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to anxiety-like behavior in rats
Javed Iqbal1,2, Geng-Di Huang1, Dan Shen3, Yan-Xue Xue4*,
Mei Yang1* and Xiao-Jian Jia1*

1Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders,
Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Clinical College of Mental Health,
Shenzhen University Health Science Center, Affiliated Mental Health Center, Southern University of
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Introduction: Transcriptomic studies offer valuable insights into the

pathophysiology of traumatic stress-induced neuropsychiatric disorders,

including generalized anxiety disorder and post-traumatic stress disorder

(PTSD). The medial prefrontal cortex (mPFC) has been implicated in emotion,

cognitive function, and psychiatric disorders. Alterations in the function of mPFC

have been observed in PTSD patients. However, the specific transcriptomic

mechanisms governed by genes within the mPFC under traumatic stress

remain elusive.

Methods: In this study, we conducted transcriptome-wide RNA-seq analysis in

the prelimbic (PL) and infralimbic (IL) cortices. We employed the single prolonged

stress (SPS) animal model to simulate anxiety-like behavior, which was assessed

using the open field and elevated plus maze tests.

Results: We identified sixty-two differentially expressed genes (DEGs) (FDR

adjusted p < 0.05) with significant expression changes in the PL and IL mPFC.

In the PL cortex, DEGs in the susceptible group exhibited reduced enrichment for

cellular, biological, and molecular functions such as postsynaptic density

proteins, glutamatergic synapses, synapse formation, transmembrane transport

proteins, and actin cytoskeleton reorganization. In contrast, the IL-susceptible

group displayed diminished enrichment for synapse formation, neuronal activity,

dendrite development, axon regeneration, learning processes, and

glucocorticoid receptor binding compared to control and insusceptible

groups. DEGs in the PL-susceptible group were enriched for Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways related to Parkinson’s

disease, Huntington's disease, Alzheimer's disease, and neurodegeneration

processes. In the IL cortex, the susceptible group demonstrated enrichment

for KEGG pathways involved in regulating stress signaling pathways and

addiction-like behaviors, compared to control and insusceptible groups.
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Conclusion: Our findings suggest that SPS activates distinct transcriptional and

molecular pathways in PL and IL cortices of mPFC, enabling differential coping

mechanisms in response to the effects of traumatic stress. The enhanced

enrichment of identified KEGG pathways in the PL and IL mPFC may underlie

the anxiety-like behavior observed in susceptible rats.
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traumatic stress, prefrontal cortex, susceptibility, resilient, anxiety
1 Introduction

Post-traumatic stress disorder (PTSD) is a complex and chronic

mental disorder associated with stress, characterized by an imbalance

of neurotransmitters in response to traumatic events or fears (1).

PTSD presents as a heterogeneous array of symptoms in response to

traumatic life events, including anxiety, re-experiencing, irritability,

avoidance, negative emotions, insomnia, personality changes, and

memory problems (2). A PTSD diagnosis is given when these

symptoms persist for at least one month, causing functional

impairment and distress. The National Health Center of PTSD in

the United States estimates that 3.5% of the US population (over 11

million Americans) experience PTSD each year, but less than half of

these individuals receive proper medical treatment, and even fewer

receive minimally adequate care (3). PTSD-related neural disruptions

encompass asymmetrical white matter tract abnormalities and gray

matter alterations in the prefrontal cortex (PFC), hippocampus, and

basolateral amygdala (BLA) (4). Dysfunction within this neural

circuitry results in behavioral changes, including executive function

and memory impairments, fear retention, fear extinction deficiencies,

and other disturbances.

Various animal models have been employed to replicate the

symptoms of PTSD (5). The single prolonged stress (SPS) model, a

suitable animal model for PTSD, has been developed to investigate

the neurobiological mechanisms underlying PTSD (6). Prior studies

have utilized animal models to characterize a fear learning and

memory retention network centered on the PFC, hippocampus, and

amygdala, which are crucial in the pathology of PTSD (7, 8).

Notably, structural, functional, and biochemical changes in these

brain regions causes dysfunction of cognitive abilities observed in

PTSD (9).

The PFC plays an important role in decision-making and

executive functions, including attention, working memory, and

regulation of emotional behaviors (10, 11). The function of three

PFC subregions, the anterior cingulate cortex (ACC), prelimbic cortex

(PL), and infralimbic cortex (IL), is altered in PTSD (12, 13). The PL

and IL regions specifically contribute to fear conditioning and

extinction processes. The human ventromedial PFC (vmPFC) plays

an essential role in the extinction of fearful memories by interacting

with the amygdala to inhibit fear expression (14, 15). The disruption
02
of vmPFC function impaired the retention of fear extinction learning

in PTSD individuals (16, 17). Decreased vmPFC activity has been

observed in PTSD individuals experiencing traumatic symptoms (18).

Previous transcriptomic studies revealed expression changes in

glucocorticoid and neuronal pathways involved in regulating the

PTSD-related behavioral responses (19, 20). A recent study has

identified transcriptomic changes within the locus coeruleus (LC)

and nucleus accumbens (NAc) associated with stress susceptibility or

resilience behaviors (21). Another study showed extensive remodeling

of transcriptome occurred in the PFC of PTSD individuals and

identified genes involved in GABAergic signaling (22). None of

these studies showed any differential role of the transcriptome of

subregions of the PFC in stress susceptibility or resilience phenotypes.

We investigated this question at the transcriptional level by

examining the transcriptome of PL and IL regions and providing

an in-depth analysis of the regulated pathways that contribute to the

distinct roles of the PL and IL in traumatic stress-induced anxiety-like

behavior. We hypothesized that single prolonged stress alters animal

behavior and induces anxiety-like behavior by differentially regulating

gene expression in the mPFC. The primary objective of this study was

to assess whether transcriptional changes in the PL and IL regions

elicit differential responses in the regulation of anxiety-like behavior

in stressed male rats. Although numerous studies have documented

sex differences in stress responses, particularly in behavior and gene

expression, in both rodents and humans (23–26). We have used only

male rats in this study due to the fact that the fluctuations in estrogen

hormones might impact the behavioral and the transcriptomic

profiles in stress condition (27–30).
2 Materials and methods

2.1 Experimental animals

For all experiments, twelve-week-old male Sprague Dawley rats

were utilized. The rats were housed in a temperature-controlled (22

± 2°C) and humidity-controlled (50–60%) animal care facility

within the institution, maintained on a 12:12-hour light and dark

cycle (lights on at 7:00 AM), and provided unrestricted access to ad

libitum food and tap water. The institutional ethical committee
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approved the animal protocol for this study (Protocol number:

SL2022022413). All experiments were conducted in accordance

with the ethical principles of animal use and care. Following a

seven-day acclimatization period, the animals were randomly

assigned to either the control (n=10) or stress (n=20) groups.
2.2 Single prolonged stress (SPS protocol)

The SPS procedure was performed over ten days, as previously

described in our study (31). Animals in the stress group received

SPS for ten days and were subsequently categorized into susceptible

(sus, n=11) and insusceptible (insus, n=9) subgroups based on their

phenotypes and anxiety index (AI) in behavioral experiments.

Briefly, all stressed animals were sequential exposed to three

stressors (2 h of restraint, a 20-min forced swim, and exposure to

ether until loss of consciousness) during a single continuous

session. The three stressors were always conducted in the same

order and at the same time of day. First, all stressed animals were

immobilized for two hours inside a restrainer that restricted body

movement. Subsequently, they were subjected to a 20-minute forced

swim in a plexiglass cylinder (50 cm high, 24 cm diameter) filled to

two-thirds with 24°C water. The animals were dried and allowed a

15-minute recuperation period before being exposed to ether vapor

until the loss of consciousness. On the same day of SPS treatment,

the control animals were handled. The following behavioral tests

were performed 24h after the last SPS day.
2.3 Elevated plus maze test

Each rat was placed in the central square (10 × 10 cm) facing

two open arms (50 × 10 cm) and two closed arms (50 × 10 × 40 cm)

in the EPM apparatus. Rats were allowed to freely explore the four

arms for five minutes (32). A valid entry into any of the four arms

was recorded via video-computerized tracking system when all four

paws of a rat crossed from the central region into an arm and

analyzed with LabMaze v3.0 (Zhongshi Technology, China). The

total number of open arm entries and the duration spent in the open

arms by each rat were recorded.
2.4 Open field test

Before the OFT, all rats were placed in the animal test room for

an hour. Each rat was then positioned at the center of the open field

box (60 × 60 × 60 cm chamber) and allowed to explore the arena

freely for a 5-minute test session (33). A SMART video-computerized

tracking system (SMART 3.0) recorded the locomotive activities of

each rat during the OFT. The central portion of the testing area

located in the middle of the larger arena was assigned as “center” of

the arena in the OFT. The total distance and time spent in the center

of the open field box were calculated for the 5-minute session. After

performing the behavioral tests, stressed animals were retrospectively

classified as having behavioral responses according to the anxiety
Frontiers in Psychiatry 03
index (AI), which is calculated as 1 - [(time spent in open arm/total

time on the maze)/2 + (number of entries to the open arms/total

exploration on the maze)/2]. For classification criteria, one standard

deviation below the mean of the control group anxiety index as

resilient individuals, and one standard deviation above the mean of

the control group anxiety index as susceptible individuals. After SPS

and behavioral tests, 11 rats reached susceptible criteria and 9 rats

reached resilient criteria. For RNA-Seq, four animals from each group

were selected based on the AI in their respective group. Carbon

dioxide (CO2) inhalation method followed by cervical dislocation

was used for harvesting the brains. All animals were sacrificed 24h

after the OFT and EPM tests, and brain samples were dissected from

each animal. Then, the mPFC tissue samples were sent to BGI Co.,

LTD (Shenzhen, China), and the BGISEQ-500 platform was used to

perform RNA sequencing.
2.5 Extraction of mRNA and cDNA
library preparations

The TRIzol RNA extraction kit (Life Technologies, Darmstadt,

Germany) was used to extract all RNA samples followed by DNAse

I treatment to eliminate any DNA contamination from the

extracted samples (RNA Clean & Concentrator, Zymo Research,

Irvine, CA, USA). After total RNA extraction, the Ribo-Zero™

Magnetic Kit (Epicenter) was used to remove rRNA from the total

mRNA samples. The purity and concentration of mRNA were

determined from the A260-nm/280-nm reading using a Nanodrop

spectrophotometer. All samples used for RNA sequencing

experiments displayed RNA integrity numbers above eight. The

extracted mRNA was reverse transcribed into cDNA using random

octamer primers tagged with a 20-nucleotide tag sequence (5`-

GACCATCGNNNNNNNN-3`). cDNA synthesis was carried out

by adding DNA polymerase I, dNTP, RNase H, and buffer.

Subsequently, the QiaQuick PCR extraction kit was used to purify

the cDNA fragments, end-repaired, poly (A) tails added, and ligated

to Illumina high sequencing adapters. The ligation products

underwent size selection through agarose gel electrophoresis,

followed by PCR amplification. Finally, the samples were

sequenced using the Illumina HiSeqTM platform.
2.6 RNA sequencing data analysis

All raw reads underwent quality filtering and adapter trimming

using the Trimmomatic (34) and FastQC (35) packages. All clean reads

were mapped to the reference sequence using Bowtie2 (36), and the

expression levels of genes and transcripts were calculated with RSEM

(37). Gene expression levels were normalized using the FPKM

(fragments per kilobase of transcript per million mapped reads)

method. The DEseq2 method (38) was employed to identify

differentially expressed genes (DEGs). Genes with a fold change ≥ 1.5

anda falsediscovery rate (FDR)<0.05were classifiedasDEGs. Statistical

analysis was conducted using the R package gmodels. The identified

DEGs were subsequently analyzed based on enrichment analysis.
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2.7 Analytical method

Enrichment analysis was performed to determine whether a

specific gene set was significantly enriched in a pathway, molecular

function, or participating biological process. The gene sets of

interest were DEGs or target genes differentially expressed

between groups. DEGs were further examined through

enrichment analysis, as detailed below.
2.7.1 Gene ontology enrichment analysis
GO functional enrichment analysis identified GO terms

significantly enriched in candidate genes compared to the entire

genetic background of the species, thus revealing the biological

functions significantly associated with the candidate genes. All

candidate genes were mapped to the Gene Ontology database

(http://www.geneontology.org/), and calculated the number of

genes per entry. A hypergeometric test was used to identify

significant GO functions enriched in candidate genes relative to

all background genes of the species. The p-value was calculated for

each GO functions using the hypergeometric test of R (https://

stat.ethz.ch/R-manual/R-devel/library/stats/html/Hypergeometric.

html). Subsequently, the p-value was corrected for multiple testing,

and the corrected p-value, denoted as the q-value, was determined

using the Bioconductor package (https://bioconductor.org/

packages/release/bioc/html/qvalue.html). A q-value (FDR adjusted

p-value) ≤ 0.05 served as the threshold, and GO terms meeting this

criterion were considered significantly enriched in candidate genes.
2.7.2 Kyoto encyclopedia of genes and genomes
pathway enrichment analysis of identified DEGs

KEGG pathway-based enrichment analysis (39) facilitated a

deeper understanding of the biological functions of DEGs. The

KEGG analysis employed the same methodology as the GO

functional enrichment analysis detailed above. The calculated

p-values for GO terms and KEGG pathways underwent FDR

correction, using FDR ≤ 0.05 as the threshold. Pathways with a

final q-value < 0.05 were deemed significantly enriched in DEGs.

These significant enrichment pathways highlighted candidate

DEGs as crucial components in biochemical, metabolic, and

signaling pathways. RNA sequencing was performed by BGI

(https://biosys.bgi.com).
2.8 Statistical analysis

All data were normally distributed, and statistical differences

among groups were assessed using one-way ANOVA followed by

Tukey’s multiple comparison test. Combined data were presented

as mean ± SEM. All statistical analyses were conducted using

GraphPad Prism software (ver. 9.0; GraphPad Software Inc., San

Diego, CA, United States). A statistical difference was considered

significant at p < 0.05. For RNA-seq data, statistical analyses were

performed using Cuffdiff2, edgeR, and DESeq2 methods.
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3 Results

3.1 Traumatic stress produced anxiety-like
behavior in males

We investigated the impact of SPS on animal behavior by

conducting EPM and OFT to assess anxiety-like behavior induced

by traumatic stress. SPS significantly reduced the time spent in the

open arms (Figure 1A, F2, 25 = 10.74, p = 0.0004) and the number of

open arm entries (Figure 1B, F2, 25 = 18.10, p < 0.0001) across control,

susceptible, and insusceptible groups. Post-hoc analysis revealed that

susceptible rats spent notably less time in the open arms compared to

the control (Figure 1A, p = 0.0003) and insusceptible groups

(Figure 1A, p = 0.0339). Likewise, susceptible stressed rats exhibited

a significant difference in the number of open arm entries relative to

the control (Figure 1B, p < 0.0001) and insusceptible groups

(Figure 1A, p = 0.0004). No significant differences were observed in

the time spent in the open arms (Figure 1A, p = 0.4793) and the

number of open arm entries (Figure 1B, p = 0.5288) between the

control and insusceptible groups.

The OFT evaluated the subjects’ innate exploratory behavior in

an open field. SPS significantly influenced the time spent in the

center of the open field (Figure 1C, F2, 25 = 11.89, p = 0.0002) and

the distance traveled (Figure 1D, F2, 25 = 15.09, p < 0.0001) among

control, susceptible, and insusceptible groups. Post-hoc analysis

demonstrated that SPS substantially decreased the time spent in

the center of the open field for susceptible animals compared to

controls (Figure 1C, p = 0.0005) and insusceptible animals

(Figure 1C, p = 0.0012). Susceptible animals covered significantly

less distance in the open field than controls (Figure 1D, p = 0.0003)

and insusceptible animals (Figure 1D, p = 0.0001), as indicated by

post-hoc analysis. No significant differences were detected in the

time spent in the center of the open field (Figure 1C, p = 0.9718) and

the total distance covered (Figure 1D, p = 0.8516) in the open field

between control and insusceptible groups, as shown by

post-hoc analysis.
3.2 Traumatic stress-induced
transcriptional changes in PL and IL
cortical regions

We performed RNA-seq to identify the transcriptional changes

responsible for anxiety-like behavior in susceptible animals exposed

to traumatic stress. A total of 2,478 DEGs (P < 0.05) were detected

in PL and IL regions among the three groups (controls, susceptible,

and insusceptible groups) (Figure 1E; Supplementary Tables 1, 2).

The majority of these DEGs were downregulated in PL and IL

following SPS exposure. We observed a higher number of DEGs in

the PL compared to the IL, with a predominantly downregulated

expression. A larger number of overlapping DEGs between PL and

IL were present in the susceptible group relative to the control and

insusceptible groups, as illustrated by the Venn diagram

(Figure 1F). Among the identified DEGs, only sixty-two DEGs
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(FDR adjusted p-value < 0.05) were significantly change in their

expression in PL and IL regions among the controls, susceptible,

and insusceptible groups (Figure 2). The identified DEGs in the PL

and IL regions play crucial functional roles in various biological

processes and are associated with anxiety and fear.
3.3 Traumatic stress affected KEGGs
pathways leading to stress susceptibility
and resilient phenotypes

To investigate the impact of SPS on KEGG pathways, we

conducted KEGG analyses on the identified DEGs in the PL and

IL mPFC. Our results indicated that SPS had differential effects on

KEGG pathways in susceptible and insusceptible animals, which

could contribute to the development of stress susceptibility and

stress resilience phenotypes (Figure 3, Supplementary Figure 1).

The DEGs in the PL-susceptible group, when compared to the
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PL-control group, exhibited enriched KEGG pathways related to

Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, and

neurodegeneration processes (Figure 3A). The PL-susceptible group

displayed fewer enriched KEGG pathways than the PL-

insusceptible group (Figure 3B). The DEGs of the PL-control and

PL-insusceptible groups did not differ in their regulation of KEGG

pathways in the PL cortex. In the IL cortex, we observed that the IL-

susceptible group, compared to the IL-control and IL-insusceptible

groups, displayed significant enrichment of KEGG pathways

involved in the regulation of relaxin and cortisol signaling

pathways and addiction-like behaviors such as morphine and

amphetamine addiction (Figures 3C, D).

We also compared KEGG pathways between the PL and IL

cortices to identify underlying differences that could result in

distinct functions of these regions in response to traumatic stress.

We found that DEGs in both PL- and IL-control groups were

enriched and upregulated in axon guidance, calcium signaling

pathways, and neuroactive ligand-receptor interactions
FIGURE 1

Anxiety-like behavior and transcriptional differences in the prelimbic (PL) and infralimbic (IL) cortex induced by single prolonged stress (SPS).
(A) Open field test (OFT) results show significantly decreased exploratory activity in susceptible animals compared to control (p = 0.002) and
insusceptible (p = 0.005) groups. No significant difference was observed between control and insusceptible groups (p = 0.89). (B) Susceptible
animals exhibited significantly less time spent in the open field center compared to control and insusceptible groups (Control vs. Susceptible,
p = 0.004; Susceptible vs. Insusceptible, p = 0.009). (C, D) In the elevated plus maze test, susceptible rats spent significantly less time in open arms
(Control vs. Susceptible, p = 0.003) and had fewer open arm entries (Control vs. Susceptible, p = 0.0005). No significant difference was found
between control and insusceptible groups in these measures (Time in open arms, p = 0.47; Open arm entries, p = 0.84). (E) SPS-induced
transcriptional changes were examined in susceptible and insusceptible animals’ PL and IL regions of the medial prefrontal cortex. More
transcriptional changes were observed in PL compared to IL, with the majority of identified differentially expressed genes (DEGs) being
downregulated. (F) Venn diagram displays the total DEGs in each group and the overlapping DEGs among control, susceptible, and insusceptible
groups. Control_g represents the control group; sus_g, susceptible group; insus_g, insusceptible group. Data are shown as mean ± SEM (n = 10 per
group). ***p < 0.01; ****p < 0.0001; #p < 0.05; ##p < 0.01; ###p < 0.001.
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(Figure 3E). A comparative analysis of DEGs between PL and IL in

susceptible groups revealed enrichment for axon guidance, calcium

signaling pathways, and cAMP signaling pathways, which were

upregulated in susceptible groups when comparing PL and IL

cortices (Figure 3F). Addiction-related pathways were

downregulated and displayed less DEG enrichment in controls

when comparing PL and IL cortices. However, DEGs regulating

the same addiction-related pathways were upregulated and

exhibited increased enrichment for DEGs contributing to stress

susceptibility in susceptible groups (Figures 3E, F).
3.4 Biological, cellular, and molecular
functions affected by traumatic stress in
the PL and IL cortices

We performed GO analysis on the identified DEGs to ascertain

the cellular, biological, and molecular functions regulated by all DEGs

in the PL and IL cortices. The PL-control and insusceptible groups,

compared to the PL-susceptible group, demonstrated GO enrichment

for functions such as postsynaptic density protein, glutamatergic

synapse, cytosolic ribosome, synapse formation, transmembrane

transport protein, actin cytoskeleton reorganization, and protein

binding (Figures 4A–C). In comparison to the IL-control and

insusceptible groups, the IL-susceptible group displayed enrichment

of GO terms associated with synapse formation, neuronal activity,

dendrite formation, axon regeneration, learning processes, and

glucocorticoid receptor binding (Figures 4D–F). A comparative
Frontiers in Psychiatry 06
analysis of GO enrichment revealed that the PL group regulated

different subsets of GO terms compared to the IL group, and that

DEG enrichment was more abundant in the PL region than in the IL

region (Figure 4, Supplementary Figure 2).
4 Discussion

Numerous human and animal studies have consistently

demonstrated the vital role of the PFC in decision-making and

executive function (40, 41). The mPFC has been implicated in

emotion, cognitive function, decision-making, and psychiatric

disorders (42). Alterations in the function of two mPFC subregions

(PL, and IL) have been observed in PTSD (12, 13). Given the

involvement of the PL and IL regions in fear conditioning and

extinction processes (43), as well as in stress-induced anxiety

disorders, we conducted this study to elucidate the critical role of

these two regions in traumatic stress. Utilizing an animal model of

SPS, we observed the emergence of susceptible and insusceptible

phenotypes. The susceptible animals exhibited anxiety-like behavior,

as assessed by the EPM and OFT behavioral paradigms. Our RNA-

seq data revealed numerous transcriptional changes in the PL region

compared to the IL region. We found that SPS influenced DEGs-

regulated KEGG and GO pathways in PL, which contributed to

neurological disorders. Conversely, SPS affected a distinct set of

KEGG and GO pathways in IL compared to PL, predisposing the

animals to addiction-like behavior following traumatic stress. The

insusceptible animals displayed transcriptional changes and pathways
FIGURE 2

(A, B) Single prolonged stress (SPS) identified sixty-two differentially expressed genes (DEGs) significantly change in their expression between
prelimbic (PL) and infralimbic (IL) regions of medial prefrontal cortex (mPFC) among the controls (con), susceptible (sus), and insusceptible (insus)
groups. (n=4 in each group).
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in PL and IL similar to controls. In conclusion, these findings suggest

that SPS activates distinct transcriptional and molecular pathways in

PL and IL, enabling differential copingmechanisms in response to the

effects of traumatic stress. These molecular pathways underlie the

stress-induced susceptible and insusceptible phenotypes observed

in rats.

Previous preclinical and clinical investigations have reported

transcriptional reorganization in the PFC and amygdala associated

with depression and fear conditioning following traumatic stress

(22, 43–45). In accordance with these studies, we also identified

numerous transcriptomic reorganizations within the mPFC. The

majority of these transcriptional changes were downregulated in the

PL mPFC relative to the IL mPFC after SPS exposure. A recent

study identified DEGs associated with cytokines, myotrophin, and

glucocorticoid receptors in the locus coeruleus and nucleus

accumbens (21). We detected DEGs in the PL and IL mPFC

involved in regulating anxiety-like behavior in male rats; most of

them were downregulated in the PL and IL mPFC of the susceptible

groups compared to their control and insusceptible counterparts.

These DEGs included Nr4a1, Rgs4, Rbfox1, Pcsk2, Pde1a, Cobl,

Tmem132d, Bdnf, Lsm11, Junb, Htr2a, Slc39a10, and Trib1. We

propose that the downregulation of the majority of these DEGs may
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underlie the anxiety-like behavior exhibited by male rats. Previous

research has also implicated these DEGs in anxiety and depression

disorders (20, 46–50).

SPS regulated the expression of 48 DEGs that modulate KEGG

pathways (Ras signaling, calcium signaling, endocannabinoid

signaling, oxidative phosphorylation signaling, and cAMP

signaling) in the PL among control, susceptible, and insusceptible

groups. The dysregulation of these KEGG pathways in the PL may

increase susceptibility to neurodegenerative diseases, such as

Alzheimer’s disease, Parkinson’s disease, and Huntington’s

disease. Significant DEGs modulating these KEGG pathways in

the PL of the mPFC) included UBB, Rps27, NADHB8, Tubb4a,

Plcg1, Uqcrb, Rtn3, Gria1, and Htt genes. UBB (ubiquitin B) and

Rps27 (ribosomal protein S27a) proteins were found to be

significantly decreased in the hippocampus and cerebral cortex

following traumatic brain injury (51). The significant

downregulation of these DEGs after SPS in the PL suggests an

increased susceptibility to traumatic brain injury. NDUF-B8

(ubiquinone oxidoreductase subunit B8) was significantly reduced

in dopaminergic neurons, causing respiratory chain dysfunction in

Parkinson’s disease patients (52). The Tubb4a (b-tubulin 4A) gene

is involved in the myelination process in the brain, and mutations of
FIGURE 3

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways impacted by single prolonged stress (SPS). (A) DEGs in the PL-susceptible group, compared
to the PL-control group, reveal an enrichment of KEGG pathways related to Parkinson’s, Huntington’s, and Alzheimer’s diseases, as well as pathways
involved in neurodegeneration. (B) DEGs in the PL-susceptible group show less KEGG pathway enrichment when compared to the PL-insusceptible
group. (C, D) In contrast to the IL-control and IL-insusceptible groups, the IL-susceptible group presents significant KEGG pathway enrichment associated
with addiction-like behaviors, such as morphine and amphetamine addiction. Focal adhesion and relaxin signaling pathways are also more enriched in
DEGs. (E) DEGs of PL and IL-control groups are involved in axon guidance, calcium signaling pathways, and neuroactive ligand-receptor interactions.
(F) KEGG pathways affected by SPS in both PL-susceptible and IL-susceptible groups. Note: The X-axis represents the enrichment ratio (calculated as Rich
Ratio = Term Candidate Gene Num/Term Gene Num), while the Y-axis denotes the KEGG pathway. Bubble size indicates the number of genes annotated
to the KEGG pathway, and color represents enriched significance. The redder the color, the smaller the significance value (n=4 in each group).
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Tubb4a have been associated with profound hypomyelination in

human white matter disease (53). SPS reduced Tubb4a expression

in the PL, potentially increasing the hypomyelination process and

leading to a progressive loss of myelin in the brain.

Plcg1 (phospholipase C, gamma 1) is involved in the regulation

of anxiety and depressive-like behavior in animals. Deficiency of

Plcg1 in the forebrain resulted in hyperactivity, decreased anxiety,

and depressive-like behavior (54). Our study found that SPS

increased Plcg1 expression in PL-susceptible animals, which could

heighten anxiety and depressive-like behavior following traumatic

stress. The upregulation of Uqcrb (ubiquinol-cytochrome c

reductase binding protein) has been shown to provide protection

against stress and depression (55). However, SPS decreased Uqcrb

expression in the PL of susceptible rats compared to controls and

insusceptible rats, indicating an increased susceptibility of the PL to

stress and depression. Rtn3 (reticulon 3) is implicated in traumatic
Frontiers in Psychiatry 08
brain injury, and its overexpression promotes neurite outgrowth in

the brain (56). Our findings revealed downregulation of Rtn3 in the

PL-susceptible group, which may contribute to traumatic brain

injury following stress. SPS increased Gria1 (glutamate ionotropic

receptor AMPA type subunit 1) expression in the PL of susceptible

rats compared to control and insusceptible rats. Prior studies have

reported elevated Gria1 expression in schizophrenia and

neurodevelopmental disorders (57, 58). SPS reduced Htt

(huntingtin) gene expression, which has been linked to cerebral

ischemia (59), Huntington’s disease (60), and Parkinson’s

disease (61).

In comparison to the PL region, we identified 28 DEGs in the IL

region involved in specific KEGG pathways, which led to

dysfunction in relaxin and GABAergic signaling as well as

susceptibil ity to drug addiction (morphine addiction,

amphetamine addiction) in the susceptible group relative to the
FIGURE 4

Classification of cellular, biological, and molecular functions based on Gene Ontology (GO) terms regulated by all DEGs. (A–C) Most identified DEGs
showed GO enrichment for postsynaptic density protein, glutamatergic synapse, cytosolic ribosome, synapse formation, transmembrane transport
protein, actin cytoskeleton reorganization, and protein binding in the PL-control versus PL-susceptible group. (D–F) In comparison to the IL-control
group, the IL-susceptible group demonstrated enrichment of GO terms involved in synapse formation, neuronal activity, dendrite formation, axon
regeneration, learning processes, and glucocorticoid receptor binding. (n=4 in each group) (FDR corrected q-value ≤ 0.05).
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control and insusceptible groups. Notably, the DEGs with a

significant difference in the relaxin signaling pathway included

Jun, Col4a2, GNAS, and Mapk8. Jun, an AP-1 transcription

factor subunit, is implicated in the relaxin signaling pathway, and

its expression was elevated in the IL-susceptible group following

SPS exposure when compared to the control and insusceptible

groups. Jun plays a crucial role in enhancing the transcriptional

response of Schwann cells after nerve injury (62). Additionally, SPS

increased Col4a2 (collagen type IV alpha 2 chain) gene expression

in IL, with mutations in Col4a2 being associated with hemorrhagic

stroke (63). SPS downregulated Mapk8 (mitogen-activated protein

kinase 8) expression in the IL-susceptible group relative to the

control and insusceptible groups. Mapk8 is involved in neuronal

development via the JNK pathway (64), and its downregulated

expression by SPS could impact the developmental process in

neurons. Moreover, elevated expression of Gnas (G-protein alpha

subunit) is linked to increased susceptibility to anxiety disorders in

humans (47). SPS augmented Gnas expression in IL-susceptible

rats, leading to anxiety-like behavior after traumatic stress.

Furthermore, SPS reduced the expression of DEGs (Gabarapl1,

Gabrb2, Gabra3, Gnb1, and Gng3) involved in GABAergic signaling

in the IL-susceptible group. This decreased expression of DEGs could

affect GABAergic synaptic transmission, GABA receptor binding

activity, and brain development (65, 66). In the IL region, Jun, Arc,

and Gnas DEGs were enriched in KEGG pathways related to

amphetamine addiction. The downregulation of these DEGs in IL

by SPS could influence synaptic plasticity, glutamatergic synapses,

and the functional connectivity of corticolimbic structures, ultimately

resulting in amphetamine addiction (67–69). Lastly, the DEGs with

significantly higher expression in IL following SPS were Pde8b and

Gnas. These DEGs could impact motor function in the CNS and the

reconsolidation of morphine reward memories (70, 71).

It is well documented that a key mechanism contributing to the

fast-acting effects of antidepressants is the enhancement of

neuroplasticity (72–74). In line with the current findings, particularly

those related to the stress-susceptible group, DEGs showed reduced

enrichment in synapse-related functions, such as PSD proteins,

transmembrane transport proteins, and actin reorganization. The

serotonin and norepinephrine reuptake inhibitors (SNRIs) play a

significant role as a fast-acting antidepressants (75). The identified

DEGs in PL and IL susceptible groups could activate the molecular

signaling cascades that decreased excitatory neurotransmission via

NMDAR (76), AMPAR (77), and mTORC1 (78) signaling.

In conclusion, the ten-day SPS procedure produced anxiety-like

behavior in rats, differentiated into resilient and susceptible

phenotypes. We found divergent responses among stressed rats

subjected to the SPS procedure. RNA-seq analysis identified sixty-

two significant DEGs playing differential role in PL and IL mPFC,

contributing to the resilient and susceptible phenotypes. The DEGs

in the PL and IL susceptible groups exhibited reduced enrichment

for cellular, biological, and molecular functions based on GO

pathways, which may underlie the increased anxiety-like behavior

observed in susceptible rats.
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5 Limitations of the study

The results of this study are limited to the groups analyzed in this

manuscript. For RNA-Seq, we only used the first four animals from

each group based on their AI in control, insusceptible, and susceptible

groups. We have performed this study exclusively on male rats to

completely understand the effect of SPS on mPFC transcriptome. We

excluded female rats from this study due to the fact that the estrogen

fluctuation during the estrous cycle might interfere with the effect of

SPS on behavior and transcriptomic profile of mPFC.
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SUPPLEMENTARY FIGURE 1

KEGG pathways regulated by DEGs of PL and IL in control, susceptible, and

insusceptible groups. (A–C) Most DEGs were involved in organismal systems

and human diseases, while DEGs involved in cellular processes, genetic and
environmental processes decreased in the PL-susceptible group compared

to PL-control and insusceptible groups. Metabolism-regulating DEGs show a
different pattern in the PL-control group vs. PL-susceptible group and PL-

susceptible group vs. PL-insusceptible group. (D–F) KEGG pathways were
enriched in organismal processes, metabolism, and human diseases in both

groups (IL-susceptible compared with IL-control and IL-insusceptible
groups). DEGs involved in cellular, genetic, and environmental processes in

the IL-susceptible group showed different responses to SPS compared to IL-

control and insusceptible groups.

SUPPLEMENTARY FIGURE 2

GO classification of DEGs based on comparative analysis of cellular,

biological, and molecular functions between PL and IL in control,
susceptible, and insusceptible groups.
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