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Elevated peripheral glutamate
and upregulated expression of
NMDA receptor NR1 subunit
in insomnia disorder
Jingjing Lin1,2†, Xiaohui Hou1†, Yaxi Liu1,2, Yixian Cai1,2,
Jiyang Pan1,2* and Jiwu Liao1*

1Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou,
Guangdong, China, 2Department of Psychiatry, Sleep Medicine Centre, The First Affiliated Hospital of
Jinan University, Guangzhou, Guangdong, China
Background: The present study explored the serum glutamate (Glu), glutamine

(Gln), glutamic acid dehydrogenase (GAD) concentrations and the mRNA

expression levels of the N-methyl-D-aspartate receptor (NMDAR) NR1 subunit

in the peripheral blood of patients with insomnia disorder (ID). To our knowledge,

this is the first study showing an increase in the mRNA expression levels of the

NMDAR NR1 subunit in patients with ID.

Methods: This study included 30 ID patients and 30 matched healthy controls.

We investigated the demographic and illness information and assessed subjective

sleep quality using the Pittsburgh Sleep Quality Index. The Hamilton Depression

Scale-17 and Hamilton Anxiety Scale were used to evaluate the patients’

symptoms of depression and anxiety, respectively. The quantifications of Glu,

Gln and GAD concentrations were performed by Enzyme-linked immunosorbent

assay (ELISA). Real-time PCR was used to detect the mRNA expression levels of

the NMDAR NR1 subunit in peripheral blood.

Results: Compared with the healthy control group, the serum Glu

concentrations and the mRNA expression levels of the NMDAR NR1 subunit in

the ID group were significantly higher. However, there was no significant

difference in Gln and GAD between the two groups. The receiver operating

characteristic (ROC) analysis showed that the mRNA expression levels of the

NMDAR NR1 subunit could distinguish ID patients from healthy individuals (area

under the curve: 0.758; sensitivity: 73.3%; specificity: 76.7%). A negative

correlation was found between the mRNA expression levels of the NMDAR

NR1 subunit for age, total duration of illness, and age of first onset in the ID

group, whereas a positive correlation was detected for daytime dysfunction.

Conclusion: Glutamatergic neurotransmission was abnormal in ID patients.

Additionally, the mRNA expression levels of the NMDAR NR1 subunit appeared to

have potential as a clinical biomarker for ID. However, the sample size of our study

was limited, and future studies with larger sample sizes are needed to further validate

and explore the mechanisms involved and to assess the reliability of the biomarker.
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1 Introduction

Insomnia disorder (ID) is the most prevalent sleep disorder,

characterized by challenges in initiating or maintaining sleep and

early morning awakenings accompanied by an inability to return to

sleep. These sleep problems frequently occur despite adequate

opportunities for sleep and cause daytime impairment (1). With a

global prevalence of 19%–50% among adults, ID causes a heavy

economic burden and conveys increased risks for various diseases,

such as cardiovascular disease, diabetes, depression, and anxiety (2–6).

Studies have demonstrated that ID is influenced by heritability, adverse

experiences, lifestyle, and other factors (7, 8). However, the pathogenesis

of ID is not entirely understood and requires further investigation. ID

diagnosis has been mainly based on self-reported sleep difficulties, and

no perfect diagnostic marker for ID has been identified.

Glutamate (Glu) is a primary excitatory neurotransmitter in the

central nervous system (CNS) and peripheral organs. Existing

research has reported changes in Glu levels across various mental

disorders (9–11). Moreover, Glu regulates spontaneous and

rhythmic electrical neuron activity and participates in sleep and

wakefulness (12–14). Activation of glutamatergic neurons induces

arousals that disrupt sleep continuity (15). Glutamatergic neurons

in the parabrachial nucleus serve as the primary source of ascending

arousal influence from the brainstem (16). So far, a few studies have

used magnetic resonance spectroscopy (MRS) to investigate the

changes in brain Glu in ID patients, and the results have been

inconsistent (17–19). By contrast, few studies have analyzed the Glu

of peripheral blood in ID people.

During synapse activity, astrocytes uptake neuronal Glu,

converting it to glutamine (Gln) or oxidizing it through the

tricarboxylic acid cycle. The Gln is subsequently transported back

to neurons and reconverted to Glu. This continuous process, from

the release of neuronal Glu to the regeneration of Glu from Gln, is

referred to as the Glu–Gln cycle (20). Another metabolic route for

Glu entails its transformation into Gamma-aminobutyric acid

(GABA) through the catalysis of glutamic acid decarboxylase

(GAD) (21). Gln plays a crucial role within the brain as a non-

neuroactive intermediary in the recycling process of amino acid

neurotransmitters, primarily Glu and GABA (22). To date, little

evidence has been found associating GAD with ID. Several studies

have employed MRS to explore alterations in brain Gln among ID

patients, yielding inconsistent findings. Glu/Gln (Glx) levels may

reflect hyperarousal at bedtime in ID patients (23). An MRS-based

study found that Glx levels did not differ between those with shorter

and longer sleep duration (24).

Glu is synthesized mainly in glutamatergic neurons and

released from the presynaptic axon termini into the synaptic gap

to activate Glu receptors specifically. Glu receptors are divided into

two major groups: a family of metabotropic Glu receptors (mGluR)

and ionotropic ligand-gated ion channels, such as N-methyl-D-

aspartate receptor (NMDAR). The NR1 (or GluN1) subunit is

fundamentally composed of NMDAR (25). Studies have

confirmed that NMDAR and its subunits are associated with

psychotic disorders (26, 27). Glu increased wakefulness possibly

via the action of NMDAR (28). A recent experiment reported that

NMDAR in the lateral preoptic hypothalamus is essential for
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sustaining sleep, and its activation stabilizes the firing of sleep-on

neurons (29). Moreover, some selective NMDAR antagonists

induce sedation, displaying similarities to the characteristics of

natural deep sleep (30).

Despite the blood-brain barrier (BBB), previous studies have

proven that metabolism in the CNS may influence and be

influenced by peripheral compounds through cytokines,

neurotransmitters, or hormones (31). Partial Glu enters the

bloodstream from the CNS (32). Moreover, NMDAR is not only

present in neuronal cells but also in various non-neuronal cells,

such as platelets and immune system cells, suggesting the possibility

of common regulatory mechanisms between peripheral cells and

neurons (33, 34).

The role of Glu and NMDAR in ID has not been clearly defined.

To our knowledge, no study has been conducted in ID patients

focusing on the mRNA expression levels of the NMDAR NR1

subunit in peripheral blood. Given the participation of Glu and its

receptors in the etiology of sleep, we detected the serum Glu

concentrations and the mRNA expression levels of the NMDAR

NR1 subunit in peripheral blood. We aimed to identify the potential

of serum Glu concentrations and the mRNA expression levels of the

NMDARNR1 subunit as feasible biomarkers for ID, contributing to

a better understanding of ID pathophysiology and improving the

accuracy of ID diagnoses.
2 Materials and methods

2.1 Participants

The present study recruited participants diagnosed with ID in

the First Affiliated Hospital of Jinan University from March to

December 2023.

The inclusion criteria of the ID group were as follows (1):

patients who met the Diagnostic and Statistical Manual of Mental

Disorders, 5th Edition (DSM-5) diagnostic criteria for insomnia

disorder (F51.01) (2); insomnia symptoms had lasted over 3 months

(3); patients who aged 18-65 years (4); junior high school or above

education background (5); Pittsburgh Sleep Quality Index (PSQI) ≥

8 points.

The exclusion criteria were as follows (1): combined with other

sleep-wake disorders, including obstructive sleep apnea syndrome

(apnea–hypopnea index > 15/h) or periodic limb movement of

sleep (Periodic Limb Movement during Sleep Index > 15/h), which

was determined using overnight polysomnography (PSG) (2);

combined with the organic brain, severe somatic, and

neurological diseases (3); insomnia symptoms are caused by

substance use (4); previous or present diagnoses of mental

disorders affecting sleep include anxiety disorders, depression

disorders, bipolar disorders, schizophrenia, and post-traumatic

stress disorder (5); Hamilton Depression Scale-17 (HAMD-17) >

17 points (6); Hamilton Anxiety Scale (HAMA) ≥ 14 points (7);

history of shift work or jetlag (8); history of taking sedative-

hypnotics in the past two weeks (9); pregnant and lactating women.

The healthy control (HC) population was recruited in the same

period from nearby communities. The inclusion criteria of the HC
frontiersin.org
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group were as follows (1): previously or currently did not meet the

diagnostic criteria for ID in DSM-5 (2); aged 18-65 years (3); PSQI <

8 points. The exclusion criteria for the HC group were consistent

with the aforementioned ID group.

The study was performed at The First Affiliated Hospital of

Jinan University with approval from its Medical Ethics Committee

(Approval #KY-2023-113). All participants provided written

informed consent before participating, and researchers adhered to

the Declaration of Helsinki Principles.
2.2 Clinical assessment

All participants were assessed based on the Mini International

Neuropsychiatric Interview (M.I.N.I.) by two professional

psychiatrists to rule out other psychiatric disorders. Meanwhile,

the participants underwent overnight PSG to detect other sleep-

wake disorders. The demographic information was investigated,

including age, gender, marital status (classified into two groups:

currently married and not married), education (described as the

total years of formal education completed), and family history of ID

(whether a clear history of ID existed among the relatives).

Moreover, we gathered illness related information in ID patients,

encompassing age at first onset, current illness duration, total illness

duration, and whether it constituted a first episode. Furthermore,

several scales were used in our study including the PSQI, HAMD-17

and HAMA. The PSQI was used to measure self-rated sleep quality

and sleep disturbance over a 1-month interval, including subjective

sleep quality, sleep latency, sleep duration, habitual sleep efficiency,

sleep disturbances, use of sleeping medication, and daytime

dysfunction (35). The HAMD-17 and HAMA were used to rate

depression and anxiety symptoms in the patients, respectively.
2.3 Analysis of Glu, Gln, GAD and NMDAR
NR1 subunit

Peripheral venous blood from the participants was drawn in a

fasting state in dry tubes and EDTA anticoagulant tubes between

8:00 and 9:00 a.m. the next day after enrollment. The dry tubes (2

mL blood sample/tube) were stored at 4°C for 30 min, followed by

low-temperature centrifugation (4°C) at 3000 r/min for 10 min.

After centrifugation, the supernatant was transferred to a

cryopreservation tube and stored in a refrigerator at –80°C. Glu,

Gln and GAD concentrations were determined using an enzyme-

linked immunosorbent assay (ELISA) kit (Exodiagnosis

Biotechnology Co., Ltd, Guangzhou, China). The concentrations

of the standard substance included in the Glu kit were 48, 24, 12, 6,

3, and 0 mg/L. The detection range of the kit was 1.5–48 mg/L, the

sensitivity was 0.1 mg/L, the intra-assay coefficient of variation was

5%, and the inter-assay coefficient of variation was 10%. The

concentrations of the standard substance included in the Gln kit

were 1600, 800, 400, 200, 100 and 0 µmol/L. The detection range of

the kit was 50-1600 µmol/L, the sensitivity was 10 µmol/L, the intra-

assay coefficient of variation was 6%, and the inter-assay coefficient

of variation was 11%. The concentrations of the standard substance
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included in the GAD kit were 48, 24, 12, 6, 3 and 0 U/L. The

detection range of the kit was 1.5-48 U/L, the sensitivity was 0.1 U/

L, the intra-assay coefficient of variation was 5%, and the inter-assay

coefficient of variation was 10%.

Blood samples in the EDTA anticoagulant tubes were used to

detect mRNA expression levels of the NMDAR NR1 subunit. Total

RNA was extracted using the Blood Sample RNA Extraction Kit

(OMEGA). A purity test was performed: 1 µL of the RNA sample

was diluted 50-fold, and the optical density (OD) value was

measured with the Biophotometer plus Eppendorf Nucleic Acid

Protein Analyzer. The OD260/OD280 ratio was higher than 1.8,

demonstrating that the extracted RNA is relatively pure and free of

protein contaminants. Total RNA integrity was then detected: 1 mL
of RNA sample was loaded onto 1% agarose gels, electrophoresis

was run at 80 V for 20 min, and rRNA bands of total RNA were

observed after 5, 18, and 28 s using a gel-imaging system (Tanon

1220, Shanghai Tianneng Technology Co., Ltd.). The completion of

total RNA extraction can be verified when all three bands are

present. Total RNA was reverse transcribed into cDNA using a

reverse transcription kit (Promega). Based on the NCBI database

sequence, primers in the experiment were synthesized by Shanghai

Biotechnology Company. The primer sequences for the NMDAR

NR1 subunit are as follows: CCTCAAGTCCCACGAGAATG

(forward primer) and TCAAAAGTAAGGGTCGCAGG (reverse

primer). For the 18s rRNA, the primer sequences are:

CCTGGATACCGCAGCTAGGA (forward primer) and

GCGGCGCAATACGAATGCCCC (reverse primer). Real-time

PCR was conducted utilizing the ABI PRISM ® 7500 Sequence

Detection System (Applied Biosystems). The reaction conditions

were pre-denaturation at 95°C for 4 min, 1 cycle; denaturation at

95°C for 15 s, annealing at 60°C for 32s, extending for 1 min at 70°

C, 40 cycles, and extra-extension for 5 min at 72°C. At the end of the

reaction, a melting curve was obtained for each sample and the

relative expression level was calculated using the (2 –DD CT) method.
2.4 Statistical analysis

Statistical analysis was performed using the software SPSS

v27.0 (IBM Corp., Armonk, NY, USA). Continuous values are

presented as means ± standard deviation if normally distributed;

otherwise, they are presented as median (lower and upper

quartiles) if non-normally distributed. Comparisons of variables

between groups were performed using the t-test, and data that did

not conform to the normal distribution were converted using the

square root transformation to ensure the normality of distribution.

Pearson’s or Spearman’s test was used for correlation analysis. We

conducted receiver operating characteristic (ROC) analysis to

evaluate the accuracy of Glu concentrations and the mRNA

expression levels of the NMDAR NR1 subunit in distinguishing

individuals with ID from HCs. The area under the ROC curve (area

under the curve, AUC), sensitivity, and specificity were calculated

to assess the estimation validity. The optimal value cutoff level was

determined as the level that exhibited the highest sensitivity among

the maximal values on the Youden index, calculated as (sensitivity

+ specificity) –1.
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3 Results

3.1 Demographic and clinical features

We recruited 34 ID participants, 4 of whom were excluded

from the analysis (2 were diagnosed with obstructive sleep apnea-

hypopnea syndrome and 2 with periodic limb movement

disorder). Finally, this study included 30 participants (mean

age = 39.13 ± 11.97 years; 13 males) in the ID group and 30

participants (mean age = 34.67 ± 13.68 years; 13 males) in the HC

group. Statistical analysis showed no significant differences in age

(P = 0.182), gender (P = 0.759), marital status (P = 0.592),

education (P = 0.101) and family history (P = 0.161) between

the two groups. Among ID patients, the average age at first-onset

was 35.10 ± 9.69 years, 21 patients were in the first episode, the

time of current course was 12.50 (4.00–25.25) months, and the

total duration of illness was 25.00 (12.75–79.50) months.

Furthermore, there were significant differences between the two

groups in the total scores of HAMA, HAMD-17, and PSQI and its

subscale (sleep quality, sleep latency, sleep duration, habitual

sleep efficiency, sleep disturbances, use of sleeping medication,

daytime dysfunction) (Table 1).
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3.2 Comparison between ID and HC
groups in Glu, Gln, GAD concentrations
and mRNA expression levels of NMDAR
NR1 subunit

Compared with the HC group, the serum Glu concentrations (t =

2.089, P = 0.042) and the mRNA expression levels of the NMDAR

NR1 subunit in peripheral blood (t = 4.245, P < 0.001) were

significantly higher in the ID group (Figure 1). However, there was

no significant difference in Gln (t = -0.632, P = 0.530) or GAD (t =

-0.830, P = 0.410) between the ID group and HC group. In addition,

Gln/Glu was significantly decreased (t = -2.318, P = 0.024) in the ID

group compared with the HC group (Supplementary Figure 1).
3.3 ROC analysis for differentiation
between the ID and HC groups

The ROC curve (Figure 2) analysis indicated that the mRNA

expression levels of the NMDAR NR1 subunit exhibited a moderate

degree of validity in differentiating between ID patients and HCs

(AUC = 0.758, P = 0.001, 95% confidence interval = 0.633–0.883).
TABLE 1 Demographic and clinical features of participants.

Characteristics ID (N=30) HC (N=30) T or c2 P

Number of subjects 30 30 – –

Age(year) 39.13 ± 8.53 34.67 ± 9.05 1.346 0.182

Gender(male/female) 14/16 13/17 0.067 0.795

Married (yes/no) 20/10 18/12 0.287 0.592

Education (year) 14.03 ± 3.05 12.67 ± 3.29 1.669 0.101

Family history (yes/no) 4/26 1/29 1.964 0.161

First-episode (yes/no) 21/9 – – –

Age of first onset 35.10 ± 9.69 – – –

Time of current
course (month)

12.50 (4.00–25.25) – – –

Total duration of
illness (month)

25.00 (12.75–79.50) – – –

HAMA total scores 9.80 ± 2.93 4.40 ± 2.20 11.373 < 0.001

HAMD total scores 11.73 ± 3.14 6.07 ± 1.64 11.310 < 0.001

PSQI total scores 15.43 ± 2.40 3.67 ± 1.69 21.949 < 0.001

Sleep quality 2.70 ± 0.47 0.93 ± 0.58 12.960 < 0.001

Sleep latency 2.77 ± 0.43 0.40 ± 0.23 19.692 < 0.001

Sleep duration 1.00 ± 0.74 2.47 ± 0.82 7.264 < 0.001

Habitual sleep efficiency 2.60 ± 0.81 0.77 ± 0.50 10.491 < 0.001

Sleep disturbances 1.40 ± 0.68 0.03 ± 0.08 10.710 < 0.001

Use of sleeping medication 0.93 ± 0.143 0 4.474 < 0.001

Daytime dysfunction 0.53 ± 0.63 2.57 ± 0.58 12.035 < 0.001
Subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication, and daytime dysfunction are components of the PSQI.
ID, insomnia disorder; HC, healthy control; PSQI, Pittsburgh Sleep Quality Index; HAMD-17, Hamilton Depression Scale-17; HAMA, Hamilton Anxiety Scale.
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The optimal cutoff point for the mRNA expression levels of the

NMDAR NR1 subunit was 0.86 (sensitivity = 73.3%, specificity =

76.7%). However, the Glu concentrations could not distinguish ID

patients fromHCs (AUC = 0.629, P= 0.086, 95% confidence interval

= 0.483–0.775).
3.4 Association of Glu, Gln, GAD
concentrations and mRNA expression
levels of NMDAR NR1 subunit with clinical
features in ID patients

No significant and qualitatively relevant correlations were

found between the serum Glu, GAD concentrations and clinical

features in the ID group. The mRNA expression levels of the

NMDAR NR1 subunit in ID patients were found to be negatively

correlated with age (r = −0.58, P < 0.001), total duration of illness
Frontiers in Psychiatry 05
(r = −0.42, P = 0.021), age of first onset (r = −0.57, P < 0.001) but

positively correlated with daytime dysfunction (r = 0.45, P = 0.014).

No statistically significant difference was found between the mRNA

expression levels of the NMDAR NR1 subunit and gender, total

disease duration, and PSQI total scores. And Gln was negatively

corre la ted wi th tota l durat ion of i l lness ( r=-0 .435 ,

P=0.016) (Table 2).
3.5 The correlation analysis of serum Glu,
Gln, and GAD

Our results found no significant correlation between serum

levels of Glu and Gln (r = 0.006, P=0.974), serum levels of GAD and

Glu (r=0.229, P=0.223), or serum levels of GAD and Gln (r=0.128,

P=0.501) in the ID group (Figure 3). However, significant

correlations were observed between serum levels of Glu and Gln
FIGURE 1

Comparison between ID and HC groups in Glu concentrations (A), the mRNA expression levels of NMDAR NR1 subunit (B), GAD concentrations (C)
and Gln concentrations (D). Glu, glutamate; NMDAR, Nmethyl-D-aspartate receptor; GAD, glutamic acid decarboxylase; Gln, glutamine; ID, insomnia
disorder; HC, healthy control.
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(r=0.391, P=0.033), serum levels of GAD and Glu (r=0.496,

P=0.005), and serum levels of GAD and Gln (r=0.428, P=0.018)

in the HC group (Figure 4).
4 Discussion

We assessed the serum Glu concentrations and mRNA

expression levels of the NMDAR NR1 subunit in ID patients to

evaluate the potential of these peripheral measures as biomarkers

for ID. We found that the serum Glu concentrations and mRNA
Frontiers in Psychiatry 06
expression levels of NMDAR NR1 subunit in ID patients were

higher than those in the control group, suggesting the dysregulation

of glutamatergic pathways in ID. To our knowledge, this is the first

study revealing upregulated expression of NMDAR NR1 subunit in

patients with ID.

Glu is the most abundant amino acid neurotransmitter in the

brain, which can partially enter the peripheral blood circulation and

exchange information bi-directionally (32). Researchers have

investigated the Glu levels of the CNS in ID patients. MRS-based

studies indicated that Glu levels in basal ganglia were increased after

sleep loss (36, 37). However, several previous studies using MRS
FIGURE 2

ROC analysis of Glu (A) and the mRNA expression levels of NMDAR NR1 subunit (B) for differentiation between the insomnia disorder and healthy
control groups. Glu, glutamate; NMDAR, N-methyl-D-aspartate receptor.
TABLE 2 Association of Glu concentrations and the mRNA expression levels of NMDAR NR1 subunit with clinical features in Insomnia
disorder patients.

Characteristics
Glu Gln GAD NR1 mRNA

r P r P r P r P

Age -0.125 0.509 -0.296 0.112 0.293 0.117 -0.58*** 0.001

Total duration of illness 0.25 0.183 -0.435* 0.016 0.056 0.767 -0.42* 0.021

Age of first onset 0.01 0.097 -0.159 0.402 0.323 0.081 -0.57** 0.001

HAMA 0.28 0.141 -0.308 0.098 0.212 0.261 0.01 0.962

HAMD -0.22 0.251 -0.226 0.230 0.196 0.298 0.09 0.651

PSQI 0.09 0.652 -0.077 0.686 0.209 0.267 -0.14 0.472

Subjective sleep quality 0.05 0.791 0.080 0.673 0.256 0.172 0.03 0.877

Sleep latency -0.21 0.266 -0.026 0.891 0.224 0.234 -0.42* 0.021

Sleep duration -0.31 0.479 0.018 0.924 0.029 0.881 0.21 0.263

Habitual sleep efficiency -0.22 0.240 0.064 0.736 0.026 0.892 -0.18 0.346

Sleep disturbances -0.25 0.177 0.244 0.194 0.151 0.425 -0.13 0.505

Use of sleeping medication -0.21 0.270 -0.395 0.091 0.155 0.413 -0.31 0.100

Daytime dysfunction 0.11 0.573 0.040 0.833 0.022 0.909 0.45* 0.014
*P < 0.05; ***P < 0.001. Subjective sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbances, use of sleeping medication, and daytime dysfunction are components of
the PSQI.
Glu, glutamate; Gln, glutamine; GAD, glutamic acid decarboxylase; NR1, the mRNA expression levels of NMDARNR1 subunit; NMDAR, N-methyl-D-aspartate receptor; PSQI, Pittsburgh Sleep
Quality Index; HAMD-17, Hamilton Depression Scale-17; HAMA, Hamilton Anxiety Scale.
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have shown no difference in Glu levels in the left occipital cortex, left

prefrontal cortex, anterior cingulate cortex, and thalamus regions of

the brain between ID patients and controls (17–19). Glu exhibits

varying associations with sleep/wake stages across diverse brain

regions (38). The reason for the distinction can be associated with

the specificity of brain regions and the heterogeneity of samples of ID

patients. ID patients showed no differences in brain Gln and Glx

levels compared to the control group (18). Because Glx comprises

both Glu and Gln signals, studies indicating increased Glx could

indicate elevated levels of Glu, Gln, or both metabolites concurrently

(39). When analyzing peripheral Glu, a study found that ID patients

had increased serum Glu levels compared with healthy people, which

is consistent with our study (40). However, there have been no studies

to measure Gln levels in peripheral blood.

The NMDAR exists in CNS and peripheral organs and exhibits

unique properties that play an indispensable role in sleep, emotion,

learning, and memory, but overstimulation of NMDAR induces

several signal cascades leading to cell apoptosis (41, 42). NMDAR

comprises NR1, NR2, and NR3 subunits; among these subunits,

NR1 is the fundamental component (43). NMDAR activation

regulates the rhythms of sleep and is required for various sleep

properties (29, 44). Changes in the expression of the NMDAR NR1

subunit in ID patients have not been reported. A molecular imaging

study demonstrated that the availability of cerebral functional

metabotropic Glu receptors of subtype 5 (mGluR5) was increased

after sleep deprivation (45). In an animal experiment, the surface

expression level of NMDAR NR1 within the hippocampus was
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upregulated in mice with longer deprivation (SD) compared with

mice with shorter SD (46). Another study with rats observed

increased protein levels of the NMDAR NR1 subunit following

treatment with sedative-hypnotic (47). Our study found that

NMDAR NR1 subunit was upregulated in ID patients, which was

similar to these findings, suggesting that ID was linked to the

change in expression of Glu receptor.

Moreover, ROC analysis suggested that the mRNA expression

levels of the NMDAR NR1 subunit in peripheral blood may be a

potential biomarker to help diagnose ID. To our knowledge, the

present study is the first to demonstrate an increase in the mRNA

expression levels of NMDAR NR1 subunit in ID people. Blood-based

biomarkers have proven beneficial in clinical practice in other

medical specialties because of the ease of access and low

invasiveness of the bio-sampling method (48). While measuring

neurotransmitter concentrations or their receptor expression levels

in cerebrospinal fluid is ideal, obtaining individual samples may

present challenges (49). The availability of biomarker tests would

allow for earlier diagnosis, improved diagnostic accuracy, and permit

the stratification of patients for more effective treatment plans.

It is not entirely clear how the peripheral Glu, Gln or the mRNA

expression levels of NMDAR NR1 subunit reflect CNS levels. Some

studies indicate a correlation of glutamatergic neurotransmission

between the CNS and the periphery. For instance, Rollins et al.

demonstrated that mRNA transcripts in blood reflect approximately

20% of the transcripts expressed in brain tissues (50). And a positive

correlation was found between serum and cerebrospinal fluid
FIGURE 3

(A) The correlation analysis of serum Glu and Gln in insomnia disorder group. (B) The correlation analysis of serum Glu and GAD in insomnia
disorder group. (C) The correlation analysis of serum Gln and GAD in insomnia disorder group. Glu, glutamate; Gln, glutamine; GAD, glutamic
acid decarboxylase.
FIGURE 4

(A) The correlation analysis of serum Glu and Gln in healthy control group. (B) The correlation analysis of serum Glu and GAD in healthy control group.
(C) The correlation analysis of serum Gln and GAD in healthy control group. Glu, glutamate; Gln, glutamine; GAD, glutamic acid decarboxylase.
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concentrations of Glu in 10 healthy people (51). Interactions between

the brain and periphery occur in diverse ways, including

neurotransmitters and soluble receptors (52, 53). Additionally,

elevated extracellular glutamate is considered to trigger the opening

of BBB, and NMDAR activation damages mucosal barrier integrity,

thereby increasing BBB permeability (54, 55). Because of the

communication between CNS and non-neuronal cells, Glu

concentrations and receptor expression in peripheral blood may

indicate pathophysiological changes in the CNS. However, more

research is needed to comprehend the correlation of glutamatergic

neurotransmission between the CNS and the periphery.

The present study found a negative correlation between the

mRNA expression levels of the NMDAR NR1 subunit and age,

total duration of illness, and age of first onset in ID patients, which

may indicate that the Glu activation response in ID patients

diminishes with increasing age and disease duration. Previous

studies have reported that the expression of NMDAR declines with

age (56–59). For example, an animal model revealed that the density

of NR2b immunoreactive cells within the anteroventral

periventricular decreased as a function of age (59). Since insomnia

symptoms are considered to be an age-related process (60), the above

finding implies that age may influence the occurrence of ID by

affecting NMDAR expression; however, further research is needed to

elucidate this relationship. In adult rats, NMDAR expression in the

hippocampus was upregulated in the early phase and downregulated

in the late phase following NMDAR antagonist administration (61).

Additionally, patients with anti-NMDAR encephalitis showed a

correlation between hippocampal volumetry and disease duration

(62). Based on these studies and our results, we speculate that illness

duration influences NMDAR expression in a certain way. The NR1

subunit is a critical component of the NMDA receptor, and thus NR1

subunit mRNA expression reflects NMDA receptor expression levels.

We also found a positive correlation between the mRNA expression

levels of the NMDAR NR1 subunit and daytime dysfunction.

Although there are no existing reports on this correlation, it is

hypothesized that the observed positive correlation might be due to

compensatory mechanisms in ID, given that NMDAR activation

plays a role in promoting wakefulness (28).

In addition, our results found no significant correlation between

serum levels of Glu and Gln, serum levels of GAD and Glu, or

serum levels of GAD and Gln in the ID group, but significant

correlations were observed between serum levels of Glu and Gln,

serum levels of GAD and Glu, and serum levels of GAD and Gln in

the HC group. This may indicate a dysregulation in the metabolism

of glutamatergic neurotransmission in ID, providing a novel

perspective on the pathophysiology of ID.

This study has some limitations. First, we did not simultaneously

investigate changes of glutamatergic neurotransmission in the CNS

and peripheral blood. Further experimentation should be required to

determine if co-regulation of altered blood and brain expression is

found in ID. Second, this study examined only the mRNA expression

levels of NMDAR NR1 subunit in ion channel Glu receptors and

failed to detect the expression of metabolic Glu receptors

simultaneously. Thirdly, the sample size is relatively small; thus,

future studies should aim to expand the sample size to enhance the

persuasiveness of the findings.
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The present study suggested that glutamatergic neurotransmission

was abnormal in ID patients, which may play a critical role in the

pathogenesis of ID. Additionally, the mRNA expression levels of the

NMDAR NR1 subunit appeared to have potential as a clinical

biomarker for ID. However, the sample size of our study was

limited, which may affect the generalizability of the results.

Therefore, future studies with larger sample sizes are needed to

further validate and explore the mechanisms involved and to assess

the reliability of the biomarker.
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57. Montori S, Dos-Anjos S, Martıńez-Villayandre B, Regueiro-Purriños MM,
Gonzalo-Orden JM, Ruano D, et al. Age and meloxicam attenuate the ischemia/
reperfusion-induced down-regulation in the NMDA receptor genes. Neurochem Int.
(2010) 56:878–85. doi: 10.1016/j.neuint.2010.03.013

58. Magnusson KR, Kresge D, Supon J. Differential effects of aging on NMDA
receptors in the intermediate versus the dorsal hippocampus. Neurobiol Aging. (2006)
27:324–33. doi: 10.1016/j.neurobiolaging.2005.01.012

59. Maffucci JA, Noel ML, Gillette R, Wu D, Gore AC. Age- and hormone-
regulation of N-methyl-D-aspartate receptor subunit NR2b in the anteroventral
periventricular nucleus of the female rat: implications for reproductive senescence. J
Neuroendocrinol. (2009) 21:506–17. doi: 10.1111/j.1365-2826.2009.01860.x

60. Novozhilova M, Mishchenko T, Kondakova E, Lavrova T, Gavrish M, Aferova S,
et al. Features of age-related response to sleep deprivation: in vivo experimental studies.
Aging (Albany NY). (2021) 13:19108–26. doi: 10.18632/aging.203372

61. Dubovyk V, Manahan-Vaughan D. Time-dependent alterations in the
expression of NMDA receptor subunits along the dorsoventral hippocampal axis in
an animal model of nascent psychosis. ACS Chem Neurosci. (2018) 9:2241–51.
doi: 10.1021/acschemneuro.8b00017

62. Finke C, Kopp UA, Pajkert A, Behrens JR, Leypoldt F, Wuerfel JT, et al.
Structural hippocampal damage following anti-N-methyl-D-aspartate receptor
encephalitis. Biol Psychiatry. (2016) 79:727–34. doi: 10.1016/j.biopsych.2015.02.024
frontiersin.org

https://doi.org/10.1093/sleep/zsz161
https://doi.org/10.1159/000054949
https://doi.org/10.5334/jcr.183
https://doi.org/10.1016/j.euroneuro.2015.09.020
https://doi.org/10.19845/j.cnki.zfysjjbzz.2021.0108
https://doi.org/10.1016/j.ejphar.2016.05.009
https://doi.org/10.1016/s0165-6147(00)89070-7
https://doi.org/10.1016/s0165-6147(00)89070-7
https://doi.org/10.1038/nature13548
https://doi.org/10.1093/sleep/zsz135
https://doi.org/10.1016/j.biopsych.2012.07.030
https://doi.org/10.1016/j.bbr.2015.02.040
https://doi.org/10.3390/brainsci13121707
https://doi.org/10.1016/j.pneurobio.2014.08.002
https://doi.org/10.1016/j.psyneuen.2014.12.012
https://doi.org/10.1002/ajmg.b.31062
https://doi.org/10.1016/0006-3223(88)90052-2
https://doi.org/10.5498/wjp.v6.i1.102
https://doi.org/10.1016/j.jneuroim.2017.01.013
https://doi.org/10.1016/j.tox.2015.11.006
https://doi.org/10.1186/s12987-022-00364-6
https://doi.org/10.1523/JNEUROSCI.3881-15.2016
https://doi.org/10.1016/j.neuint.2010.03.013
https://doi.org/10.1016/j.neurobiolaging.2005.01.012
https://doi.org/10.1111/j.1365-2826.2009.01860.x
https://doi.org/10.18632/aging.203372
https://doi.org/10.1021/acschemneuro.8b00017
https://doi.org/10.1016/j.biopsych.2015.02.024
https://doi.org/10.3389/fpsyt.2024.1436024
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

	Elevated peripheral glutamate and upregulated expression of NMDA receptor NR1 subunit in insomnia disorder
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Clinical assessment
	2.3 Analysis of Glu, Gln, GAD and NMDAR NR1 subunit
	2.4 Statistical analysis

	3 Results
	3.1 Demographic and clinical features
	3.2 Comparison between ID and HC groups in Glu, Gln, GAD concentrations and mRNA expression levels of NMDAR NR1 subunit
	3.3 ROC analysis for differentiation between the ID and HC groups
	3.4 Association of Glu, Gln, GAD concentrations and mRNA expression levels of NMDAR NR1 subunit with clinical features in ID patients
	3.5 The correlation analysis of serum Glu, Gln, and GAD

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


