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Premenstrual dysphoric disorder (PMDD), a more severe manifestation of

premenstrual syndrome (PMS), is characterized by emotional, behavioral, and

physical symptoms that begin in the mid-to-late luteal phase of the menstrual

cycle, when estradiol and progesterone levels precipitously decline, and remit

after the onset of menses. Remotely monitoring physiologic variables associated

with PMDD depression symptoms, such as heart rate variability (HRV), sleep, and

physical activity, holds promise for developing an affective state prediction

model. Switching into and out of depressive states is associated with an

increased risk of suicide, and therefore, monitoring periods of affective

switching may help mitigate risk. Management of other chronic health

conditions, including cardiovascular disease and diabetes, has benefited from

remote digital monitoring paradigms that enable patients and physicians to

monitor symptoms in real-time and make behavioral and medication

adjustments. PMDD is a chronic condition that may benefit from real-time,

remote monitoring. However, clinical practice has not advanced to monitoring

affective states in real-time. Identifying remote monitoring paradigms that can

detect within-person affective state change may help facilitate later research on

timely and efficacious interventions for individuals with PMDD. This narrative

review synthesizes the current literature on behavioral and physiological

correlates of PMDD suitable for remote monitoring during the menstrual cycle.

The reliable measurement of heart rate variability (HRV), sleep, and physical

activity, with existing wearable technology, suggests the potential of a remote

monitoring paradigm in PMDD and other depressive disorders.
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1 Introduction

Premenstrual dysphoric disorder (PMDD) is characterized by

emotional, behavioral, and physical symptoms that begin in the

mid-to-late luteal phase of the menstrual cycle, when estradiol and

progesterone levels precipitously decline, and remit after the onset

of menses (Figure 1) (1–3). Research suggests that the withdrawal of

the neuroactive steroid allopregnanolone (ALLO), a metabolite of

progesterone, during the luteal phase may diminish the effect of the

inhibitory neurotransmitter gamma-aminobutyric acid (GABA)

among those with PMDD, leading to a heightened stress response

and reduced parasympathetic nervous system activity (3, 4).

PMDD may be thought of as a more impairing and severe

manifestation of premenstrual syndrome (PMS), which is also

characterized by a combination of physical and emotional

symptoms that commonly include anger, depression, irritability,

mood swings, breast tenderness, headache, and bloating (5). A

recent meta-analysis found a 3.2% global prevalence estimate of

confirmed PMDD, whereas PMS has global prevalence estimates of

nearly 50% (6, 7). Like other mood disorders, the precipitous onset

and remission of symptoms, which can be severe and impairing,

often leaves individuals with PMDD uncertain about when

symptoms will begin and the degree of impact they will have each

menstrual cycle.

Management of other chronic health conditions, including

cardiovascular disease and diabetes, has benefited from remote

digital monitoring paradigms that enable patients and physicians

to monitor symptoms in real-time and make behavioral and

medication adjustments (8–12). Although digital health has not

been widely adopted in mental healthcare, preliminary evidence

suggests it may help individuals with depression and their

healthcare providers better identify personalized patterns of risk

and enable just-in-time interventions (13). PMDD is an ideal mood
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disorder to begin building within-person algorithms to detect mood

changes, given the frequent cadence of affective switching (i.e.,

switching from euthymia to depression and back again each month)

and the clear benefit of detecting an impending affective switch

early enough to prevent or reduce its severity.

In mood disorders generally, the transition into and out of

depression (i.e., “affective switching”) is characterized by increased

rates of suicide (14–16). Thus, PMDD presents a unique risk due to

the frequency of affective switching. Indeed, those with PMDD are

seven times more likely to attempt suicide than individuals without

PMDD (Prasad et al., 2021).

Despite the high mortality rate in PMDD and the associated

importance of monitoring risk, PMDD is difficult to diagnose

correctly and monitor over time. Specifically, both the Diagnostic

and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)

and the International Classification of Diseases, Eleventh Revision

(ICD-11) require prospective daily assessment during two

menstrual cycles (17–19). To meet the criteria for PMDD,

symptoms must be present for the week before menstruation (i.e.,

the luteal phase), and symptoms must clear out within the first

couple of days of menstruation. Per the DSM-5, at least five

symptoms must be endorsed, including at least one symptom

from criterion B (marked irritability or anger or increased

interpersonal conflicts; markedly depressed mood, feelings of

hopelessness, or self-deprecating thoughts; marked anxiety,

tension, and/or feelings of being keyed up or on edge) and at

least one symptoms from criterion C (decreased interested in usual

activity; subjective difficulty concentrating; lethargy, easy

fatigability, or marked lack of energy; marked change in appetite,

overeating or specific cravings; hypersomnia or insomnia; a sense of

being overwhelmed or out of control; physical symptoms such as

breast tenderness or swelling, joint or muscle pain, a sensation of

“bloating” or weight gain) (18).
FIGURE 1

Hormones and PMDD symptom timing throughout the menstrual cycle.
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At present, there are no commercially available apps or trackers

to assist with PMDD diagnosis. The gold standard method of

diagnosing PMDD calls for clinicians to use paper and pencil to

hand-score prospective symptom ratings (17). Moreover, for

individuals with PMDD, the timing of affective state transitions

into and out of depression is contingent on the menstrual cycle.

However, not all individuals have a reliably consistent cycle

length, making it difficult to predict the highest-risk period (20).

Ideally, clinicians would monitor those with PMDD during the

highest risk period and introduce just-in-time interventions

to mitigate impairment and prevent suicidality. Yet, current

practice generally precludes prediction of symptom onset and

timely intervention.

Other chronic conditions with heightened mortality rates have

benefited from real-time remote monitoring. For example, the use

of continuous glucose monitoring devices for diabetes mellitus

reduces HbA1c by an additional 17-43% compared to usual care

(8, 9). Similar impacts have been observed in cardiovascular disease.

Compared with usual care, the use of combined remote monitoring

and consultation decreases cardiovascular-related mortality and

hospitalization by 17% and 28%, respectively (10). Encouragingly,

83% of adults with cardiovascular disease are willing to share

wearable device data with their clinicians to improve their care (21).

Like diabetes mellitus and cardiovascular disease, PMDD is a

chronic condition that may benefit from real-time, remote

monitoring. However, clinical practice has not advanced to

monitoring affective states in real-time (22, 23). Given that 29%

of Americans already use fitness tracking devices, remote

monitoring may be a feasible and affordable way to monitor

affective switching (21). Consequently, using wearable devices for

remote monitoring of mood disorder symptoms holds the potential

for advancing population health in depressive disorders, as it has

with cardiovascular disease and diabetes. However, since there is a

lack of studies aimed at detecting affective switching through

remote monitoring, reviewing the potential physiological

biomarkers that could serve as endpoints for affective switching is

warranted. PMDD, a relatively homogenous depression subtype

with a known, frequent, and regularly occurring trigger of affective

switching, holds promise for developing an affective state prediction

model (24).

This review aims to synthesize the current literature on

behavioral and physiological biomarkers of affective switching in

PMDD and depressive disorders, with a focus on their suitability for

remote monitoring. In particular, biomarkers were selected for

review that are 1) able to be passively monitored with modern

wearable technology 2) have an established association with mood

and 3) have some literature supporting a relationship with the

menstrual-cycle related changes. As a result, heart rate variability

(HRV), sleep, and physical activity were selected for review. The

review will also explore the predictive utility of passively monitoring

smartphone behavior and social smartphone behavior. Finally, gaps

in the existing literature will be identified and potential next steps

toward applying remote digital monitoring to PMDD and other

depressive disorders will be described.
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2 Heart rate variability (HRV)

Heart rate variability (HRV), the variation in time between

successive heartbeats, is a noninvasive measure of autonomic

nervous system (ANS) activity, with higher HRV thought to

reflect greater physiologic flexibility and ability to regulate

emotional responses (25).
2.1 HRV measurement

HRV is measured using both time-domain measurements or

frequency-domain measurements (26, 27), computed in several

different ways: time-domain measurements look at the time

between successive heartbeats; RR intervals refer to the time

between all successive heartbeats; and NN intervals refer to the

time between intervals from which artifacts, or abnormal beats,

have been removed. Time-domain measures include the standard

deviation of NN intervals (SDNN), the square root of the mean

squared differences of NN intervals (rMSSD), and the standard

deviation of the average NN intervals over a short time period

(SDANN). SDNN provides an overall estimate of HRV, while

rMSSD provides an overall estimate of short-term components of

HRV, and SDANN provides an overall estimate of long-term

components of HRV (26).

Frequency-domain measurements look at the relative power of a

frequency band. Frequency domain measurements of HRV consist of

very low frequency (VLF) power, low frequency (LF) power, high

frequency (HF) power, and very high frequency (VHF) power. HF

power represents parasympathetic nervous system (PNS) activity,

while LF power can be produced by both sympathetic nervous system

(SNS) and PNS activity. The LF/HF ratio is thought to represent the

balance between the PNS and SNS (26, 27).

The gold standard for measuring HRV is electrocardiography

(EKG), which involves measuring electric signals from the heart to

measure heart activity (26, 28). HRV can also be measured with

photoplethysmography (PPG) (29, 30). PPG uses LED light and a

photodetector to measure the amount of light reflected by tissue,

representing blood volume changes (31, 32). Thus, PPG measures

pulse rate variability (PRV) as a proxy for RR intervals (29, 30). PPG

devices are commonly worn on the wrist; however, newer PPG

devices with increased accuracy can be worn on the finger (33).
2.2 Remote monitoring of HRV

Wearable devices with EKG or PPG capabilities enable remote

monitoring of HRV. For example, the second-generation Oura ring,

which uses PPG, demonstrated high agreement with EKG for

nocturnal rMSSD (r2 = 0.980) (34). A systematic review of 18

studies compared HRV derived from classic EKGs with HRV

derived from commercially available wearable devices (30).

Results indicated correlation ranges of r=0.98-0.99 and r=0.85-

0.94 for time-domain and frequency-domain indices of HRV
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respectively, when measured in a resting state. However, the

correlations decreased when HRV was not measured in a resting

state (30), indicating that wearable devices may be less accurate

during activities. A separate review investigating the accuracy of

PRV concluded a strong agreement between PRV and EKG when

HRV is measured at rest. At the same time, the review noted that

physical activity and mental stress may impair agreement. However,

quantitative conclusions were precluded by heterogeneity across

reviewed studies (29). Thus, currently available wearable devices are

as accurate as EKG for measuring HRV and PRV during rest,

though they may be less accurate during physical activity.
2.3 HRV and psychopathology

HRV is related to stress, including perceived stress, response to

stressful life events, and adaptability to stress (35, 36). HRV has been

shown to be significantly reduced in patients with major depressive

disorder (MDD) and other psychiatric conditions, including

schizophrenia, posttraumatic stress disorder, and bipolar disorder

(37, 38). For example, two meta-analyses have demonstrated that

individuals with depression have lower HRV, and lower HRV is

associated with more severe depression symptoms (36, 39). However,

emerging literature suggests that this association may not hold across

all populations. Specifically, one study demonstrated that higher resting

HRV was associated with more severe depression among Black

Americans, especially among Black Americans who endorse the use

of culturally compelled coping (40, 41). Thus, additional studies that

investigate HRV functioning among diverse populations are needed.
2.4 HRV in PMDD and during the
menstrual cycle

Evidence suggests that HRV changes throughout the menstrual

cycle (42–45). However, this relationship may be particularly

apparent for those with PMS/PMDD (46, 47). Obtaining a clear

understanding of the interaction between PMDD, menstrual phase,

and HRV presents challenges because 1) there are two domains of

measuring HRV (i.e., frequency and time); 2) there are multiple

components of HRV that can be analyzed within each domain (i.e.,

HF, LF, SSDN, RR intervals, SDAAN, etc.); and 3) there are

multiple time points that can be compared (i.e., comparing HRV

in a particular cycle phase versus comparing changes in HRV

between cycle phases). Several studies have examined HRV in

PMS and PMDD, both of which will be discussed to identify

themes to guide future studies. Details regarding study samples,

design, measurement devices, and findings of studies investigating

HRV in PMS and PMDD can be found in Table 1.

2.4.1 Differences in HRV between PMDD, PMS,
and asymptomatic control groups during the
menstrual cycle

Individuals with PMS/PMDD have been shown to differ from

those without PMS/PMDD in certain HRV metrics, regardless of
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cycle phase. While some studies indicate that those with PMS/

PMDD experience lower HRV, on average, results are mixed across

studies and thus may be driven by specific HRV components. For

instance, while Matsumoto et al. (2007) found that individuals with

PMDD have lower HF power throughout the menstrual cycle

compared with individuals with PMS or no premenstrual

symptoms, Baker et al. (2008) and Swami and Kumar (2023)

found that overall HF power was not significantly different

between groups (46–48). In contrast, Swami and Kumar found

lower VHF power in those with PMS compared to controls

throughout the menstrual cycle, and Baker et al. found smaller

mean NN intervals in those with PMS compared with controls

throughout the menstrual cycle (47, 48).

Results are similarly mixed with regard to LF power. Matsumoto

et al. found that LF power was lower in those with PMDD compared

with those with PMS and those without PMS/PMDD; Swami and

Kumar did not find any group differences; and Baker et al. did not

report LF power (46–48). A similar pattern emerged with the LF/HF

ratio, where Swami and Kumar found an increased ratio in those with

PMS overall; Baker et al. did not find any group differences; and

Matsumoto et al. did not report the LF/HF ratio (46–48). Finally,

Matsumoto et al. found decreased total power in the PMDD group

compared with the PMS and control groups; while Baker et al. did not

find any group differences; and Swami and Kumar did not report

total power (46–48). Thus, the literature is mixed with regard to

differences between PMDD, PMS, and control groups in HRV and its

components when measured during the menstrual cycle rather than

examining specific cycle phases.
2.4.2 Differences in HRV between PMS and
asymptomatic control groups within specific
cycle phases

Some studies have examined components of HRV between

those with PMS and asymptomatic controls during the follicular

phase, luteal phase, or both. For instance, two studies that

implemented a social stress test in the luteal phase indicated a

delay in HF power recovery after the stress task for the PMS group,

compared with controls (49, 50). An additional study indicated

lower SDNN and rMSSD in the luteal phase in those with PMS

compared with controls (51). However, one study found a lower

SDNN, rMSSD, and HF power in the follicular phase for the PMS

group compared with controls and did not indicate any within or

between-group differences within the luteal phase (52). Similarly, a

study that investigated the relationship between PMS symptoms

and HRV during the follicular phase found a positive association

between PMS symptoms and SDNN and rMSSD for those not on

hormonal contraceptives, which is the opposite direction of the

effect one would expect based on Landén et al., 2004 (52). This effect

did not remain among those on hormonal contraceptives, which

could be because hormonal contraceptives have been shown to

stabilize the hormonal shifts that occur during the menstrual cycle

and reduce PMS symptoms (53, 54). Taken together, these studies

suggest HRV and its components are lower in the symptomatic

luteal phase in those with PMS compared with those without PMS.
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2.4.3 Within-group changes in HRV during the
menstrual cycle in PMDD

A considerable number of studies have indicated that the

symptomatic luteal phase is characterized by reduced HRV in

those with PMS/PMDD. Specifically, women with PMS/PMDD

show decreased HF power in the luteal phase compared with the

follicular phase (46–48, 55, 56). Additionally, individuals without

PMS/PMDD do not show cycle phase differences in HF power,

suggesting the luteal phase reduction in HRV is unique to those

with PMS/PMDD (46, 47, 55). Time-domain measures such as

SDNN and rMSSD are also lower in the luteal phase compared to

the follicular phase for those with PMS/PMDD (47, 48, 56). Thus,

studies have consistently shown certain aspects of HRV are lower in

the luteal phase compared with the follicular phase in those with

PMS/PMDD, but not in asymptomatic controls.

2.4.4 Methodological challenges and
HRV summary

Across the three sets of studies reviewed, methodologic

variation may account for important differences in findings. Of

the studies reviewed, two measured HRV during sleep (47, 55), two

measured HRV during a stress test (49, 50), and the remaining six

measured HRV with a supine or standing EKG sample of varying

lengths of time (46, 48, 51, 52, 54, 56). Additionally, as indicated in

Table 1, different components of HRV are reported in each study,

precluding a full comparison of study results. Finally, sample sizes

are consistently small or moderate, and small sample sizes may

obscure true findings and may also contribute to false discoveries.

Adequately powered studies are needed to determine the extent to

which HRV may be associated with the onset of mood symptoms,

physiologic symptoms, or their combination during the menstrual

cycle in those with PMDD, PMS, and asymptomatic controls.

Despite these methodologic differences, one clear and consistent

pattern of results emerged. Across studies, some components of

HRV were lower in individuals with PMS/PMDD during the luteal

phase compared with the follicular phase, and this difference was

unique to individuals with PMS/PMDD. This suggests that HRV

variation may be a valid physiologic marker of within-person

symptom variation in those with menstrually-related mood

disorders (i.e., PMS or PMDD). In contrast, while some studies

indicate PMDD is defined by lower HRV across the menstrual cycle

compared with those with PMS and asymptomatic controls, these

results have not been consistently replicated across studies and

should be interpreted with caution. As such, HRV may not be a

good diagnostic marker for PMDD.
3 Sleep

3.1 Sleep measurement

In the literature, sleep is typically assessed by examining the

duration of sleep, sleep staging, or both using multi-modal

physiologic assessment (Table 2). Polysomnography (PSG) uses a

combination of electroencephalogram (EEG), electrooculogram,

electromyogram, EKG, pulse oximetry, and airflow and respiratory
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effort to determine wakefulness and sleep as well as staging (57). PSG

offers a comprehensive look at the structural organization of sleep, or

sleep architecture, and is considered the gold standard for measuring

sleep and diagnosing sleep disorders (58, 59).

Alternative ways to measure sleep physiology include

actigraphy and photoplethysmography (PPG). Actigraphs are

wearable devices, typically worn on the wrist, that measure sleep

by detecting physical movements. Most modern actigraphs include

accelerometers for movement detection (60). Additionally, PPG

measures heart rate, HRV, blood oxygen saturation, and respiratory

rate, which can be used to indicate sleep (32, 33, 61).

Subjective sleep measures, such as sleep diaries or questionnaires,

prompt an individual to retrospectively report on sleep components

(e.g., time in bed, sleep onset latency). While the most common

subjective sleep measures demonstrate strong internal consistency and

test-retest reliability, subjective sleep measures are not strongly

correlated with objective sleep measures (62–64). In particular, the

accuracy of self-reported sleep quality is vulnerable to being impacted by

memory processes, personality, mood states, and subjective well-being

(64–66). However, subjective sleep measures are low-cost and highly

feasible while offering some insight into sleep habits and may help place

physiological sleep assessments into context (e.g., knowing that an

individual woke up several times in one night because of a

thunderstorm can help with the interpretation of physiologic measures).
3.2 Remote monitoring of sleep

PSG typically involves an individual spending at least one night

sleeping in a sleep laboratory setting and consists of a specialist

observing and interpreting the gathered PSG sleep data. Despite

PSG being the gold standard of sleep measurement, wearable

devices therefore offer a more unobtrusive, affordable, and feasible

way to monitor sleep on an ongoing basis. In determining the

validity of remote sleep monitoring devices, attention is paid to

sensitivity (i.e., ability to detect sleep), specificity (i.e., ability to

detect wake), and staging (i.e., ability to detect sleep stage) (67, 68).
TABLE 2 Components of sleep architecture (59, 167, 168).

REM sleep Rapid eye movement sleep

NREM sleep Non rapid eye movement sleep

Stage 1 sleep Brief period transitioning from wake
to sleep, or “dozing off” period

Stage 2 sleep Light sleep

Stages 3 and 4 sleep Slow wave sleep or deep sleep

Total sleep time (TST) Time spent in REM or NREM sleep

Sleep onset latency Time it takes to fall asleep

Sleep efficiency Ratio of total time asleep to time spent
in bed intending to sleep

Wakefulness after sleep (WASO) Time spent awake after sleep onset but
before final awakening
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Actigraphy can assess sleep-wake patterns in individuals with

average or good sleep with reasonable reliability and validity

compared to PSG (60, 69, 70). Additionally, the accuracy of

consumer actigraphy devices is comparable to that of research-

grade actigraphy devices (71–73). Actigraphy has strong sensitivity

(ability to detect sleep) but tends to overestimate total sleep time.

However, specificity (ability to detect wake) is consistently low (32,

74–77). Moreover, accuracy may diminish among people with

lower sleep quality depending on the device being used (74, 78–

80). Another disadvantage of actigraphy is its lack of validation for

identifying sleep stages (68, 81). Taken together, these studies

suggest that both actigraphy and commercial grade wearable

devices can validly measure sleep initiation and duration.

Newer consumer devices include a combination of PPG,

accelerometry, and body temperature to achieve increased sleep/

wake scoring accuracy compared to actigraphy alone. Moreover,

PPG can predict sleep staging with moderate accuracy compared to

PSG (32, 68, 71, 82–84). With few exceptions, PPG-based devices

that classify sleep into three or four stages have 65-75% staging

accuracy (68). Despite this potential for remotely monitoring sleep

staging, consumer wearable devices have distinct disadvantages in

the research context: 1) the scoring algorithms used by the

consumer devices are often proprietary and 2) ongoing

improvements to these algorithms may impact within-person

reliability during ongoing sleep studies (32).

Newer studies have begun to look at wearable and portable EEG

devices, such as in-ear or headband EEG devices. Some wearable

EEG devices, such as the Dreem headband or an in-ear EEG, may be

more accurate than accelerometers and PPG and are capable of

identifying all five sleep stages when used properly (32, 68, 82, 85,

86). Thus, portable and wearable EEG technologies hold promise

for studying sleep/wake and sleep staging.
3.3 Sleep and psychopathology

Sleep disturbances are transdiagnostic precipitants and

symptoms of MDD and other psychiatric disorders, including

bipolar disorder and schizophrenia (87–89). Sleep disturbances

are thought to indicate an underlying circadian dysfunction in

MDD and mood disorders more generally (90), though circadian

dysfunction has not been well studied in PMDD.
3.4 Sleep and the menstrual cycle

Sleep varies by menstrual phase among menstruating

individuals, irrespective of PMS/PMDD status. The exact nature

of this relationship, however, is not fully understood. Women

generally report decreases in perceived sleep quality in the luteal

phase compared with the follicular phase (91, 92). One study of 163

women used actigraphy to measure sleep and found that sleep

efficiency declined gradually across the menstrual cycle, with a more

apparent decline in the luteal phase. However, participants were not

all regularly menstruating and were also in different stages of the
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reproductive life cycle (pre-, early-, and late-perimenopause) (92).

Thus, the relationship between sleep efficiency and the menstrual

cycle may be somewhat obscured by the inclusion of those who were

not regularly menstruating.

Additional studies have directly examined the relationship

between sleep and ovarian hormone changes during the menstrual

cycle. Rising progesterone levels have been associated with objective

sleep measures, including decreased sleep HRV (55) and increased

PSG-measured sleep disturbances (93). A recent review found that

endogenous progesterone has a sleep-promoting effect and that

hormone-related sleep problems were more associated with the rate

of change in reproductive hormones than the absolute levels of

hormones (94). Taken together, progesterone may regulate sleep

during the menstrual cycle in regularly menstruating individuals and

may be responsible for cycle phase effects.
3.5 Sleep and PMDD

The menstrual cycle may have a greater impact on sleep among

those with PMS or PMDD who report higher levels of insomnia and

fatigue and perceive lower sleep quality throughout the entire

menstrual cycle compared to those without PMS/PMDD, with the

greatest differences occurring during the luteal phase (47, 92, 95–

98). However, few studies have examined objective measures of

sleep in this population (99).

Baker et al. (2012) compared objective and subjective sleep

measures in 18 women with severe PMS and 18 women with

minimal menstrual symptoms. The PMS group exhibited poorer

subjective sleep quality in the luteal phase and increased levels of

slow-wave sleep, as measured by PSG, throughout the menstrual

cycle, compared with controls (100). Similar results were found by

Shechter et al. (2012), where women with PMDD and luteal-phase

insomnia (n=7) experienced more slow-wave sleep during the luteal

phase compared with a control group (n=5). However, the sample

size was small and the control selection criteria were not well

defined (101). In a study done by de Zambotti et al. (2013) the

PMS group (n=12) appeared to spend more time in slow-wave sleep

in the luteal phase compared with controls (n=14) (17.4 vs 14.3%

TST in mid-luteal; 16.2 vs 11.3% TST late-luteal), yet, these results

did not reach significance (55).

In contrast, earlier studies indicated that individuals with PMS/

PMDD display decreased slow-wave sleep compared to a control

group during both the follicular and luteal phases although small

sample sizes limit these findings (84, 95). A larger study (n=23

PMDD; n=18 controls) found no difference in slow-wave sleep

during the mid-follicular phase or the late-luteal phase, however,

results should be interpreted within the context of a clinical trial

looking at sleep deprivation therapy (102).

The relevance of sleep in PMDD is further indicated by a series

of studies that demonstrated a delayed reduction in endogenous

melatonin levels in mornings during the luteal phase compared

with the follicular phase in those with PMDD (102–106).

Overall, future studies should focus on delineating the

relationship between PMDD and sleep at the within-person level
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to determine if remote sleep monitoring devices can be used to

predict or detect affective switching.
4 Physical activity

4.1 Physical activity measurement

Physical activity can be measured via self-report, accelerometers,

pedometers, heart rate monitors, and sensors that combine different

measurement modalities (108, 109). Aspects of physical activity that can

be measured may include energy expenditure, step count, distance

traveled, and time spent in different postures. The gold-standard

method for measuring physical activity involves quantifying energy

expenditure using the doubly labeled water method, which entails

measuring elimination rates of specific isotypes following the

ingestion of deuterium and heavy oxygen-labeled water (110). This

method is expensive, burdensome, and time-intensive and is therefore

not feasible for remote monitoring of physical activity (for a review, see

Sylvia et al. (108).
4.2 Remote monitoring of physical activity

Wearable devices are overall an accurate and feasible way to

track physical activity, although validity varies between brand.

Fuller et al. (2020) conducted a systematic review of commercially

available wearable devices for measuring steps, energy expenditure,

and heart rate. The review indicated that criterion validity depends

on the device, study type (controlled or naturalistic), and type of

measurement. Validity for step count was best for Apple Watch and

Garmin, while Fitbit, Samsung, and Withings were within +/-3

mean percentage error on average. Heart rate was also accurately

measured; all brands fell within +/-3 mean percentage error on

average, with a small tendency for underestimation. Wearable

devices were found to be unreliable for measuring energy

expenditure (111). However, this review did not include devices

designed to be worn on the finger (e.g., Oura ring), which emerging

studies demonstrate to be highly correlated with gold-standard

measures of step counts, heart rate, and energy expenditure

(112, 113).
4.3 Physical activity and psychopathology

Depressive symptoms and physical activity have a well-

established link. A meta-analysis of 42 studies reported a

significant inverse relationship between physical activity (i.e.

actigraphy or pedometer) and rates of depression. However, these

findings were based on cross-sectional studies, so the directionality

of the effects cannot be inferred (114). Decreased physical activity

has been consistently linked to risk for depression, although

findings regarding the impact of depression on subsequent

physical activity are mixed (115–119) Nevertheless, objective

measures support a strong negative relationship between

depressive symptom severity and daily step count (118, 119).
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A wealth of research has been conducted on the effectiveness of

physical activity as an intervention for depression. Hu et al. (2020)

conducted a systematic review of eight meta-analyses across 134

studies concerning exercise as an intervention for depression

symptoms. They concluded that exercise interventions have a

moderate effect on reducing depressive symptoms (120). A

separate systematic review of 13 studies reported that 10 studies

showed a statistically significant reduction in depression symptoms

following a randomized-controlled exercise intervention. The

review concluded that any physical activity for 30-45 minutes at

least three times a week, preferably performed under supervision, is

recommended to treat MDD (121). Given both the naturalistic and

experimental results linking depression and physical activity,

physical activity may be a reliable physiologic indicator of

depressed mood.
4.4 Physical activity, the menstrual cycle,
and PMDD

To date, there is a lack of research on the relationship between

physical activity, the menstrual cycle, and PMDD. A recent meta-

analysis on the effects of the menstrual cycle phase on exercise

indicated that there may be a trivial reduction in exercise during the

early follicular phase (122). A separate study indicated no reduction

in step count as a result of menstrual phase (123). Another review

looked at the performance of athletes throughout the menstrual

cycle and concluded mixed findings regarding levels of physical

activity or athletic performance and the menstrual phase (124).

Studies investigating changes in physical activity throughout the

menstrual cycle among individuals with PMS/PMDD are lacking.

However, one study indicated that women with severe PMS walked

1,411 fewer steps during the luteal phase and menses compared

with asymptomatic control women (125). Additionally,

observational studies support a negative relationship between

looking at PMS/PMDD symptoms and general exercise (126–

128). Additionally, there is growing evidence supporting physical

activity as an effective intervention for PMS (128, 129). A systematic

review of five RCTs with 492 participants concluded that aerobic

exercises effectively improve premenstrual symptoms (130).

Physical activity and depression symptom severity are likely

bidirectionally related. As depression is a common feature of PMDD,

more research is warranted to determine the extent to which objective

measures of physical activity can be used to predict PMDD symptoms.
5 Social behaviors and
smartphone use

5.1 Remote monitoring of social behavior
with smartphones

Aspects of social behavior can be gleaned by tracking

smartphone use. For instance, smartphone use for interpersonal

connection is positively associated with a higher likelihood of

participating in social activities (131), greater belonging support,
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and greater tangible social support over time. Problematic

smartphone use, involving an excessive psychological attachment

to one’s smartphone, is associated with less tangible social support

over time (132). Thus, smartphone activity, and specific types of

smartphone activity, may be a feasible proxy for social behavior.
5.2 Remote monitoring of mood
with smartphones

Smartphone data may be associated with mood. Objectively

monitored speech patterns from smartphone voice data can predict

mood states with up to 97.4% accuracy (133, 134). Applying machine

learning models to passively collected smartphone data has been

shown to accurately detect fluctuations in mood states, including in

those withMDD (135–138). Given the established predictive utility of

passively collected smartphone-use data on mood fluctuations,

applying these findings to affective switching among people with

PMDD is a promising area for future investigation.
5.3 Social media use and mood

Research strongly supports a relationship between social

impairments and depressive symptoms (139–141). Moreover, social

interaction and support are known to influence clinical outcomes in

depression (142–144). The emergence of smartphones and social

media introduces new considerations when studying social

impairment. While some social media interactions improve mood,

most studies show that increased time spent engaging with cell

phones and social media apps is associated with greater depression

severity (145–149).

Studies of social media use and mood have produced mixed

findings. A systematic review of 13 studies investigating adolescent

social media use demonstrated a positive association between

psychological distress and social media use across multiple

measures (150). However, a separate review noted that research

on social media use and adolescents has been mostly cross-sectional

and has generated conflicting results and small effect sizes (151).

Another review indicated a positive association between social

media use and mood (152). Social media findings are thus hard

to interpret. More detailed studies measuring how an individual

uses social media will likely provide better information about the

impact of social media on mood. So far, studies of the type of social

medial interactions (i.e., active vs passive, private vs public) have

yielded similarly mixed findings (153–155).
5.4 Social impairment, PMDD, and the
menstrual cycle

PMDD is associated with social impairment during the luteal

phase, including interference in relationships with friends,

classmates, and coworkers (156–160). Rubinow and colleagues

(2017) administered a Facial Discrimination Task in the luteal

and follicular phases of women with PMDD and asymptomatic
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controls. They found that women with PMDD exhibited increased

negative judgments and impaired specificity of judgments during

the luteal phase compared with the follicular phase, while controls

did not experience any menstrual effects (157). These findings

suggest that facial recognition is impaired during the luteal phase

in PMDD, which could have downstream effects on social behavior.

Women with PMDD also report higher levels of hostility

regardless of menstrual phase (158) and more aggressive tactics to

solve conflict during the luteal phase (161). Kaiser and colleagues

found that among women with PMDD, pain and somatic dysphoria

in the luteal phase is correlated with impairment in social activities,

while premenstrual irritability in the luteal phase is correlated with

impairment in relationships (159). These findings support previous

research suggesting that those with PMDD suffer from increased

irritability in the luteal phase, which could negatively impact social

engagement (158, 162).

Overall, considering the feasibility of smartphone data

collection, future research regarding the predictive utility of

smartphone data both generally and as a proxy for social

behavior among those with PMDD is warranted. However,

current research methods of social media use are crude proxies

for more nuanced social interactions that could be collected by

monitoring social media and smartphone use.
6 Discussion

This review synthesized the current literature on behavioral and

physiological correlates of PMDD suitable for remote monitoring

during the menstrual cycle. PMDD is marked by the onset and

offset of a depressive state provoked by hormonal fluctuations

during the menstrual cycle. Switching into and out of depressive

states is associated with an increased risk of suicide, therefore,

periods of affective switching may be important to monitor to

enable just-in-time interventions. Given the cyclical and chronic

nature of affective switching in PMDD and attendant suicide risk,

identifying remote monitoring paradigms that can detect within-

person affective state change may help facilitate later research on

timely and efficacious interventions. The reliable measurement of

key physiologic variables associated with depression symptoms,

HRV, sleep, and physical activity, with existing wearable

technology, suggests the potential of a remote monitoring

paradigm in PMDD.
6.1 HRV

HRV is an indicator of ANS activity that can be effectively

monitored with remote wearable devices, particularly during rest

period (29, 30, 34). HRV has been found to relate to stress and

depression severity, and is significantly reduced in patients with

mental illness (35–39). Although few studies have examined the

relationship between PMDD and HRV, recent evidence suggests

reduced HRV during the symptomatic luteal phase in those with

PMS/PMDD (46–48, 55, 56). Findings consistently demonstrate

decreased HF power during the luteal phase, which can be
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interpreted as a reduction in overall PNS activity (26). These findings

align with MDD literature that indicates lower HRV in individuals

with symptomatic MDD, compared with controls (36, 39). Although

existing studies demonstrated group-level reductions in HRV

between the follicular and luteal phases in those with PMDD/PMS,

additional research to establish within-person changes in HRV or HF

power will be needed to establish the use of this variable as a correlate

or predictor of symptom onset to guide clinical practice.
6.2 Sleep

Sleep disturbances are an established precipitant and symptom

of psychiatric disorders that can be tracked easily and accurately

with remote monitoring (68, 87, 88, 90). In particular, remote

monitoring is an effective tool for capturing total sleep-wake time,

and newer technology has begun to track sleep staging reliably (32,

68, 71, 82–86). Individuals with PMS/PMDD have more of a

negative perception of sleep quality, particularly heightened

during the luteal phase, compared to those without PMS/PMDD

(47, 92, 95–98). Evidence suggests that the circadian rhythm may be

disturbed in the luteal phase among those with PMS/PMDD, with

some indications of altered melatonin secretion and slow-wave

sleep (55, 100–107). However, because some studies indicate that

sleep abnormalities persist throughout the menstrual cycle without

showing phasic differences, sleep may be a less useful metric of

affective switching in PMDD. Despite this, the prominent finding

that perceived sleep quality diminishes in the luteal phase should

not be disregarded. It is plausible that sleep quality perception is

influenced by psychological state rather than actual sleep quality.

However, it is also plausible that changes in perceived sleep quality

can be attributed to changes in sleep architecture that are not

detectable with between-person study designs. Future studies

should focus on delineating the relationship between PMDD and

sleep at the within-person level to determine if remote sleep

monitoring devices can predict affective switching and help

inform the implementation of effective sleep interventions.
6.3 Physical activity

Physical activity can be easily and accurately tracked with

remote monitoring methods (111–113). Despite a well-established

relationship between depression and physical activity, the

bidirectional nature of this relationship has not been well

articulated (114–119). In PMS/PMDD, there is not enough

evidence that physical activity and exercise (both performance

and amount) vary by menstrual phase. Research regarding

physical activity/exercise as an intervention is more well-

established. Evidence suggests that exercise can meaningfully

reduce depression symptoms among those with a depressive

disorder (120, 121). Further, growing evidence supports physical

activity as an effective intervention for PMS/PMDD (128–130).

Additional research is needed to determine whether objective

measures of physical activity can be used to predict PMDD

symptom onset.
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6.4 Social behaviors and smartphone use

Machine learning models applied to passively collected

smartphone data to predict mood and social behavior (133–138).

Thus, the justification for studying PMDD and smartphone data is

two-fold. First, PMDD is marked by social impairment during the

symptomatic luteal phase (156, 157, 159, 160, 162). Thus, passively

collected smartphone data may be a feasible and unobtrusive proxy

for social behavior that can identify affective switching and inform

effective social interventions. Second, smartphone data has been

demonstrated to predict affective switching with reliable accuracy

among individuals with psychiatric illnesses (133–138). Thus,

studying the application of machine learning capabilities to model

smartphone use in individuals with PMDD is a logical next step.

Overall, smartphone data has the potential to reliably predict

affective switching among those with PMDD and be used as a

marker of social behavior. However, more granular data regarding

social communication with smartphones and social media seem

necessary, compared with rough metrics of smartphone and social

media use.
6.5 Theoretical model of affective
switching in PMDD

Based on prior research, withdrawal of the neuroactive steroid

allopregnanolone (ALLO) during the luteal phase may diminish the

inhibitory effect of the inhibitory neurotransmitter gamma-

aminobutyric acid (GABA) among those with PMDD, leading to

a heightened stress response and reduced parasympathetic nervous

system activity (3, 4). Although not fully understood, in mammals,

GABA activity may modulate the activity of neurons in the

suprachiasmatic nucleus, which regulates melatonin secretion

(163, 164). Thus, alterations in GABA functioning might have

downstream effects on melatonin secretion and circadian

rhythms, contributing to sleep disturbances. As a result,

emotional regulation may become compromised by reduced

GABA function and fatigue. Although the exact mechanisms of

HRV are unclear, both depression symptoms and GABAergic

activity may lead to decreased HRV, further impairing stress and

emotion regulation abilities. The subsequent cycle of stress, fatigue,

and depressive symptoms may yield social withdrawal and

inactivity, creating a compounding effect on overall well-being.

Importantly, the endpoints of sleep disturbances, HRV, physical

activity, and social engagement can be unobtrusively monitored

with widely used wearable devices and smartphones.
6.6 Limitations

Given that PMDD was not added to the DSM until 2013, there is

less research on PMDD as a diagnostic entity, and earlier studies

included those with PMDD in studies of PMS. Thus, the extent to

which PMDD and PMS are distinct or overlapping entities

concerning physiologic markers remains somewhat unclear. The

research conducted since 2013 seems to indicate that PMDD is
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distinct from asymptomatic controls with regard to certain

physiologic markers, while those with PMS appear similar to those

with PMDD in some studies and more similar to controls in others.

Due to the relative lack of research focusing specifically on PMDD,

PMS studies were included. However, PMS findings should be

considered preliminary as they pertain to individuals with PMDD.

Moreover, existing studies on PMS or PMDD often included

small sample sizes and had certain methodological issues. For

example, PMDD diagnoses in the reviewed studies were not

always based on the gold standard prospective reporting method.

Additionally, existing studies did not always control for factors that

may affect mood states and the menstrual cycle. For example, study

results can be impacted by hormonal contraceptive use, comorbid

diagnoses, cycle regularity, pregnancy status, and demographic

factors such as age, race, or ethnicity (165). Although assessing

and controlling for these factors can be challenging, future studies

should measure and report such variables, and where appropriate,

control for these confounding variables in statistical analyses.

Additionally, existing studies have predominately been conducted

on cis-gendered women and neglect to consider the impact of alternate

gender identities (transgender, non-binary, gender non-conforming,

etc.). As such, those who do not identify as a cis-gendered woman are

underrepresented in this area of research. Because people of alternate

gender identities are at heightened risk for adverse mental health

outcomes, excluding this population may perpetuate systemic barriers

to accessing care (166). Considering gender identity in analyses,

oversampling non-cisgender individuals, or not excluding people of

non-cisgender identities is imperative.
7 Conclusion

PMDD is marked by frequent affective switching, with

depressive symptoms beginning during the luteal phase and

ending shortly after the onset of menses. Affective switching is a

period of increased risk of suicide. Given the frequency of affective

switching and the chronicity of PMDD, identifying an unobtrusive

strategy for identifying periods of heightened risk could enable the

delivery of just-in-time interventions. Additionally, given the

frequency of affective switching, PMDD may serve as an ideal

model for prospectively identifying physiologic markers of affective

switching that could be applied to identifying depressive episodes in

other depressive disorders that are more difficult to predict.

Remote monitoring is a promising, non-invasive, and passive

mechanism for predicting affective switching and providing real-
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time intervention, as exemplified in chronic conditions such as

diabetes and heart conditions. Prospectively identifying within-

person physiological and behavioral correlates and predictors of

affective switching suitable for remote monitoring is the first step in

implementing such a strategy for PMDD. Whether phase-

dependent variations in HRV, sleep, physical activity, social

variations, and smartphone data that can be monitored remotely

will be able to predict affective switching at the individual level will

require additional research. If these physiologic variables predict

within-person affective switching in those with PMDD, remote

monitoring would hold tremendous promise for advancing

population health by identifying personalized, scalable

intervention strategies for those with PMDD.
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