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Background: Research from observational studies has demonstrated a link

between Alzheimer’s disease (AD) and a higher risk of cardiovascular disease

(CVD). Uncertainty surrounds the exact genetic cause of AD and coronary heart

disease, particularly unstable angina (UA). Mendelian randomization (MR) analysis

was used to examine the causal genetic link between AD and UA to evaluate the

impact of AD on UA.

Methods: The purpose of the bidirectional MR analysis was to investigate the link

between exposure and illness causation. Genetic instrumental variables for AD

were obtained from European populations using genome-wide association

studies (GWAS). The primary causal conclusions were obtained using the

inverse variance weighted approach (IVW), and other sensitivity analysis

techniques were employed. Sensitivity analyses were carried out to evaluate

heterogeneity and horizontal pleiotropy to guarantee accurate MR results.

Results: An elevated risk of UA was linked to genetically predicted AD (IVW:

OR=3.439, 95% CI: 1.565-7.555, P=0.002). A substantial genetic relationship

between UA and the risk of AD was not supported by any evidence in the reverse

study (IVW: OR=0.998, 95% CI: 0.995-1.001, P=0.190). Various MR techniques

produced consistent results. Sensitivity analysis revealed no discernible

heterogeneity or horizontal pleiotropy.

Conclusions:One risk factor for UA that we found in our bidirectional Mendelian

randomization trial was AD. This highlights the necessity of researching the

underlying molecular mechanisms linked to AD and UA as well as the possibility

of creating individualized treatment plans based on genetic data.
KEYWORDS

Alzheimer’s disease, cardiovascular diseases, coronary artery disease, unstable angina,
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Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative

disease with an insidious onset and progressive progression. It is

marked by a progressive loss of cognitive function and behavioral

abilities (1). Around 10% of people over 65 and up to 50% of

patients over 85 have AD, indicating an increasing prevalence of the

disease with age (1). AD is the most prevalent type of dementia,

making up about 60%–70% of all dementia cases. It affects over 55

million people globally, and the World Health Organization

estimates that by 2050, there will be 152 million AD patients (2).

With almost 9 million patients over 60 in China, AD has a major

effect on families as well (3). Cognitive dysfunction caused by AD

results in irreversible loss of self-care ability, and is characterized by

a long duration of illness and many complications, thus requiring

long-term family care, which undoubtedly brings great pressure on

the family (4). AD also places a significant financial strain on

society. The annual expense of treating this condition can reach

$305 billion in the United States alone (5). Regretfully, the disease’s

etiology is still unknown after decades of research conducted all

around the world, which makes therapy challenging. In the

treatment of AD, it is important not only to slow down the

progression of dementia and reduce symptoms but also to focus

on a range of complications to improve the quality of life of patients.

Cardiovascular disease (CVD) includes angina pectoris (AP),

myocardial infarction (MI), atrial fibrillation (AF), heart failure

(HF), and ischemic stroke (IS) and is currently the largest cause of

death globally (6). As one of the representative diseases, unstable

angina (UA) falls under the category of acute coronary syndromes.

Despite the variety of available treatments, the pathological

structure of the cardiac vasculature cannot be completely

reversed. This well-known public health issue continues to be the

leading cause of death worldwide, with the disease’s serious

consequences being disability and death (7). Over the years, a

large number of studies have been devoted to the evaluation of

unstable angina and other variants of acute coronary syndromes to

ensure that accurate diagnostic tools and the most effective

treatments are realized (8). But it’s also crucial to recognize risk

factors early on and take appropriate action.

Complex interactions exist between AD and CVD. AD (9) and

vascular dementia (VD) (10) are linked to common cardiovascular

illnesses such as coronary artery disease (CAD), heart failure, and

stroke. Specifically, AP has been linked to a higher risk of AD. It is

unclear how AP causes this association, but it can indirectly cause

cerebral hypoperfusion by influencing cardiac output, which in turn

helps form b-amyloid plaques and neurofibrillary tangles, two

significant characteristics of AD (11, 12). Nonetheless, the causal link

between CAD and AD risk is debatable because two meta-analyses

produced radically different findings (13, 14). According to a different

study, there is disagreement regarding the results of research on the

connection between AD and UA because of the presence of

confounders, which can create spurious relationships. It is also

unclear whether shared risk factors are the cause of the association (15).

Thus, more extensive research is required to support the idea

that AD and UA risk are causally related. However observational

studies have inherent flaws that may lead to biased results;
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randomized controlled trials are difficult to conduct because both

diseases share risk factors like obesity, smoking, diabetes, and

metabolic syndrome (16) and have a chronic course that

necessitates long-term follow-up. Investigating the causative link

between AD and UA is essential to better patient management and,

ultimately, the patient’s clinical outcome in addition to assisting in

the customization of the right treatment plan for the patient.

Genetic variation is used as an instrumental variable (IV) in

Mendelian randomization (MR), a unique analytical technique for

epidemiological investigations, to infer causal links between

exposure factors and outcomes (17, 18). To prevent confounding

variables and reverse causation, this method mimics the

randomization procedure used in randomized controlled trials

(RCTs) (19, 20). Many single nucleotide polymorphisms (SNPs)

linked to AD and UA have been found through large-scale GWAS,

and they largely follow the natural order of causality and offer a

chance to investigate any potential causal relationships between the

two. Furthermore, MR is a natural analog of RCTs due to the

random assignment of genetic variants at meiosis, which lowers the

possibility of bias in comparison to observational research (21). Due

to the lack of clarity around the relationship between AD and UA,

we used a two-sample MR analysis in this work and used SNPs as

instrumental variables to investigate the bidirectional causality

between AD and UA and offer fresh insights into the prevention

and treatment of disease.
Materials and methods

Study design

To investigate the causal association between Alzheimer’s

disease and unstable angina, this study used a bidirectional two-

sample Mendelian randomization technique. A pooled dataset from

genome-wide association research was used for MR analysis,

with AD serving as the “exposure” and UA as the “outcome.” An

inverse variance weighting method was also used to determine the

causal relationship between exposure and result. Three primary

hypotheses are required for MR research (22, 23): (1) Correlation

hypothesis (Hypothesis 1): Bidirectional two-sample Mendelian

randomization analysis should be used to ascertain the link

between the exposure and the result. Selected SNPs should exhibit

a significant correlation with the exposure (Alzheimer’s disease).

Hypothesis 2: Independence Hypothesis: The SNPs should be

unaffected by potential confounders that may exist between the

exposure and the result, in this study, unstable angina. (3)

Exclusivity hypothesis (hypothesis 3): SNPs that are substantially

linked to exposure are only causally linked through exposure; they

are not directly related to outcome. Figure 1 provides a summary of

the study design.
Data sources

The two samples used in the MR study have to come from the

same population in order to reduce bias (24). The following website
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was used to gather pertinent genome-wide association study

(GWAS) datasets: https://gwas.mrcieu.ac.uk. We proposed to

select the largest sample size Alzheimer’s disease dataset from this

website. However, each of the three recent datasets on Alzheimer’s

disease suffered from the following problems: (1) the number of

people in the case group was much lower than that of the

control group, which made the analysis incomplete (ieu-b-5067);

(2) the sum of the number of people in the case group and the

control group was not equal to the sample size (ebi-a-

GCST90027158); (3) there was no clear picture of the subgroup

data (ebi-a-GCST90012877). Therefore, we finally chose the

2018 dataset (ID: ukb-b-14699), which has a large sample size

and clearly describes the number of people in the case and control

groups, as well as the dataset from the MRC-IEU, which

provides accuracy and authenticity. We used the same principles

to select the most recent unstable angina dataset with the largest

sample size.

The GWAS dataset of exposure (ID: ukb-b-14699) containing

423,738 participants (36,548 Alzheimer’s disease sufferers and

387,190 control subjects) and roughly 9,851,867 SNPs sites were

exclusively composed of European individuals. This data was

obtained from the MRC-IEU and is the outcome of an analysis of

the UK Biobank dataset by Ben Elsworth et al. With 24,179,929

SNPs, the GWAS dataset of outcome GWAS dataset (ID: ebi-a-

GCST90018932), which was also from Europe, included 456,468

persons in total (of which 9,481 patients had unstable angina and

446,987 were control subjects). Comprehensive details are given

in Table 1.
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Screening of instrumental variables

First, more SNPs closely linked to Alzheimer’s disease were

screened to test the correlation hypothesis. Typically, SNPs with P<

5×10-8 are considered genome-wide significant, but not enough

SNPs were screened at this threshold. Therefore, this study used a

more lenient threshold, setting P< 5×10-6 to screen significant

SNPs (25, 26). The R software package “TwoSampleMR” was used

to carry out the clump stage (27, 28). To remove the chain

imbalance relationship and guarantee the independence of the

screened SNPs, the parameters r2 = 0.001 and region width

kb=10000 were specified (29). Second, the screened SNPs were

searched in LDtrait (https://ldlink.nci.nih.gov/?tab=home), an

open-access web-based tool for identifying germline variants

linked to multiple traits, to confirm if the chosen instrumental

variables met the independence and exclusivity assumptions (30).

Five SNPs linked to confounders and ending variables (rs7223593,

rs76856627, rs117310449, rs8106813, rs62119261) were carefully

removed. Then, instrumental variable strength was assessed by

calculating the F-value of individual SNP to exclude possible

weak instrumental variable bias between instrumental variables

and exposure with the following formula (31):

R2 =
2�MAF � (1 −MAF)� b2

SE2 � N

F − statistic =
R2 � (N − k − 1)

k2(1 − R2)
TABLE 1 Data description of Alzheimer’s diseases and Unstable angina.

Traits Data source PMID Year
Sample size

(cases/controls)
GWAS ID

Alzheimer’s
disease/dementia

Ben Elsworth 2018 36548/387190 ukb-b-14699

Unstable angina Sakaue S 34594039 2021 9481/446987 ebi-a-GCST90018932
FIGURE 1

Analysis flow of two-sample MR. Solid lines indicate the presence of an association, dashed lines indicate the absence of an association; GWAS,
Genome-wide Association Study; MR, Mendelian randomization; SNP, single nucleotide polymorphism; IVM, inverse variance weighted.
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A correlation between instrumental variables and exposure that

is sufficiently high and minimizes the likelihood of weak

instrumental variable bias is indicated by an F-statistic value

larger than 10 (32). Eventually, the exposure and outcome

datasets were merged, the palindromic SNPs in the merged

dataset were eliminated, and the remaining SNPs were the

instrumental variables for the MR analyses that followed.
Statistical analysis

The Mendelian randomization analysis was carried out with the R

software “TwoSampleMR” package. The key outcome was inverse

variance weighting (IVW) analysis, which has significant efficacy in

detecting causal relationships since it is predicated on the idea that the

tool only influences outcomes as a result of exposure and not through

other pathways (33). Even though this analysis eliminated as many

SNPs known to be related to confounders as possible, there are still a lot

of unidentified confounders that could skew the results. Consequently,

in addition to the IVWanalysis results, other analytical techniques such

as the MR-Egger method, weighted median, weighted mode, and

simple mode were also employed (34). IVW studies are most reliable

when there is no horizontal pleiotropy in the instrumental variables.

IVW combines the MR effect estimates of individual SNP to determine

the possible causal effect of the overall weighted estimates (35, 36).

According to research, the weighted median approach produces

reliable estimates of causal effects even when up to 50% of the data is

derived from genetic variation in the null instrumental variable (37).

MR-Egger regression confirms whether there is horizontal pleiotropy

in the instrumental variables, and when there is horizontal pleiotropy

in the instrumental variables, MR-Egger regression still yields unbiased

estimates of causality (38). Although the test efficacy of the simple

mode is lower than that of the IVW method, it is robust against

pleiotropy (39). Weighted mode is sensitive to the selection of

bandwidth for model estimation (40).

IVW may be subject to bias or multiple effects due to null IVs,

so the validity and robustness of the outcome were tested through a

series of sensitivity analyses. Sensitivity analysis used Cochran’s Q

test (41) to measure the heterogeneity of individual genetic variance

estimates; a P>0.05 result for Cochran’s Q test meant that there was

no heterogeneity among SNPs. By using the MR-Egger-intercept to

test for potential horizontal pleiotropy (38), it was determined that

there was no horizontal pleiotropy in the study if P>0.05. Sensitivity

analysis using leave-one-out was also employed to determine the

degree to which individual SNP affected causation following their

elimination one by one from the final inclusion of SNPs. In

addition, the statistical power of the MR analysis was calculated

through an online tool (https://shiny.cnsgenomics.com/mRnd/).
Results

Instrumental variables

35 SNPs were screened and ultimately identified as instrumental

variables using Alzheimer’s disease as the exposure factor and
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unstable angina as the outcome variable. The F-value calculation

revealed that the maximum F-value was 1,737.714 the minimum F-

value was 20.860, and the F-value of each SNP was greater than 10,

indicating that the phenotype of AD and UA-related phenotypes was

less likely to be impacted by the bias of weak instrumental variables.
MR estimates and sensitivity analyses

The MR-Egger regression ’s intercept in the current

investigation was nearly 0 (intercept=-0.007, P=0.102), suggesting

that the instrumental variables lacked horizontal pleiotropy

(Figure 2A). As seen in Figures 2A, C with Table 2, MR analysis

with IVW as the primary analysis method revealed a causal link

between Alzheimer’s disease and an elevated risk of unstable angina

(OR=3.439, 95% CI: 1.565-7.555, P=0.002).

Heterogeneity between instrumental variables was detected

using IVW and MR-Egger regression. The results of MR-Egger

regression showed that Cochran’s Q=30.221, Q_df=33, P=0.606; the

results of IVW showed that Cochran’s Q=33.036, Q_df=34,

P=0.515 (Figure 2B); this indicates that there was no

heterogeneity among the instrumental variables.

To ascertain whether the causal associations were caused by a

single instrumental variable, sensitivity analyses were carried out

using the leave-one-out method, in which SNP was eliminated one

at a time. The causal effects of the remaining SNPs were then

compared with the findings of the MR analyses of all SNPs. The

robustness of the SNPs analysis was demonstrated by the results of

the sensitivity analyses (Figure 2D).

Subsequently, we further calculated the statistical power of the

MR analysis. The outcome sample size for this study was 456,468,

the proportion of cases in the study was K=0.021, R2 = 0.006,

OR=3.439, and the statistical power calculated by the online tool

was 1.00. Therefore, it is unlikely that this study will have a false-

positive result, and based on the results of the IVW method, it can

be concluded that there is a causal association between Alzheimer’s

disease and unstable angina.
Reverse direction analysis

To determine whether reverse causation exists, we also

performed a reverse MR study using unstable angina as an

exposure factor and Alzheimer’s disease as an outcome variable.

According to Figure 3A, the horizontal multivariate validity test

revealed that the instrumental variables had no horizontal

multivariate validity (intercept=-0.0001, P=0.722). When using

IVW, OR=0.998, 95% CI: 0.995-1.001, P=0.190, the MR analyses’

findings demonstrated that there was no meaningful causal

relationship between UA and the risk of AD (Table 2, Figure 3B).

There was no heterogeneity among the instrumental variables

in the heterogeneity test (Figure 3C), as indicated by the MR-Egger

regression findings that produced Cochran’s Q=13.038, Q_df=15,

P=0.599, and the IVW results that produced Cochran’s Q=13.170,

Q_df=16, P=0.660. For MR analysis, sensitivity analyses produced

trustworthy results (Figure 3D).
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Discussion

Principal findings

In this study, we applied MR analysis for the first time,

extracting GWAS data on unstable angina and Alzheimer’s
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disease in a European population. We discovered that there was

no causal relationship between unstable angina and increased risk

of Alzheimer’s disease (OR=0.998, 95% CI: 0.995-1.001, P=0.190),

but there was a causal relationship between Alzheimer’s disease and

increased risk of unstable angina (IVW: OR=3.439, 95% CI: 1.565-

7.555, P=0.002).
B

C D

A

FIGURE 2

Scatter plot (A), funnel plot (B), forest plot (C), and leave-one-out analysis (D) of the effect of Alzheimer’s disease on Unstable angina(UA). The lines
in (A) illustrate the estimated effect sizes by MR methods. (B) demonstrates that the funnel plot is symmetric, which indicates that the MR estimates
are reliable. (C) shows the MR estimate of each SNP effect on UA. (D) depicts the changes in MR estimates after excluding individual SNP.
TABLE 2 The Mendelian randomization of Alzheimer’s disease and Unstable angina.

Exposure Outcome SNPs Method OR 95%CI P

Alzheimer’s disease Unstable angina 35

MR-Egger 6.128 (2.173-17.284) 0.002

weighted median 5.845 (2.323-14.7703) <0.001

IVW 3.439 (1.565-7.555) 0.002

simple mode 1.656 (0.080-34.404) 0.746

weighted mode 5.472 (2.176-13.764) <0.001

Unstable angina Alzheimer’s disease 17

MR-Egger 0.999 (0.991-1.008) 0.901

weighted median 0.999 (0.994-1.003) 0.585

IVW 0.998 (0.995-1.001) 0.190

simple mode 1.001 (0.993-1.009) 0.767

weighted mode 0.999 (0.994-1.005) 0.858
SNPs, single nucleotide polymorphisms; OR, odds ratio; CI, confidence interval; IVW, inverse-variance weighted.
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Possible mechanisms

Over the past few decades, there has been a significant expansion

and deepening of our understanding of the interactions between the

heart and the brain. The heart and brain are not isolated systems but

fundamentally interconnected by forming neurovascular and

humoral pathways, called the heart-brain axis. Alzheimer’s disease

and cardiovascular disease may occur as a result of abnormalities in

the heart-brain axis (42). Smoking, diabetes, and hypertension have

all been identified as risk factors for dementia and cardiovascular

disease in earlier research (43–45). Coronary heart disease (CHD) is a

significant cardiovascular illness that has been proven to be highly

related to dementia in recent years [46]. Adults with CHD experience

rapid cognitive deterioration after an episode of the disease. Meta-

analyses have shown evidence that suggests a higher risk of dementia

is present in people with coronary heart disease (46). This view is

further supported by a large longitudinal population-based cohort

study that uses data from the UK Biobank and, more importantly,

shows that the younger the age of onset of coronary heart disease, the

higher the risk of dementia; that is, the strength of the association

between dementia events and coronary heart disease increases

progressively as age of onset decreases (47).

Alzheimer’s disease is primarily caused by inflammation (48). In

the brain, b-amyloid deposition, neurofibrillary tangles, and neurotoxic

peptide aggregation trigger inflammatory pathways and lead to the

build-up of inflammatory mediators such as cytokines, carotenoids,
Frontiers in Psychiatry 06
and others that cause neuroinflammation (49–51). The amyloid

hypothesis of Alzheimer’s disease is characterized by b-amyloid (Ab),
which is thought to be a result of impaired perivascular deposition

drainage in the walls of tiny arteries. Ab1–40 is the primary peptide

implicated in pathogenesis among them; due to its degree of vascular

preference, this molecule can be found in the peripheral vascular

system as well as the cerebrovascular system, where it may mediate

arterial illness by exerting pro-inflammatory effects (52).

Angiographically verified coronary artery disease (CAD) was

independently correlated with circulating Ab1-40 levels in a 2-

group independent cohort study with 514 versus 396 participants

(53). There is evidence to show that Ab is concentration-dependent

on the severity of acute coronary syndrome (ACS) (54) and that it

may play a direct role in plaque rupture and thrombosis, which in

turn generate the usual clinical signs of ACS (52).

Past research indicates that the APOE4 gene plays a role in the

pathophysiology of AD. It may work by competitively binding to low-

density lipoprotein receptor-associated protein 1, which inhibits the

clearance of Ab and raises the risk of AD by accumulating Ab in the

brain. It also partially regulates blood Ab hemodynamics (55). The

protein that this gene codes for is also involved in the metabolism of

lipoproteins, such as triglycerides and cholesterol, and this process

aids in the development of atherosclerosis, a condition that is known

to be a major cause of coronary artery disease (56).

According to the results of the present study, rs6733839 may be a

bridge that closely links Alzheimer’s disease to unstable angina.
B

C D

A

FIGURE 3

Scatter plot (A), Forest plot (B), funnel plot (C), and leave-one-out analysis (D) of the effect of Unstable angina on Alzheimer’s disease (AD). The lines
in (A) illustrate the estimated effect sizes by MR methods. (D) shows the changes in MR estimates after excluding each individual SNP.
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rs6733839 is located near the bridging integrator 1 (BIN1) gene, which

in turn affects the accumulation of the two major pathological

hallmarks of AD, namely b-amyloid and Tau (57). BIN1 has also

been found to be a regulator of transverse tubule function and calcium

signaling in cardiomyocytes, and is associated with abnormal cardiac

contraction, increasing the likelihood of malignant arrhythmias before

heart failure (58); plasma levels of cardiac bridging integrator 1 (cBIN1)

also indicative of the effects of coronary microvascular dysfunction on

cardiomyocytes (59). Thus, this may be a potential mechanism for the

relationship between the two diseases.

Without a doubt, there is some degree of relationship between AD

and UA because they have similar molecular mechanisms and linking

pathways, in addition to sharing risk factors. By comprehending the

causes and mechanisms of action of these two illnesses, novel

therapeutic approaches for clinical management may be developed.

To better understand this relationship and develop a more effective

treatment plan for patients with AD and related dementias as well as

UA, more research is required. This research should include the use of

cutting-edge neuroimaging, cardiac and neurological biomarkers,

proteomics, and metabolomics technologies.
Strengths and limitations

This studyused two-sampleMRto investigate thecausal relationship

between AD and UA risk factors. Its main contributions are as follows:

first, it provides abroad reference for future research into the etiology and

mechanismof thedisease, aswell as for thedevelopmentof interventions,

diagnostics, and therapeuticmeasures. Secondly, by buildingMRmodels

to investigate the etiologyof the disease, this study circumvents the effects

of reverse causation and confounding variables, which are

insurmountable in conventional observational investigations.

This study has certain limitations as well. First, since all GWAS

data came from European populations, it is still unclear if the results

apply to other populations. Secondly, subgroup analysis was not

possible to determine causal associations following precise

categorization since the available GWAS data did not include

comprehensive clinical information. Additionally, the nonlinear

relationship between exposure and outcome could not be assessed

because the current study used pooled GWAS data.
Conclusion

We offer evidence for a potential causal link between AD and UA

through Mendelian randomization analysis. The risk of UA is

increased more when AD is present. The genetic similarities between

AD and UA may offer important new information for the creation of
Frontiers in Psychiatry 07
preventative and therapeutic measures. To comprehend the molecular

mechanisms underlying this association and investigate customized

treatments based on genetic data, more research is required.
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