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Introduction:Major Depression (MD) is a commonmental disorder. In East Asian

ancestry, the association, causality, and shared genetic basis between blood-

based biomarkers and MD remain unclear.

Methods: We investigated the relationships between blood-based biomarkers

and MD through a cross-sectional study and Mendelian randomization (MR)

analysis. Cross-trait analysis and enrichment analyses were used to highlight the

shared genetic determinants and biological pathways. We conducted summary

data–based MR to identify shared genes, which were then validated using a

transcriptome dataset from drug-naïve patients with MD.

Results: In the cross-sectional study, C-Reactive Protein showed the significantly

positive correlation with depressive symptoms, while hematocrit, hemoglobin,

and uric acid exhibited significantly negative correlations. In MR analysis, basophil

count (BASO) and low-density lipoprotein cholesterol (LDLc) had a significant

causal effect on MD. The enrichment analysis indicated a significant role of

inflammatory cytokines and oxidative stress. The shared genes MFN2, FAM55C,

GCC2, and SCAPER were validated, with MFN2 identified as a pleiotropic gene

involved in MD, BASO, and LDLc.

Discussion: This study highlighted that BASO and LDLc have a causal effect on

MD in East Asian ancestry. The pathological mechanisms of MD are related not

only to inflammatory cytokines and oxidative stress but also to down regulation

of MFN2 expression and mitochondrial dysfunction.
KEYWORDS

major depression, mendelian randomization, basophil, low-density lipoprotein
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1 Introduction

Major Depression (MD) is a common mental disorder,

characterized by symptoms like depressed mood or loss of

interest and pleasure, persisting for at least two weeks (1).

Globally, the prevalence of MD was about 3.15% in 2020,

accounting for nearly 50 million disability-adjusted life years (2).

In East Asia, the lifetime prevalence of MD is 6.9% with an

incidence rate of 2,882.9 per 100,000 people in 2019 (3, 4).

There is growing clinical and preclinical evidence suggesting that

the pathogenesis of psychiatric disorders may involve increased

peripheral, cerebral inflammation, and oxidative stress (5, 6).

Inflammatory mediators released by blood cells, such as cytokines,

chemokines, and proteins in the complement system, can reach the

brain through various pathways, including neurological, humoral,

and chemical routes. These mediators can activate inflammasomes

and affect immune cell movement (7, 8). MD is associated with

higher plasma levels of proinflammatory cytokines, such as IL-4, IL-5,

IL-6, and C-reactive protein (CRP) (9–11). Inflammation and

oxidative stress are interconnected and function together (6). In

MD, inflammation activates oxidative and nitrosative stress

pathways, leading to increased production of reactive oxygen

species (ROS) and reactive nitrogen species (RNS) (12). MD is also

characterized by decreased antioxidant levels, including low serum

concentrations of antioxidants like zinc, copper, tyrosine, and

tryptophan (13–15).

Alterations in blood cell function and properties have been

linked to various mental and neurological disorders, including MD,

schizophrenia (16), multiple sclerosis (17), stroke (18), and

Parkinson’s disease (19). Additionally, counts of monocytes,

platelets, basophils, and serum uric acid levels have been

associated with MD in cross-sectional studies and randomized

controlled trials (20–23). It is believed that the associations

between blood-based biomarkers and MD share genetic basis

(24). Several studies using genome-wide association study

(GWAS) summary statistics from individuals of European

ancestry have demonstrated relationships between lymphocyte

count, monocyte percentage of white cells, and psychiatric

disorders. These studies further explored the causality and

biological mechanisms between these blood-based biomarkers and

MD (24–26). However, the association, causality, and shared

genetic basis between blood-based biomarkers and MD remain

unclear in individuals of East Asian ancestry.

The aim of this study is to investigate the association and

causality between blood-based biomarkers and MD in individuals

of East Asian ancestry and to comprehensively characterize the

shared genetic basis and biological mechanisms. First, we conducted

a cross-sectional study to investigate the association between blood-

based biomarkers and MD, based on the China Health and

Retirement Longitudinal Study (CHARLS, wave 3). Subsequently,

MR analysis was performed to examine the causality between

blood-based biomarkers and MD using GWAS summary

statistics. Furthermore, single-cell, and pathway enrichment

analyses were conducted to explore the biological mechanisms.
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Finally, shared genes between blood-based biomarkers and MD

were identified using summary data–based MR (SMR). The

transcriptome study from Gene Expression Omnibus (GEO)

database was used to determine whether the shared genes were

differentially expressed between patients and controls. The detailed

study design is shown in Figure 1.
2 Methods

2.1 Data collection

We conducted a cross-sectional study based on the CHARLS,

which aimed to collect a high-quality, nationally representative

sample of Chinese residents aged 45 and older. The baseline

national wave of CHARLS commenced in 2011, approximately

17,500 individuals. As for our study, data from wave 3 was utilized

because it contained extensive blood-based bioassays. This study

utilized CHARLS data, comprising datasets from the 2015 CHARLS

Wave 3 Blood Data (Version ID: 20190620) and Harmonized

CHARLS Regular Waves (Version as of June 2021). All analyses

in this study adhered to the Data Release Note (27).
2.2 Measurement of depressive symptoms

The Center for Epidemiologic Studies Depression Scale 10 (CES-

D10) comprises questions posed on a 4-point scale, corresponding to

the frequency of feelings experienced by individuals over the past

week. The CES-D10 score ranges from 0 to 30. The reliability and

validity of the CES-D10 have been previously established (28). Data

from the CES-D10 were available for 25,586 participants. Depressive

symptoms were transformed into categorical variable based on the

CES-D10 score. With reference to previous studies, a cut-off score of

12 was valid for identifying clinically depression (29, 30). Cutoff

scores for depressive symptoms were set at 12 for the 10-item

questionnaire. Therefore, if the score is 12 or higher, the individual

had depressive symptoms.
2.3 Blood-based bioassays

The Blood-Based Bioassays encompassed a total of 16 blood-

based biomarkers, all of which were continuous variables

(Supplementary Table 1). The Blood-Based Bioassays samples

were assayed for high-sensitivity CRP, glycated hemoglobin

(HbA1c), total cholesterol (TCHO), HDL cholesterol (HDL-C),

LDL cholesterol (LDL-C, referred to as LDLc), triglycerides (TG),

glucose (BG), blood urea nitrogen (BUN), creatinine (SCr), uric

acid (UA), and cystatin C (CysC). Additionally, blood count

analyses were included comprising hemoglobin (HGB),

hematocrit (HCT), white blood cell count (WBC), platelet counts

(PLT), and mean corpuscular volume (MCV). Blood data was

available for 13,420 participants.
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2.4 Covariates

Covariate variables were obtained from the Harmonized CHARLS

datasets, which were categorized into quantitative variables (age and

economic situation) and qualitative variables (gender, smoking,

alcohol consumption, and education level) (Supplementary Table 1).

Notably, the education level was determined based on the integration

of raw data. The variable RAEDUC_Cwas defined using the following

codes: 1. No Formal Education (Illiterate), 2. Did Not Finish Primary

School but can Read, 3. Sishu (Private Tutoring), 4. Elementary

School, 5. Middle School, 6. High School, 7. Vocational School, 8.

Two/three-year college, 9. College Grad and 10. Post-graduate degree.

We recoded levels 1-3 as 1 (labeled as “Before Elementary School”),

level 4 as 2 (labeled as “Elementary School”), level 5 as 3 (labeled as

“Middle School”), levels 6-7 as 4 (labeled as “High School”), and levels

8-10 as 5 (labeled as “Above Three-year College”).
2.5 Missing data

First, individual IDs were used to merge the blood bioassays

data and the harmonized CHARLS dataset. The missing data were

categorized into three types: basic demographic characteristics,

blood-based biometric indicators, and CES-D10 scores. For the

first type of missing data, if the missing rate was not more than 2%,

the samples containing missing data were excluded. For the variable
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of economic situation, which had a missing rate of about 15%, the

missing data was excluded in Model 3. For the second type of

missing data, multiple imputation by chained equations (MICE)

was performed based on random forests (31, 32). For the third type,

if there were missing answers but the CES-D 10 score was greater

than or equal to 12, or there is no missing data, the individual would

be included in the analysis.
2.6 Multi-omics data sources

We used the GWAS summary statistics of 23 blood-based

biomarkers (33) and MD (34) in East Asian ancestry (Figure 1,

Supplementary Table 1). The 23 blood-based biomarkers GWAS

were all sourced from the Japan Biobank, which collected DNA and

serum samples from 12 medical institutions in Japan and recruited

approximately 200,000 participants. MD GWAS data was sourced

from Giannakopoulou et al. including 15,771 individuals with

depression and 178,777 control participants from 9 different

studies. In SMR analysis, we utilized expression quantitative trait

loci (eQTL) datasets from Japanese (35). Additionally, we obtained

genome-wide profiling of the transcriptome in the peripheral blood

of drug-naïve MD patients and health controls (GSE201332) (36).

The single-cell RNA sequencing (scRNA-seq) data from peripheral

blood (GSE112845) was downloaded from ABC portal (http://

abc.sklehabc.com) (37, 38).
FIGURE 1

Overview of the main analyses in the study. CHARLS, China Health and Retirement Longitudinal Survey; MD, major depression; BASO, basophil
count; LDLc, low-density lipoprotein cholesterol; GEO, Gene Expression Omnibus dataset.
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2.7 Statistical analysis

2.7.1 Observational analysis
In this study, we estimated the correlation of blood-based

biomarkers on depressive symptoms using logistic regression

model analysis. We selected blood-based biomarkers with

statistically significant results (P<0.05) from the univariate

analysis to further perform multivariate regression. In Model 1,

we adjusted for age and gender. Model 2 additionally adjusted for

smoking and alcohol consumption based on Model 1. Model 3

further adjusted for education level and economic situation based

on Model 2. We assessed the statistical significance of the effects of

variables on the outcome of depressive symptoms using odds ratio

(OR), 95% confidence intervals (95%CI), and P value of Model 3.

Using a false discovery rate (FDR) threshold of 5% for multiple

testing correction.
2.7.2 MR analysis
We used MR analysis to estimate the magnitude of the causal

relationship between 23 blood-based biomarkers and MD. MR is a

method that uses genetic variants as instrumental variables (IVs)

to infer causality (39). The Inverse Variance Weighted method

(IVW) was utilized as the main analysis using a random-effects

model (40). Additionally, 6 alternative MR methods (CAUSE,

GSMR, MR-Egger, MR-PRESSO, Weighted Median, and

Weighted Mode) were employed as sensitivity analyses to

reinforce the results (41–44). Valid IVs need to satisfy the

assumption that IVs are strongly associated with the exposure,

but not directly associated with the outcome or confounding

factors. We selected independent significant SNPs as IVs

(P<5×10-8, physical distance >10,000 kb, and LD r2<0.001 base

on 1000 Genomes Project phase 3 of East Asian population).

Then, IVs were removed if they were significantly (P<5×10-8)

associated with the outcome. We categorized the 23 blood cell

phenotypes into three groups: metabolic category, blood cell, and

inflammatory/kidney-related category. Based on different

categories of blood-based biomarkers, the FDR threshold of 5%

was utilized to correct the results of IVW method to reduce false

positives. Additionally, if there is a single IV, the Wald ratio is

used as the main analysis and CAUSE as the sensitivity analysis

(45). Horizontal pleiotropy test and Cochran’s heterogeneity test

were performed as sensitivity analyses.
2.7.3 The enrichment analyses
A cross-trait analysis using Pleiotropic Analysis under

Composite null hypothesis (PLACO) was conducted to identify

shared genetic components between MD and BASO as well as LDLc

(46). Unlike conventional cross-trait analyses that test the global

null hypothesis that there is no association of a genetic variant with

any of the traits, PLACO test a composite null hypothesis of no

pleiotropy is that at most one trait is associated with the genetic

variant. Thus, the alternative hypothesis suggests that two traits is

significantly associated with the genetic variant.
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For significant pleiotropic variants identified by PLACO, we

employed gene level analysis by Multi-marker Analysis of Genomic

Annotation (MAGMA v1.10). Then, we used Functional Mapping

and Annotation (FUMA v1.5.2) for pathway enrichment analysis

(47). Initially, Gene Ontology (GO) gene sets fromMsigDB v2023.1.

Hs were utilized for pathway enrichment analysis (48). We perform

a pathway-based polygenic regression method (scPagwas) to

discover trait-relevant cells (49, 50).

2.7.4 SMR
SMR, an analysis similar to the MR framework, combines

GWAS summary statistics with eQTL datasets to identify genes

associated with complex traits. Heterogeneity in dependent

instruments (HEIDI) uses multiple SNPs in a cis-eQTL region to

distinguish pleiotropy from linkage. The SMR & HEIDI

methodology can be interpreted as an analysis to test if the effect

size of a SNP on the phenotype is mediated by gene expression (51).

Significant genes are defined as genes with PSMR<0.05

and PHEIDI>0.01.
2.8 Database validation

To validate potential shared genes, we utilized the published

transcriptome study of whole blood samples from patients with

depression in Chinese population (36). The study sample included

20 healthy controls and 20 drug-naïve MD patients. Genes that

survived multiple test corrections were defined as significant genes.
3 Results

3.1 Relationship between blood-based
biomarkers and depressive symptoms

A total of 12,846 samples were analyzed after excluding those

with missing data and conducting multiple imputations. The basic

demographic characteristics, blood-based biomarkers, and CES-D10

scores of the participants are presented in Supplementary Tables 1

and 2. The mean CES-D10 score for all participants was 8.0 ± 6.3,

with 3,310 participants identified as depressive symptoms. Univariate

logistic regression results showed the significant differences in CRP,

CysC, HCT, HDL-C, HGB, MCV, SCr, and UA between individuals

with depressive symptoms and controls (Supplementary Table 3). In

the multivariate analysis, CRP was significantly positively correlated

with depressive symptoms in Model 3 (OR=1.011, 95% CI=1.004-

1.018, Padjust = 0.005) after multiple testing correction. HCT and UA

showed significant negative correlations with depressive symptoms

across all three adjusted models (Table 1). There were significant

positive correlations between CysC and HGB and depressive

symptoms in Model 1 and Model 2, but not in Model 3 after

multiple testing correction. No significant association was found

between HDL-C, MCV, SCr and depressive symptoms.
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3.2 Genetic causality between blood-based
biomarkers and MD

In blood cell category, BASO had a suggestive causal effect on

MD (OR=1.17, 95% CI=1.04-1.33, P=0.012), with 3 out of 6

alternative MR analyses supporting this result. In metabolic

category, LDLc showed significantly causal effects on MD

(OR = 0.87, 95% CI=0.79-0.96, P=0.006), with 3 out of 6

alternative MR analyses in consistent with this finding (Figure 2;

Supplementary Tables 4, 5). It was worth noting that this causal

effect was still significant after multiple testing correction. The

sensitivity analysis showed no heterogeneity of IVs both in BASO,

LDLc, and MD (Supplementary Tables 6, 7). In Inflammatory/

Kidney-related category, no causal effect between other blood-based

biomarkers and MD was found (Supplementary Table 4). The trait

pairs of BASO and LDLc with MD were included in subsequent

analyses due to the priority of MR in causal inference.
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3.3 Pathway enrichment and single-
cell analyses

Based on PLACO, gene set enrichment analysis identified 800

nominally significant pathways associated with the MD-BASO trait

pair, but none remained significant after Bonferroni correction. The

top five pathways mainly involved phosphatase activity and

immune response (Figure 3A). Notably, phosphoprotein

phosphatase activity (GO:0004721) and protein serine/threonine

phosphatase activity (GO:0004722), which regulate the

phosphorylation state of cellular proteins, were highlighted.

Additionally, the pathway specific to organ or tissue immune

response (GO:0002251) was significantly enriched.

For the MD-LDLc trait pair, 840 pathways were significantly

enriched, but none remained significant after Bonferroni correction.

The top five pathways were primarily related to low-density

lipoprotein receptors, cytokine regulation, and locomotion
TABLE 1 Multivariable analysis in CHARLS between blood-based biomarkers and MD.

Models b SE OR
OR_95%

low
OR_95%

up
P Padjust

CRP 1 0.012 0.003 1.012 1.005 1.018 <0.001 0.001

2 0.012 0.003 1.012 1.005 1.018 <0.001 0.001

3 0.011 0.004 1.011 1.004 1.018 0.003 0.005

CysC 1 0.298 0.091 1.347 1.129 1.612 0.001 0.003

2 0.281 0.091 1.324 1.109 1.584 0.002 0.004

3 0.199 0.103 1.221 0.997 1.495 0.053 0.084

HCT 1 -0.020 0.004 0.981 0.973 0.988 <0.001 <0.001

2 -0.020 0.004 0.980 0.972 0.988 <0.001 <0.001

3 -0.014 0.005 0.986 0.977 0.994 0.001 0.003

HDL-C 1 0.003 0.002 1.003 0.999 1.006 0.162 0.229

2 0.003 0.002 1.003 0.999 1.007 0.097 0.145

3 0.001 0.002 1.001 0.997 1.005 0.659 0.832

HGB 1 -0.042 0.012 0.959 0.937 0.982 0.001 0.002

2 -0.043 0.012 0.958 0.936 0.981 <0.001 0.001

3 -0.028 0.013 0.972 0.947 0.998 0.034 0.059

MCV 1 0.000 0.003 1.000 0.994 1.005 0.870 0.994

2 -0.001 0.003 0.999 0.994 1.004 0.757 0.908

3 -0.001 0.003 0.999 0.993 1.004 0.622 0.829

SCr 1 0.000 0.077 1.000 0.853 1.158 0.995 0.995

2 0.001 0.077 1.001 0.854 1.159 0.985 0.995

3 -0.004 0.081 0.996 0.842 1.161 0.956 0.995

UA 1 -0.069 0.016 0.934 0.904 0.964 <0.001 <0.001

2 -0.066 0.016 0.936 0.907 0.967 <0.001 <0.001

3 -0.058 0.018 0.944 0.910 0.978 <0.001 0.004
SE, standard error; Padjust, using a false discovery rate (FDR) threshold of 5%. Bold values indicate statistically significant p-values.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1424958
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Mo et al. 10.3389/fpsyt.2024.1424958
(GO:0040011) (Figure 3A). Moreover, pathways related to

inflammation, such as IL-6 (GO:0070102) and RAC protein

(GO:0035022), were also emphasized.

scPagwas identified that B cells (naive and memory B cells) were

associated with MD, and dendritic cells (cDC1 and cDC2) along with

mononuclear cells (CD16 mono, CD14mono1, and CD14mono2)

were associated with BASO (Figures 3B–D). Interestingly, all of these

cell types were also related to LDLc (Figure 3E).
3.4 Share genes identification and
transcriptome validation

We identified 43 nominally significant genes for MD, 98 for

BASO, and 87 for LDLc (Figure 4A). The MD-BASO trait pair had

four shared genes (MFN2, AC074286.1, FAM55C, and RP11-

115L11.1), while the MD-LDLc trait pair had seven shared genes

(MFN2, GCC2, GPR20, CTD-3064M3.3, CKAP2, SCAPER, and

RPL36P4). Notably, one pleiotropic gene was identified among

BASO, LDLc, and MD (Figure 4A). Furthermore, the expression

of MFN2 (mitofusin 2), FAM55C (neurexophilin and PC-esterase

domain family member 3), GCC2 (GRIP and coiled-coil domain
Frontiers in Psychiatry 06
containing 2), and SCAPER (S-phase cyclin A associated protein in

the ER) was down-regulated in GEO, consistent with the SMR

results. (Figure 4B; Table 2). As shown in Figure 4C, the down-

regulation of MFN2 was significantly associated with an increased

risk of MD, as confirmed by differential gene expression results.

Additionally, down-regulation of MFN2 was significantly

associated with an increase in BASO and a positive causal

relationship between BASO and MD. Concurrently, down-

regulation of MFN2 was significantly associated with a decrease

in LDLc and a causal relationship between LDLc and MD.
4 Discussion

In this study, we used a combination of cross-sectional and MR

analyses to explore the association and causality between blood-

based biomarkers and MD. We identified a total of four shared

genes (MFN2, AC074286.1, FAM55C, and RP11-115L11.1), which

MFN2 being a pleiotropic gene linked to MD, BASO, and LDLc.

In our cross-sectional study, we found associations between

depressive symptoms and several blood-based biomarkers,

including CRP, HCT, HGB, and UA. CRP showed a significant
FIGURE 2

Bi-directional Mendelian Randomization analyses between BASO, LDLc and MD. (A) MD-BASO. (B) MD-LDLc. Blue color represents the estimated
causal effect of MD on blood-based biomarkers, red represents the estimated causal effect of blood-based biomarkers on MD. MD, major
depression; BASO, basophil count; LDLc, low-density lipoprotein cholesterol; IVW, Inverse Variance Weighted; CAUSE, Causal Analysis Using
Summary Effect Estimates; GSMR, Generalized Summary-data-based Mendelian Randomization.
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positive correlation with depressive symptoms, while HCT, HGB,

and UA exhibited significant negative correlations. Similarly,

previous clinical trials have reported associations between these

biomarkers and depressive symptoms. Haapakoski et al. observed

higher mean levels of CRP in patients with MD compared to non-

depressed controls (10). Lee et al. reported that Korean adults with

MD typically have lower HCT levels (52). Additionally, Kesebir

et al. found that UA levels were lower in patients with MD than in

healthy controls (53). These findings are consistent with our results.
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However, Lee et al. reported no association between HGB level and

MD in Korean adults (52), which differ from our finding that HGB

was negative related with depressive symptoms. Several factors

might explain this discrepancy. First, our study did not account

for family history and stress as confounding factors, which are

known genetic and environmental risk factors for depression. The

CHARLS cohort aims to describe the basic information of middle-

aged and elderly people in China comprehensively, so the

questionnaire did not include psychiatric-specific information.
FIGURE 3

The pathway and single-cell enrichment analysis. (A) The pathway enrichment analysis. The x-axis represents -log10 P-values, and the y-axis
represents top 5 gene sets across datasets. (B) The umap plot shows the cell type labels. (C–E) Per-cell TRSs after background correction calculated
by scPagwas (Seurat) for three traits including MD (C), BASO (D), and LDLc (E) are shown in per cell type.
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Second, the CES-D10 score used to define depressive symptoms is

not a standard for the clinical diagnosis of depression. Third,

differences in the age and ethnic groups of the participants might

have influenced the associations. Unlike the study in Korean adults

(52), findings from other studies in older populations were

consistent with our results. Trevisan et al. revealed that low HGB

strongly predicted incident depression in older Italian men (54).

Vulser et al. reported that depression and antidepressant use were

associated with lower HGB levels in elderly French individuals (55).

In the MR analysis, BASO was found to have a significant causal

effect on MD. Although BASO was not available in the Blood-Based

Bioassays and there was no significant association found between

WBC and depressive symptoms, the change in basophil count is

challenging to detect through WBC because basophils make up less

than 1% of circulating leukocytes. However, several cross-sectional

and prospective cohort studies have demonstrated a relationship

between BASO count and MD. Bai et al. reported that MD patients

had significantly increased basophil counts (P=0.030) (56). Puangsri

et al. found that basophil percentages significantly decreased after

antidepressant treatment (P=0.027) (23). Although the association
Frontiers in Psychiatry 08
between LDLc and depressive symptoms was not significant in our

cross-sectional results, MR analysis indicated that LDLc had a

causal effect on MD. Previous studies support the idea that

alterations in lipid levels may be linked to MD. For example,

Aijänseppä et al. found an independent association between low

LDLc concentration and depressive symptoms in elderly Finnish

men (57). Additionally, a randomized controlled trial suggested that

basophil counts predicted cognitive dysfunction in depression when

stratified by BMI status, with LDLc also associated with BMI

(58, 59). Therefore, further research is needed to explore the

shared genetic basis between BASO, LDLc, and MD.

The results of the enrichment analyses supported the hypothesis

that inflammation and oxidative stress play roles in the etiology of

MD. In pathway enrichment analysis, the pathways GO:0004721 and

GO:0004722, related to protein serine threonine/phosphatase activity,

were highlighted. Previous studies have shown that two distinct

lineages of this phosphatase, the PPP family and the PPM family,

can influence depressive-like behaviors by regulating stress pathways,

such as by modulating the synthesis of synaptic proteins or neuronal

excitability (60, 61). Protein serine/threonine phosphatase have also
FIGURE 4

Potential shared genes identification and validation. (A) The Venn diagram of shared genes identified by SMR across three traits. (B) Volcano plot for
differential expression analysis between MD patients and health control. Vertical and horizontal dashed lines represent the thresholds for discovering
differentially expressed genes. Log2 fold change >1 and P<0.01. Red color represents up-regulated genes, and green color represents down-
regulated genes. The points with the name and transcript are validated genes. (C) The critical role of MFN2 between BASO, LDLc and MD. Red color
represents up-regulation or positive correlation, and green color represents down-regulation or negative correlation. MD, major depression; BASO,
basophil count; LDLc, low-density lipoprotein cholesterol.
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been shown to affect histamine release from basophils in several

studies (62, 63). The pathways GO:0002251 and GO:0070102 were

associated with immune response and changes in cytokine levels,

such as IL-6. Basophils are involved in the immune response as

granulocytes, and the immune dysregulation has been observed in

patients with depression (64–66). The shared pathways in the MD-

LDLc trait pair emphasized the role of the LDLc receptor and

GTPases Rac proteins. Several studies suggest that LDLc may affect

stress disorders and depression through the epigenetic regulation of

RAC1 (67–70).

We found that both naive and memory B cells were associated

with MD and LDLc according to the results of single-cell

enrichment analysis. Altered B-cell activation has been reported

in association with postpartum depression (71). Furthermore,

Diana et al. reported a reduction in naive B cell frequencies in

severely depressed patients (72). The apolipoprotein-mediated

pathway of lipid antigen presentation in B cells plays a crucial

role in the innate help provided by NKT cells (73). IgM antibodies

produced by B cells can bind to oxidized low-density lipoprotein,

exerting anti-atherosclerotic effects (74). Atherosclerosis has also
Frontiers in Psychiatry 09
been reported to associated with MD (75). Therefore, the

relationship between LDLc and MD may be mediated through its

interaction with B cells.

In this study, the expression of four significantly shared genes were

found to be downregulated in MD patients. Notably, MFN2, a key

player in mitochondrial function, was identified as a gene associated

with MD, BASO, and LDLc. MFN2 may be play a crucial role in

mediating the relationship between increased BASO, decreased LDLc

and the elevated risk of MD.Mitochondrial dysfunction and increased

mitochondrial fragmentation have been observed inMfn2 conditional

knockout mice, which is associated with appropriate mitochondrial

shape, function, and intracellular distribution (76–78). Evidence of

mitochondrial damage in MD has been documented in various areas,

including inflammation, oxidative stress, and changes in

neuroplasticity (79). Animal studies have demonstrated that Mfn2

in the nucleus accumbens can regulate depressive-like behaviors by

affecting mitochondrial structure and function (80). This suggests that

MFN2 is involved in the pathophysiological processes of MD.

Furthermore, MFN2 protein levels were found to be downregulated

in MD patients, but were restored following treatment with a selective
TABLE 2 Shared genes between blood-based biomarkers and MD.

Trait pair Gene phen b_SMR se_SMR P_SMR P_HEIDI nsnp_HEIDI

MD-BASO MFN2a MD -0.027 0.013 0.045 0.926 19

BASO -0.017 0.004 <0.001 0.344 17

MD-BASO AC074286.1 MD 0.050 0.022 0.023 0.893 10

BASO 0.016 0.006 0.012 0.750 10

MD-BASO FAM55C a MD -0.043 0.019 0.023 0.038 8

BASO -0.013 0.005 0.017 0.438 8

MD-BASO RP11-115L11.1 MD -0.040 0.014 0.006 0.815 13

BASO -0.011 0.004 0.008 0.828 12

MD-LDLc MFN2 a MD -0.027 0.013 0.045 0.926 19

LDLc 0.009 0.004 0.029 0.900 17

MD-LDLc GCC2 a MD 0.098 0.041 0.015 0.011 20

LDLc 0.013 0.007 0.048 0.016 20

MD-LDLc GPR20 MD 0.045 0.020 0.027 0.755 16

LDLc 0.016 0.006 0.013 0.023 13

MD-LDLc CTD-3064M3.3 MD 0.035 0.016 0.028 0.833 17

LDLc 0.013 0.005 0.011 0.273 14

MD-LDLc CKAP2 MD -0.046 0.017 0.006 0.749 9

LDLc -0.012 0.005 0.022 0.227 7

MD-LDLc SCAPER a MD -0.045 0.020 0.020 0.658 7

LDLc -0.014 0.006 0.019 0.832 6

MD-LDLc RPL36P4 MD -0.035 0.016 0.028 0.467 6

LDLc -0.016 0.006 0.005 0.959 6
MD, major depression; BASO, basophil count; LDLc, low-density lipoprotein cholesterol; SMR, summary data–based Mendelian randomization; HEIDI, heterogeneity in dependent instrument;
phen, phenotype; se_SMR, standard error of SMR; nsnp_HEIDI, number of SNPs in the HEIDI test.
avalidated by Gene Expression Omnibus dataset.
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serotonin reuptake inhibitor (81). However, another clinical trial

showed increased mitochondrial fragmentation and upregulated

MFN2 protein levels in MD patients (82). These conflicting results

on MFN2 protein levels in MD patients may arise from discrepancies

between changes in MFN2 gene expression and protein levels.

This study has several limitations. First, the relationship

between MD and BASO, as well as LDLc, has not been validated

in prospective cohort studies or clinical trials. Second, although the

link between MFN2 and MD has been validated by external

databases and supported by prior research, the roles of BASO and

LDLc in this relationship remain unclear.

This study research that BASO and LDLc have a causal effect on

MD in individuals of East Asian ancestry. These findings suggest

that the genetic structures linking BASO, LDLc and MD are related

not only to inflammatory cytokines and oxidative stress but also to

mitochondrial dysfunction. It is speculated that the down regulation

of MFN2 may play a significant role in the mitochondrial theory

of depression.
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