder. The resulting aggregated table is presented as Table

A1 (Supplementary Material).

In the hybrid method approach, we used the same range groups

for the socio-demographic variables. For the remaining variables,

we categorized them into three groups, as outlined in Table 1. The

decision to use only three levels was made in consensus with the

expert, as fewer groups provide more data within each group.
2.3 Bayesian network model

A Bayesian Network (BN) is a directed acyclic graph consisting

of nodes and edges and is used to create an approximation of the

joint probability distribution over all variables and the outcome of

interest. In this graph, nodes represent variables, while directed

edges, depicted by arrows, illustrate relationships among these

variables (22). For each node X of the BN it is possible to identify

its parents (nodes with arrows pointing towards X), children (nodes

receiving arrows from X), and spouses (nodes with arrows leading

to children of X but not directly linked to X).

The joint probability distribution of a Bayesian network is the

product of the conditional probability distributions for each node Xi

given its parents, as represented by Equation 1:

P(X1,  …,  Xn) =
Yn

i=1

P(XijPa(Xi)) (1)

where Pa(Xi) denotes the parent of node Xi. The conditional

probability for a node without parents is simply its prior probability.

These probabilities can be derived from data, from domain-specific

literature, or through the knowledge of human experts.

A joint probability distribution provides all the information

required to make probabilistic inferences on one variable if the
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other variables in the distribution are known. This distribution

satisfies the d-separation property (23) indicating that a node is

independent of its non-descendants given its parents.

Consequently, another important property of a BN is the Markov

blanket of a node X, denoted as MB(X). The MB(X) consists of the

parents, children, and spouses of node X. The MB is important

because it encapsulates the full set of variables influencing or

influenced by the node X.
TABLE 1 Range groups of data driven and hybrid variables.

Variable Data driven
range of
the groups

Hybrid range of
the groups

Age 18-21, 22-25, 26-35, 36-
44, 46-55, 56-65, ≥66

18-21, 22-25, 26-35, 36-
44, 46-55, 56-65, ≥66

Gender "Female", "Male" "Female", "Male"

Civil Status "Single", "Relationship
and live together",
"Relationship but
live alone"

"Single", "Relationship
and live together",
"Relationship but
live alone"

Number of Children 0, 1, 2, 3, ≥4 0, 1, 2, 3, ≥4

Education "Primary school", "High
school", "Vocational
Education", "Short
education (≤3 years)",
"Intermediate education
(4 or 5 years)", "Long
education (≥5
years)", "Other"

"Primary school", "High
school", "Vocational
Education", "Short
education (≤3 years)",
"Intermediate education
(4 or 5 years)", "Long
education (≥5
years)", "Other"

Income "Employed", "Social
security", "Sickness/
benefit pay",
"Unemployment benefit",
"Stipendium", "Other"

"Employed", "Social
security", "Sickness/
benefit pay",
"Unemployment benefit",
"Stipendium", "Other"

PHQgroup 0-4, 5-9, 10-14, 15-
19, ≥20

0-9, 10-19, ≥20

GADgroup 0-4, 5-9, 10-14, ≥15 0-9, 10-14, ≥15

FQgroup 0-40, 41-50, 51-60, ≥61 0-50, 51-100, ≥100

PDSSgroup 0-2, 3-7, 8-10, 11-15, 16-
18, ≥19

0-10, 11-19, ≥20

SIASgroup 0-21, 22-30, 31-40, ≥41 0-15, 16-40, ≥41

MAINPHOBIAgroup 0-2, 3-5, ≥6 0-2, 3-4, ≥5

TOTALPHOBIAgroup 0-20, 21-30, ≥31 0-20, 21-40, ≥41

AGORAPHOBIAgroup 0-5, 6-10, ≥11 0-9, 10-19, ≥20

BLOODPHOBIAgroup 0-5, 6-10, ≥11 0-10, 11-15, ≥16

SOCIALPHOBIAgroup 0-10, 11-14, 15-20, ≥21 0-9, 10-20, ≥21

GLOBALPHOBIAgroup 0-2, 3-5, ≥6 0-2, 3-5, ≥6

FQANXIETYgroup 0-10, 11-20, ≥21 0-10, 11-20, ≥21

HasPhobia 0 - 1 0 - 1

Treatment "Depression", "Panic
disorder", "Social
phobia", Specific phobia"

"Depression", "Panic
disorder", "Social
phobia", Specific phobia"
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BNs have been successfully applied in various scenarios,

including feature selection (24, 25), model prediction (26, 27),

and supporting decision-making by providing insights (28–30).

Additionally, BNs serve as valuable tools for visualizing and

interpreting complex relationships between features, facilitating

the identification of key features and their impact on outcomes.

BNs can be constructed using three approaches. The first approach

involves utilizing expert knowledge to manually define the connections

between nodes. The second approach relies solely on a data-driven

approach to learn the BN from the available data. The third approach

combinesdata-drivenmethodswith expert knowledge and is commonly

referred to as a hybrid method (31). In this study, we employed two

approaches: a purely data-driven approach and a hybrid method.

In the data-driven approach, we constructed the BN using the

Expectation-Maximization (EM) algorithm (32) which is

advantageous for handling missing values in the data. Specifically,

we employed the hill climbing score-based structure learning method

(33) with the Bayesian Information Criterion (BIC) score. The hill

climb search is a greedy search algorithm that seeks to maximize a

score, commencing from an initial random starting point.

Subsequently, the algorithm iteratively attempts to identify the set of

nodes and connections that maximizes the score.

The hillclimb algorithm is utilized within the structural

expectation-maximization (EM) algorithm. Specifically, the EM

algorithm commences with an initial random parameter estimation

(values of the conditional probability distribution). These parameters

are then used to calculate the posterior distributions of the nodes given

their parents and to complete missing values using the outputs of the

posterior distribution. Subsequently, with this new version of the

complete data, a Bayesian Network is constructed using the hillclimb

algorithm to maximize the BIC score and re-estimate the parameters.

This iterative process continues until the parameters converge.

To enhance the likelihood of obtaining the best Bayesian

network, we implemented 1000 random restarts and introduced 5

perturbations for each restart. Perturbations involve additional

attempts to refine the Bayesian network structure by introducing,

removing, or reversing connections.

In the hybrid approach, based on the data-driven approach, the BN

was constructed by incorporating existing knowledge, where the expert

added the connections between nodes manually and defined directions

based on their expertise. In instances where the expert’s certainty

regarding connections or directions was lacking, we conducted data-

driven tests to explore all possible scenariosof thisuncertaintybyadding,

removing, and reversing connections. Subsequently, we selected the BN

that exhibited superior performance based on evaluation metric Area

Under the receiver operating Characteristic curve (AUC). The second

author (EKJ) provided the expert knowledge to adapt the network based

onexperienceworking in theclinic.EKJ is apsychologistwithexperience

from the clinic, and is now working as a PhD fellow.

Once the Bayesian network was defined for both approaches, we

utilized the training data to compute the conditional probability

distributions (CPD) associated with each node. This process, known

as parameter learning involves applying the Bayesian method (34).

Next, predictions for the response variable “Treatment” were made

using exact inference (15), wherein the posterior probability is

calculated based on a set of events. These events consist of all
Frontiers in Psychiatry 04
possible values of the nodes contained within the Markov blanket of

the “Treatment” node.

To develop the Bayesian Network model, we utilized the

bnlearn package in R (35).
2.4 Model evaluation and comparison

To evaluate the data-driven and hybrid models in a statistically

robust fashion, we employed repeated cross-validation with 7-folds,

repeated 20 times using different random samples from the training

data. In each of the 20 iterations, the dataset was divided into

subsets, allowing the models to be trained on 6-folds and tested on

1-fold. For each fold, we recorded the F1-score and AUC (36, 37).

The AUC measures the model’s ability to distinguish between

classes. The F1-score, on the other hand, is the harmonic mean of

the proportion of true positive predictions among all positive

predictions and the proportion of true positive predictions among

all actual positive instances. Both metrics range from 0 to 1, where

higher values indicate better performance.

The final evaluation is performed using the average of these two

metrics across all 140 iterations for each disorder, thus providing a

statistically robust estimate of the model’s performance.

Additionally, we will compute a weighted unique AUC and

weighted unique F1-score for the model.

Following the training and validation on the training data, we

utilized the remaining 15% portion of the data for a final evaluation

of the performance of both approaches on yet unseen data.
2.5 Bayesian credible intervals

To quantify the uncertainty in the model outcomes, Bayesian

credible intervals are used to provide a confidence level around the

predictions. These intervals are calculated using the High Posterior

Density (HPD) interval, which includes the most probable values given

the observed data and prior information, ensuring the total probability

within the interval equals a specified level (e.g., 95%). Among intervals

with the same coverage probability, the HPD interval is the shortest,

meaning it contains parameter values with the highest posterior density,

offering the most precise representation of the credible region (38).

To calculate the Bayesian credible intervals, a nonparametric

bootstrap with 100 samples was generated. Using the BN defined in

the hybrid approach, the CPDs were learned for each of these

samples as discussed in Section 2.3. This process enables obtaining

the posterior distribution for each test data observation using the

exact inference method described in the same section. Finally, the

95% High Posterior Density (HPD) intervals were calculated along

with the probability predictions for each mental disorder.
2.6 Comparison with machine
learning models

In this study, we compared the Bayesian network model with two

other models: Naive Bayes (39) and a Rule-based model. To ensure a
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fair comparison, we used identical splits of training and testing data

for all three models and compared their AUC and F1-score metrics.

The methods for developing and evaluating the models are described

in Sections 2 and 3 of the Supplementary Material.
3 Results

3.1 Processing missing data

From the initial 1,094 cases, the split provided 932 cases for

training and 162 cases for testing. As described in section 2.2, to

avoid any data snooping, all the analysis was conducted on the

training data until it was necessary to evaluate the model on new,

unseen data.

After the data processing described in section 2.2, there were

2.2% missing values in the training data, concentrated in the

‘TOTALPHOBIAgroup’, ‘FQANSIETYgroup’, and ‘CivilStatus’

variables. Initially, we used the data with missing values while

employing the EM algorithm described in section 2.3.

Later, these missing values were filled using the “parents”

imputation method, performed by the EM algorithm. This

method uses the conditional probability distribution of the parent

nodes to fill in the missing values.
3.2 Bayesian network topology

3.2.1 Development of the data driven network
The BN constructed from the data is depicted in Figure 1. This

BN is deemed the optimal representation of the joint probability

distribution of our entire dataset using our data-driven approach.

From the initial 20 variables used to build the BN (Table 1), we
Frontiers in Psychiatry 05
retained 14. All socio-demographic variables were discarded as they

did not hold significance within the network. These variables were

not connected in any way to the main network presented in Figure 1,

indicating they were completely independent of any node in the main

BN, including the outcome of interest, “Treatment”.

Furthermore, it suffices to analyze only the Markov Blanket of

the node of interest (“Treatment”) when making predictions

through exact inference (40). This holds, because for inference, all

nodes apart from the Treatment node can be assumed to contain

known information. And in case all nodes in the Markov Blanket

are known, any other nodes do not provide extra information. In

this scenario, the Markov Blanket consists of the following nodes:

“SIASgroup,” “PHQgroup,” “GLOBALPHOBIAgroup,” and

“FQgroup” as described in the methods section. The ranges for

“SIASgroup,” “PHQgroup,” “GLOBALPHOBIAgroup,” and

“FQgroup” are 0-80, 0-27, 0-8, and 0-216, respectively. Table 1

displays the range groups for each of these nodes.

3.2.2 Adding expert knowledge to the network
Figure 2 illustrates the BN incorporating the expert knowledge.

In this case, “FQgroup” was discarded because it is the summation of

“MAINPHOBIAgroup,” “AGORAPHOBIAgroup,” “BLOOD

PHOBIAgroup,” “SOCIALPHOBIAgroup,” “GLOBALPHOBIA

group,” and “FQANXIETYgroup.” Similarly, “TOTALPHOBIA

group” was discarded since it is the summation of “AGORAPHOBIA

group,” “BLOODPHOBIAgroup,” and “SOCIALPHOBIAgroup”.

“GLOBALPHOBIAgroup” and “BLOODPHOBIAgroup” were

also absent from the BN. This omission, made by the expert, was

deliberate. The global phobia subscale is a generic questionnaire

without any diagnostic indications. The severity of other

questionnaires and FQ subscales were considered to have more

diagnostic value.
FIGURE 1

Bayesian network built from data.
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The blood-phobia subscale covers a range of specific phobias

that would all be treated in the specific phobias program. Given that

the treatment program focuses on the treatment of one phobia, the

diagnostic value lies in identifying a dominant phobia rather than

aggregating multiple phobias into one group. Therefore, the

“HasPhobia” item and the “MAINPHOBIAgroup” subscales were

considered to be better indicators.

Furthermore, some items of the blood-phobia subscale could be

confounded by the presence of other disorders. For instance,

hospitals could be an anxiety-provoking situation for agoraphobic

individuals as their distance from home may be far and hospital

visits usually include exposure to large groups of people. For

individuals with social phobia they may provoke anxiety because

a visit likely involves talking to strangers.

In summary, thedescribedchangesmadebasedontheexpert’s input

resulted in a BN with 10 variables. From the 14 variables selected in the

data-driven, the 4 health-related variables (“GLOBALPHOBIAgroup,”

“BLOODPHOBIAgroup,” “FQgroup,” and “TOTALPHOBIAgroup”)

were discarded as discussed previously.

3.2.2.1 Uncertainties in the expert knowledge

Figure 2 shows some connections without direction. Specifically,

these connections are between “SOCIALPHOBIAgroup” and

“SIASgroup”, between “FQANXIETYgroup” and “PHQgroup”, and

between “FQANXIETY” and “GADgroup.” These connections

represent the expert’s uncertainty regarding their directions.

3.2.3 Finalizing the hybrid approach
Regarding the undirected connections, since they do not affect

the Markov Blanket of the outcome, we chose to discard them. This
Frontiers in Psychiatry 06
decision also resulted in the exclusion of the node “FQANX

IETYgroup”.

Furthermore, there are overlapping symptoms between the

nodes “AGORAPHOBIAgroup” and “SOCIALPHOBIAgroup”.

Thus, to ensure we have the best BN structure for our model, we

explored various BN structure scenarios: a) keeping only the

connection from “AGORAPHOBIAgroup” to “Treatment”; b)

keeping only the connection from “SOCIALPHOBIAgroup” to

“Treatment”; c) discarding both connections; d) retaining

connections from both nodes to “Treatment”.

For each scenario, we evaluated the performance metrics

discussed in section 2.3 and ultimately selected the structure that

demonstrated the best performance. The combination with the

superior performance involved discarding both connections: the

connection from “AGORAPHOBIAgroup” to “Treatment” and

the connection from “SOCIALPHOBIAgroup” to “Treatment”.

The BN derived from the hybrid approach is displayed in

Figure 3. The range groups for the nodes in this Bayesian

network are listed in Table 1, as discussed in section 2.2.

The hybrid BN now consists of 9 variables, derived from the

expert BN inputs which has 10 variables, with the exclusion

of “FQANXIETYgroup”.
3.3 Evaluation of the model

The performance of both approaches is summarised in Table

A3 (Supplementary Material) which lists the average repeated

cross-validation F1 and AUC score. For each disorder, Table A3

(Supplementary Material) also presents the minimum, maximum
FIGURE 2

Bayesian network combining data-driven approach and expert knowledge.
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values and the standard deviation of these metrics across all the

iterations. This provides insight into the variation of metrics when

using different subsets of the training set.

Comparing the results in Table A3 (Supplementary Material)

for the Data-Driven and Hybrid model shows that employing the

hybrid approach resulted in improved metrics across all disorders to

be treated. To obtain a single metric for the AUC and the F1-score

across the four disorders, values were weighted by the prior

distributions of each class. The total F1-scores were 0.59 and 0.67,

while the total AUC values were 0.79 and 0.86 for the data-driven

and hybrid approaches, respectively. This suggests that the hybrid

approach is likely to outperform the solely data-driven approach

when applied to new data. However, to confirm this assertion, it is

essential to utilize new, unseen data to validate whether the results

from the cross-validations hold.

Table A4 (Supplementary Material) displays the results on the

test data, comprising the remaining 15% of the data that was

initially split at the outset of model development. Once more, all

metrics in the hybrid approach surpassed those of the data-driven

approach. Moreover, all metrics in the test data fall within the range

of the minimum and maximum values observed in the repeated

cross-validation table.

The weighted average F1-scores over the four disorders were

0.57 and 0.66, while the weighted average AUC values were 0.80 and

0.85 for the data-driven and hybrid approaches, respectively. The

AUC of 0.85 in a multi-class classification problem with four classes

(and hence a chance level of 0.25) is promising, surpassing a similar

study that employed deep learning techniques to also address a

multi-label classification problem for mental disorders (41), where

the overall weighted AUC was 0.79.
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3.4 Comparison of BN model with naïve
Bayes and rule-based model

For the Naive bayes model, all categorical variables were

transformed into ordinal numbers. Subsequently, we addressed

missing data, which accounted for 2.2% of the dataset, by

assigning them to a new category, as outlined in (42).

The use of RFECV for feature selection resulted in the retention

of 17 variables including the outcome. Specifically, we excluded

‘TOTALPHOBIAgroup’, ‘Education’, and ‘Income’ from the

original set of 20 variables as shown in Table 1.

For the rule-based model, there was no need to fill in missing

values since the variables selected, as discussed in section 2.6, were

already complete.

The results of these models, presented in Table A5

(Supplementary Material), include AUC and F1 values. For the

Naive Bayes model these were obtained through cross-validation

with 140 evaluations. As the Rule-based model does not contain

trainable parameters, Table A5 (Supplementary Material) shows

results from a single evaluation of the training data. The AUC and

F1 values were calculated by weighting each metric of each disorder

according to its prior distribution, as discussed in sections 2.4.

Comparing the BN model with Naive Bayes, Table A5

(Supplementary Material) indicates that they perform similarly in

terms of AUC, but the BN model outperforms Naive Bayes in terms

of F1 score. The Rule-based model shows slightly worse AUC and

underperforms in terms of F1 score.

In Table A6 (Supplementary Material), results from a single

evaluation on the test data are presented. Naive Bayes performs

slightly better in terms of AUC compared to the BN model but
FIGURE 3

Bayesian network using hybrid approach.
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slightly worse in F1 score. The Rule-based model shows a slightly

lower AUC and underperforms in terms of F1 score, which is in

conformance with the model’s performance on training data.
4 Discussion

4.1 Model output

The output of the model provides four probabilities

corresponding to each mental disorder to be treated. Additionally,

it includes the important variables and their values, as shown in

Table 2. These significant variables constitute the Markov blanket of

our outcome of interest, and they are sufficient for making

predictions using exact inference.

In the 4 cases presented in Table 2 the model correctly

predicted that individual 1 received Social Phobia treatment,

while cases 2 and 3 received depression treatment, and case 4

received treatment for Panic Disorder. By modelling the

probabilistic relationships between variables, it becomes possible

to trace the influence of different factors on the outcome, thereby

enhancing the explainability of the model ’s predictions.

Furthermore, the Bayesian credible intervals (discussed in more

detail in section 4.3) provide a method to quantify uncertainty by

integrating prior knowledge and updating information based on

observed data via Bayes’ theorem. This enables the representation

and propagation of uncertainty throughout the model, resulting in

more reliable and interpretable outcomes.
4.2 Rankings of the model

The probabilities of the model are ranked from highest to

lowest, with each probability corresponding to a specific disorder

to be treated. In Figure 4A, we observe the distribution of these

probabilities based on ranks using the data-driven approach on the

test data. Rank 1 indicates that the highest probability predicts the

actual disorder treated, while rank 2 indicates that the second

highest probability corresponds to the actual disorder treated, and

so forth for ranks 3 and 4. Thus, in 59.3% of cases, the model
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allocated the highest probability to the actual disorder treated. The

second, third and fourth probabilities matched the actual disorder

treated in 27.8%, 10.5% and 2.5% of instances, respectively.

In Figure 4B representing the hybrid approach, we also observe

improved results on the test data. Specifically, in 67.3% of instances,

the highest probability class matched the actual class. The second,

third and fourth probabilities corresponded to the actual disorder

treated in 22.8%, 9.3% and 0.6% of instances, respectively. Notably,

in 90.1% of cases, either the highest or the second highest

probability aligns with the correct disorder treated.

To examine any patterns in misclassification, we examined how

many patients were misclassified for each treatment in the test data.

The total numbers can be seen in Table 3.

For depression, the model was equally likely to misclassify the

treatment as panic disorder or social phobia. For panic disorder, a

similar pattern was seen with equal probability of being

misclassified as either depression or social phobia. Social phobia

was misclassified as panic disorder slightly more often than

depression. For all three disorders, the model never or very rarely

misclassified the treatment as specific phobia. For specific phobias,

the proportion of misclassifications was higher, which is not

surprising given the small number of data samples for

this treatment.

The model misclassified 32% of depression treatments, 25% of

panic disorder treatments, and 31.7% of social phobia treatments.

Given how prevalent co-morbid depression and anxiety are,

with rates as high as 58.3% in primary care samples (43), these

levels of misclassifications are not surprising. Patients with

comorbid disorders will present with elevated scores on both

anxiety and depression questionnaires, and the model provides its

bests guess, without any social context or medical history to help

decide on one treatment over the other.

We decided to take a closer look at some of the cases where the

model’s second guess was the actual disorder treated instead of the

first guess. We wanted to see, if we could interpret why the model

suggested treating a different disorder than the one actually treated

for these patients and whether the model’s estimates could still be

useful. Table 4 displays four cases where there is a mismatch

between the predictions of the model and the actual disorder

treated. Additionally, it presents the range groups of the variables
TABLE 2 Output of the BN model for 4 salient cases as represented by their interview scores.

Case PHQgroup PDSSgroup HasPhobia SIASgroup Depression
Panic

Disorder
Social
Phobia

Specific
Phobia

1 0-9 0-10 1 ≥41 9.12% 0.04% 90.80% 0.04%

2 ≥20 0-10 0 21-40 94.37% 0.03% 5.58% 0.03%

3 10-19 0-10 0 0-20 82.47% 12.51% 5.01% 0.01%

4 0-9 11-19 0 21-40 0.02% 67.97% 24.00% 8.01%
PHQgroup,: group range that contains total score for PHQ.
PDSSgroup: group range that contains total score for PDSS.
HasPhobia: presence (1) or absence (0) of phobia.
SIASgroup: group range that contains total score for SIAS.
Depression: probability for depression treatment.
Panic Disorder: probability for panic disorder treatment.
Social Phobia: probability for social phobia treatment.
Specific Phobia: probability for specific phobia treatment.
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utilized for prediction estimation. The detailed range values can be

found in Table 1, and the model’s predicted probabilities for each

disorder are in Table 5.

Case 5 and case 6 both illustrate cases where the model was

mistaken about depression and anxiety treatment. In case 5, the

model might have favored depression treatment due to the

relatively high PHQ-9 score, whereas the model might have

favored social phobia in case 6 due to the high SIAS score. We

can try to understand the clinician’s decision on one treatment over

the other in different ways. For example, a clinician might find that

symptoms of depression would prevent a patient from working

effectively with their anxiety. Therefore, they would focus on

depression treatment first for a patient with co-morbid anxiety

and depression. On the other hand, the medical history of a patient

could indicate that the anxiety disorder caused the depression.

Therefore, treating the anxiety disorder could alleviate the

depression as well. In both cases, it is plausible that either

depression or anxiety treatment could have been helpful. The

clinician could decide on what they thought most appropriate, or

the patient could decide what to focus on based on which symptoms

currently interfere most with their daily life.

For both case 7 and case 8 the model was wrong about panic

disorder and specific phobia. In case 7, the model seemed to favor

panic disorder over the specific phobia due to a combination of
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elevated PHQ-9, PDSS, and FQ agoraphobia scores. The symptom

presentation seems somewhat complex. Therefore, it is interesting

that the clinician focused on the specific phobia. Case 7 might be an

example of patient preference being a deciding factor for the

treatment decision. Often, individuals seeking treatment for a

specific phobia have a clearly defined problem they want help

with and are keenly aware of the source of their fear. Case 7

might have preferred this treatment, even if they presented with

other symptoms.

In case 8, the model seemed to favor specific phobia due to the

relatively low scores on all measures aside from FQ main phobia.

Case 8 has the overall lowest symptom scores of the four cases. This

type of symptom presentation, with low scores on most

questionnaires but high scores on the FQ main phobia question,

is characteristic of individuals seeking treatment for specific phobias

at the clinic. Thus, it is understandable that the model favored the

specific phobia in this case. The model still caught that the FQ

agoraphobia subscale was slightly elevated, giving panic disorder

treatment second priority.

All four cases show the usefulness of the ranked output of the

model. Instead of deciding on one specific treatment, the model can

be used to provide the two most likely treatment options.

Individuals seeking treatment, or their therapists, can use this
TABLE 3 Number of correctly classified and misclassified cases for
each disorder.

Actual Treatment

Model
Prediction Depression

Panic
Disorder

Social
Phobia

Specific
Phobia

Depression 34 6 5 2

Panic Disorder 8 42 8 6

Social Phobia 8 6 28 2

Specific
Phobia 0 2 0 5
TABLE 4 Variable values of mismatched cases between predicted and
actual disorder treatment.

Case 5 Case 6 Case 7 Case 8

Model
prediction

Depression Social
Phobia

Panic
Disorder

Specific
Phobia

Disorder
treatment

Panic
Disorder

Depression Specific
Phobia

Panic
Disorder

PHQgroup ≥ 20 10-19 10-19 0-9

PDSSgroup 11-19 0-10 11-19 0-10

HasPhobia 0 0 1 1

SIASgroup 21-40 ≥ 41 0-20 0-20
f

FIGURE 4

Data-driven and hybrid predictions ranked probabilities vs % of actual disorder treated. (A) Data-driven approach. (B) Hybrid approach.
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information as an extra data-driven factor in deciding on which

treatment to focus. Case 7 is a good example of why this joint

decision-making could be useful. The model predicted two possible

treatments favoring panic disorder based on the symptom

presentation, but the individual might be more interested in

treating their specific phobia. Possibly because this phobia

interfered more with the individual’s life than the panic

disorder symptoms.
4.3 Prediction analysis

We selected two cases from the model outputs to illustrate how

the analysis can be conducted. One case demonstrates alignment

between the model’s predictions and the actual treatment

(Figure 5A), while the other case shows a mismatch between the
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prediction and the treatment (Figure 5B) Guidelines for clinicians is

also provided in Section 4.4.

Figure 5A illustrates case 3 discussed in section 4.1 (Table 2), in

which the prediction of themodel and the disorder treated are aligned.

It is evident that the prediction of depression treatment shows an 82%

probability, with no overlap in its posterior distributions compared to

other disorders. Additionally, it is possible to examine the values of the

most important variables that explain the decision: SIASgroup with a

score between 0 and 20 (out of 80), PDSSgroupwith a score between 0

and 10 (out of 28), PHQgroup with a score between 10 and 19 (out of

27), and the absence of HasPhobia. These four variables compose the

Markov blanket of the outcome. The Bayesian credible intervals can be

viewed in Table 6.

Figure 5B illustrates case 6 discussed in section 4.2, where the

model predicted Social Phobia treatment but the actual treatment

was for Depression. It is evident that there is a notable overlap

between the distributions of Depression treatment and Social

Phobia treatment, with the probability of Social Phobia treatment

being 56% compared to 37% for Depression treatment. The

probability predictions and the Bayesian credible intervals can be

observed in Table 7.

Less overlap between the distributions of each mental disorder

indicates higher confidence in the prediction. Moreover,

overlapping distributions may suggest the presence of more than

one disorder.
TABLE 5 Probabilities of the model for each disorder treatment.

Case 5 Case 6 Case 7 Case 8

Depression 74.0% 37.2% 0.0% 0.0%

Panic Disorder 22.2% 4.7% 66.6% 16.2%

Social Phobia 3.7% 55.8% 0.0% 2.7%

Specific Phobia 0.0% 2.3% 33.4% 81.1%
FIGURE 5

Examples of output of the Bayesian network model. (A) Case where model prediction and the disorder treated are correct. (B) Case where model
predicted Social phobia treatment and the actual treatment was for depression.
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4.4 Model applicability in supporting
decision-making

The BN model provides two important outputs that should be

analyzed together: the ranked probabilities of having each of the

four disorders and the Bayesian credible intervals of the predictions,

as shown in Figure 5A. This information can be useful for making

treatment decisions. Figure 6 illustrates a step-by-step guide on how

to use this information for the final decision, which includes the

following four steps:
Fron
1. Check the highest probability disorder (Rank 1) as shown

in the doughnut chart on the left in Figure 5A.

2. Examine the overlapping curves in the posterior

distribution chart on the right in Figure 5A.

3. If the curve related to the highest probability disorder has

no overlap, it is very likely that the Rank 1 prediction

is correct.

4. If the Rank 1 curve overlaps with other curves, identify the

disorders associated with these overlapping curves. The

clinician should then use their knowledge of the mutual

influence of these disorders on the treatment options.
The number of overlapping curves indicates which ranked

probabilities need to be considered when making a decision for

the appropriate treatment. Having more than one overlapping

curve can facilitate a discussion with patients about possible

diagnoses and treatments, enabling a joint decision-making

process that benefits both the clinician and the patient.
4.5 Advantages of the Bayesian
network model

The results in Table A5 (Supplementary Material) indicate that

the Naive Bayes model performs similar to the BN model in terms

of predictive accuracy and that both Bayesian models outperform

the Rule-based model. Aside from predictive performance, BNs

provide some important advantages over the other two models.

Firstly, the BN model achieves comparable performance using

only 4 variables, whereas Naive Bayes uses 16 variables and the

Rule-based model uses 7 variables. This simplicity makes the BN

model less complex and easier to interpret, facilitating explainability

of its predictions.
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Secondly, the BN model provides additional benefits in terms of

explainability compared to the Rule-based model. It offers insights

extracted from data through probabilistic measures, rather than

relying on predefined rules. This approach can reveal relationships

and dependencies between variables that may not be apparent from

common clinical knowledge.

Thirdly, although Naive Bayes is a probabilistic model, its

assumption of independence between variables limits its ability to

explain how certain combinations of symptoms affect decisions

compared to other combinations. This independence assumption

leads to an overly simplistic view of comorbidity.
5 Conclusions

The aim of the study was to propose a methodology using a

Machine learningmodel that uses historic data andhumanexpertise to

make sound and interpretable treatment recommendations for four

mental disorders an individual will likely need: Depression, Panic

Disorder, Social Phobia and Specific Phobia. In this study,we applied 2
TABLE 6 Bayesian credible intervals - model prediction and disorder
treatment correct.

Depression Panic
disorder

Social
phobia

Specific
phobia

Credible
Interval - min

0.68 0.04 0.001 0.001

Probability 0.82 0.13 0.05 0.001

Credible
Interval - max

0.96 0.30 0.09 0.002
TABLE 7 Bayesian credible interval - model prediction Social phobia
treatment and the actual treatment was for Depression.

Depression Panic
disorder

Social
phobia

Specific
phobia

Credible
Interval - min

0.25 0.001 0.36 0.01

Probability 0.37 0.05 0.56 0.02

Credible
Interval - max

0.55 0.12 0.68 0.07
fr
FIGURE 6

Flowchart explaining how to use the model to aid the decision-
making process.
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different approaches to develop the model. One approach employed a

purely data-driven methodology, while the other adopted a hybrid

approach, combining knowledge from domain experts with data-

driven techniques.

In 90.1% of cases, the hybrid model ranked the actual disorder

treated the highest (67.3%) or second-highest (22.8%). Furthermore,

the output of the model provides information on the most important

variables and can indicate when to consider one, two, three, or all four

ranked probabilities for making an appropriate treatment decision.

This highlights the capacity of the model to serve as a valuable tool in

prioritizing disorders for treatment, benefiting both individuals

seeking treatment and their therapists. This approach has the

potential to facilitate joint decision-making based on data-

driven information.

The performance of the model with expert knowledge appears

promising, suggesting that it could be effectively utilized in real-world

scenarios. By modelling uncertainty, facilitating explainability, and

incorporating domain expertise, our approach offers valuable tools

for building reliable and transparent diagnostic systems.

Wecompared theBayesiannetworkmodelwith twoothermodels,

Naive Bayes and a Rule-based model. The performance of the BN and

Naive Bayes model were similar and both outperformed the Rule-

basedmodel. The BNmodel offers the advantage of being less complex

compared to the other two models, which aids explainability.
5.1 Limitations and perspectives

The size of the training data used is not large enough to fully

mitigate potential biases. For instance, because we developed a

model to predict four different classes, the limited amount of data

can lead to heightened sensitivity to outliers, particularly in the

minority classes. This sensitivity can affect the model’s performance

and generalization, especially if the minority classes are

underrepresented in the training data.

While iCBThas beenproven tobe an effective treatment capable of

scaling up andhas the prospect of being a cost-effective delivery format

ofCBTwith a large reach, triageof patients is still a barrier. It is costly to

perform assessment interviews, which need to be performed by highly

skilled personnel. Furthermore, most assessments lead to non-

eligibility. It is therefore of significant benefit to efficient use of

available resources, to be able to automate parts of the screening

process. The present analysis shows promising results in this regard,

thus prompting for additional research in this area. Additionally, the

methodology described in this study could be applied at item level for

the questionnaires to examine which items are most important for

diagnostic purposes. Thus, it might be possible to shorten the

questionnaires, and reduce the burden of completing several

screening instruments for people applying for treatment.
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