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in neurodegeneration and
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Recent advances in transcriptomics research have uncovered heightened interferon

(IFN) responses in neurodegenerative diseases including Alzheimer’s disease, primary

tauopathy, Parkinson’s disease, TDP-43 proteinopathy, and related mouse models.

Augmented IFN signaling is now relatively well established for microglia in these

contexts, but emerging work has highlighted a novel role for IFN-responsive T cells

in the brain and peripheral blood in some types of neurodegeneration. These

findings complement a body of literature implicating dysregulated IFN signaling in

neuropsychiatric disorders including major depression and post-traumatic stress

disorder. In this review, we will characterize and integrate advances in our

understanding of IFN responses in neurodegenerative and neuropsychiatric

disease, discuss how sex and ancestry modulate the IFN response, and examine

potential mechanistic explanations for the upregulation of antiviral-like IFN signaling

pathways in these seemingly non-viral neurological and psychiatric disorders.
KEYWORDS

interferon, neurodegeneration, Alzheimer’s disease, Parkinson’s disease, TDP-43,
C9orf72, neuropsychiatric disease, autoimmune disease
Introduction

The last five years have witnessed impressive growth in the number of publications

dissecting the role of interferon (IFN) signaling in neurodegenerative disease. Although the

earliest explorations of IFN production in Alzheimer’s disease (AD) occurred more than 40

years ago (1), in this review we will focus primarily on research conducted in the past

decade, using the pioneering work of Roy and colleagues (2) as a starting point. We will

summarize recent advances in our understanding of the role of dysregulated IFN signaling
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in AD, primary tauopathy, TAR DNA-binding protein 43 (TDP-43)

proteinopathy including cases associated with C9orf72

hexanucleotide repeat expansion (HRE), and Parkinson’s disease

(PD). We will also explore evidence for augmented IFN responses

in several neuropsychiatric disorders and discuss whether IFN

signaling is likely to play a role in cognitive dysfunction in either

neurodegenerative or neuropsychiatric disease. Finally, we will

highlight important yet understudied biological modulators of the

IFN response, including sex and ancestry. We will conclude by

highlighting the most important open questions facing the field,

such as which IFN-responsive cell types (e.g., microglia, T cells) are

most likely to contribute to pathogenesis and whether targeting IFN

signaling represents a promising avenue for modifying

pathobiology in neurodegenerative or neuropsychiatric disease

(see accompanying Figure 1, Table 1 for a summary of topics

discussed and callouts to references of special importance).
Interferon responses in tauopathy:
microglia and beyond

A role for microglial type I IFN signaling (occurring via the

IFN-a/b receptor) in AD, primary tauopathy, and associated mouse

models is now relatively well established (2–5). Activation of this
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pathway may be regulated in part by signaling through the

microglial receptor Trem2, as loss of Trem2 in a combined

mutant P301L tau–PS2APP mouse model increases the likelihood

of microglial polarization toward an IFN-responsive state (6). On

the other hand, work involving another model of tauopathy (P301S)

suggests that mutant tau-mediated expansion of IFN-responsive

microglia may not depend on Trem2 signaling in all contexts (7).

Additionally, induced pluripotent stem cell (iPSC) models of

trisomy 21, which is a potent risk factor for early-onset AD due

to triplicated APP (8, 9), have provided independent confirmation

of a role for a microglial type I IFN response to pathologic forms of

tau (10). Given that the IFN-responsive microglial state coincides

with synapse loss and neurodegeneration (2, 6), and that

pharmacologic and genetic inhibition of type I IFN signaling

ameliorates synaptic and memory deficits in the 5XFAD model

(2, 11), this subpopulation of microglia most likely contributes to

pathogenesis. Interestingly, AD-related IFN responses in brain-

resident cells may not be limited to microglia—brain endothelial

cells in APOE4 carriers with AD display a heightened IFN-response

signature (12), and complementary findings have been observed in

mouse models of amyloidosis (13). Beyond studies of mouse models

and post-mortem AD brain tissue, recent integrative analyses of

human genetic data and microglial transcriptomic data have

suggested that variation in OAS1, an established IFN response

gene, may modify risk for AD (14, 15).
FIGURE 1

Dysregulated interferon (IFN) responses are observed in a variety of neurodegenerative diseases—including Alzheimer’s disease (AD), Parkinson’s
disease (PD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS)—and across multiple proteinopathies, including those driven by
tau, TDP-43 and a-synuclein (a-syn). Altered IFN signaling is also observed in psychiatric diseases, including major depressive disorder (MDD), post-
traumatic stress disorder (PTSD), and schizophrenia (upper panel). A heightened IFN response manifesting as expansion of highly IFN-responsive T
cells has been observed in early-onset AD, viral encephalitis, autoimmune disease, and chronic graft versus host disease (cGVHD; upper panel, right).
Important biological variables that may modulate the IFN response include disease subtype, sex, and genetic ancestry (lower panel, left). Relevant
cell types mediating dysregulated IFN signaling in disease include brain-resident microglia, brain endothelial cells, CD4 and CD8 T cells, and
peripheral myeloid cells (lower panel, middle). The use of recombinant type I IFN is associated with cognitive and behavioral changes as well as
structural and functional neuroimaging changes (lower panel, right). Created in BioRender. Yokoyama, J. (2024) BioRender.com/n80o218.
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TABLE 1 Key studies implicating altered interferon responses in neurodegenerative diseases and neuropsychiatric disorders.

Topic Key
references

Main findings Study
method(s)

Cell type(s)
implicated

Proposed direction of
interferon (IFN) signal-
ing/response genes

NEURODEGENERATIVE AND NEUROPSYCHIATRIC DISORDERS

Alzheimer’s
disease (AD)

Roy et al., 2020 (2) Microglia expressing ISGs respond
to nucleic acid-containing Ab
fibrils in AD mouse models.

RNA-seq Microglia Upregulation of type I IFN
response genes in mice with
Ab pathology

Sirkis & Warly
Solsberg et al.,
2024 (19)

Expansion of interferon-
responsive CD4 T cells in early-
onset AD driven by females.

scRNA-seq, ddPCR CD4 T cells Upregulation of type I IFN
response genes across early-onset
AD PBMCs and late-onset AD
CSF immune cells

Amyotrophic lateral
sclerosis (ALS),
frontotemporal
dementia (FTD)

McCauley et al.,
2020 (30)

Lymphoid and myeloid cells from
C9orf72-deficient mice show an
enhanced type I IFN
response signature.

RNA-seq T cells, myeloid cells Increased expression of type I IFN
genes in lymphoid and myeloid
cells (mice); whole blood, myeloid
cells, and brain from C9-
ALS/FTD

Bonham, Geier, &
Sirkis et al.,
2023 (31)

Symptomatic C9orf72 HRE
carriers have global upregulation
of TEs in peripheral blood;
peripheral L1HS expression
associates with thalamic
nuclei volumes.

RNA-
seq; neuroimaging

Peripheral
blood cells

Increased type I IFN gene
expression and TEs (whole blood
and PBMCs) in symptomatic
C9orf72 HRE carriers

Yu et al., 2020 (46) Mislocalization of TDP-43 to
mitochondria promotes mtDNA
release into cytoplasm, triggering
cGAS/STING and IFN pathway
activation. Deletion of Sting in
mouse ALS model
improves outcomes.

qPCR Mouse neuronal cell
lines; iPSC
motor neurons

Increased type I IFN response
gene expression in cortex and
spinal cord; dependent on Sting in
TDP-43 mouse models

Parkinson’s
disease (PD)

Garretti et al.,
2023 (64)

In mouse model expressing
DRB1*15:01, immunization
against a-syn32-46 results in
enteric neuron loss potentially
mediated by CD4 T cells.

RNA-seq CD4 T
cells; granulocytes

Upregulation of innate and
adaptive immune responses,
including IFN-stimulated genes in
a-syn32-46-immunized HLA mice

Major depressive
disorder (MDD)

Mostafavi et al.,
2014 (70)

Analysis of whole-blood RNA-seq
data from MDD patients reveals
increased expression of IFN a/b
pathway genes, not explained after
controlling for confounding
diagnoses and/or medications

RNA-seq Peripheral
blood cells

Increased expression of IFN-a
and IFN-b signaling genes is
associated with MDD

Post-traumatic stress
disorder (PTSD)

Breen et al.,
2018 (72)

Type I IFN signaling response
pathways are altered in
PTSD patients.

Network
mega-analysis

Peripheral
blood cells

Increased expression of type I IFN
signaling genes in combat-related
traumas; decreased in men with
PTSD related to
interpersonal trauma

HETEROGENEITIES

Sex
differences

Sayed et al.,
2021 (82)

In female tau P301S–TREM2
R47H mice, an IFN-responsive
microglia cluster was expanded
relative to female mice expressing
only the P301S or R47H alleles,
or controls.

scRNA-seq Microglia Expansion of IFN-responsive
microglia in tauopathy mouse
model expressing TREM2
R47H variant

Host
genetic variation

Yang et al.,
2021 (105)

Background genetic variation in
AD mouse models regulates
microglial subpopulations.

scRNA-seq Microglia IFN-responsive microglia are
enriched in APP/PS1 mice, but
only on PWK background

CLINICAL & IMAGING CORRELATES

IFN-a treatment Nettis et al.,
2021 (133)

In healthy participants, IFN-a
administration affects T1-

Quantitative MRI - -

(Continued)
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Interferon-responsive T cells in
neurodegeneration and beyond

A unique population of highly IFN-responsive human CD4 T

cells has recently been described (16, 17). A closely related

population of antiviral CD4 T cells is markedly expanded in the

cerebrospinal fluid (CSF) in viral encephalitis (18), and, strikingly,

we have recently observed significant expansion of a very similar

population of highly IFN-responsive CD4 T cells in the blood of

patients with sporadic, early-onset AD (19). Excitingly, diverse

physiological and pathological roles for this subpopulation

continue to be suggested, as recent large-scale single-cell

transcriptomic analyses have shown that IFN-responsive CD4 T

cells are expanded in several autoimmune diseases including

systemic lupus erythematosus (SLE) and primary Sjögren

syndrome (20). Intriguingly, unpublished work also suggests that

IFN-responsive CD4 T cells are expanded in patients who received

hematopoietic stem cell transplants that went on to develop chronic

graft versus host disease (21), suggesting these cells may have

pathogenic properties. Given their relatively recent description,

this population has been variably referred to as IFN-responsive T

cells (16, 19), IFN signaling-associated gene (ISAG)hi T cells (17,

19), antiviral CD4 T cells (18), IFN-driven inflammatory CD4 naive

T cells (21), and Tnaive MX1 (20). This population appears to be at

least partly naive (i.e., antigen inexperienced) by gene expression

profiling (20, 21), raising the intriguing possibility that human IFN-

responsive CD4 T cells may promote pathogenic responses in an

innate-like manner, as has been shown to occur for subsets of naive

CD8 T cells (22). Although it currently remains unclear if mice

possess an equivalent population of highly IFN-driven CD4 T cells,

several papers have found evidence for expansion of activated, IFN-

responsive CD8 T cells in the brain in several AD models, including

the tau P301S-APOE4 (“TE4”) knock-in model (5) and the 5XFAD

model (23). Future work in this area is required to characterize the
Frontiers in Psychiatry 04
functional role and unique properties of these IFN-responsive T

cells in neurodegenerative disease.
Interferon responses in C9orf72
expansion carriers

The most common genetic cause of amyotrophic lateral

sclerosis (ALS) and frontotemporal dementia (FTD) is a

hexanucleotide repeat expansion (HRE) intronic to C9orf72 (C9-

ALS/FTD). Autosomal dominant inheritance of over 30 repeats is

considered pathogenic and is associated with accumulation of

repeat-containing RNA, dipeptide repeat (DPR) proteins, C9orf72

haplo insuffic iency , and the deve lopment of TDP-43

neuropathology (24). Although not considered pathogenic,

individuals possessing an intermediate number of hexanucleotide

repeats (9–30) are thought to have an increased prevalence of

systemic autoimmune conditions, including SLE and rheumatoid

arthritis (RA) (25). Indeed, autoimmune diseases are more broadly

enriched in patients with FTD and ALS, particularly in those with

underlying TDP-43 neuropathology (26, 27). Dysregulated type I

IFN signaling, in turn, has long been implicated in autoimmune

conditions, including SLE, Sjögren syndrome, and a set of

Mendelian disorders named “type I interferonopathies” (28). As

will be described below, these findings collectively suggest that type

I IFN signaling may also be dysregulated in FTD and ALS.
C9orf72 and interferon signaling

Despite the observed relationship between immune

dysregulation and C9orf72 HREs (29), the association between

C9orf72 and IFN signaling has only recently been investigated.

RNA-seq analyses of T cells from C9orf72 knockout mice have
TABLE 1 Continued

Topic Key
references

Main findings Study
method(s)

Cell type(s)
implicated

Proposed direction of
interferon (IFN) signal-
ing/response genes

CLINICAL & IMAGING CORRELATES

relaxation values for
hippocampus; T1 values
correlated with markers of
decreased BBB integrity.

IFN-b treatment Coch et al.,
2019 (132)

In healthy participants, IFN-b
administration decreases
functional activity in ventral
striatum during reward processing
tasks and in amygdala during
emotion-recognition tasks.

Functional MRI - -
a-syn, a-synuclein; Ab, amyloid-b; BBB, blood-brain barrier; CSF, cerebrospinal fluid; ddPCR, droplet digital PCR; HLA, human leukocyte antigen; HRE, hexanucleotide repeat expansion;
iPSCs, induced pluripotent stem cells; ISGs, interferon-stimulated genes; MRI, magnetic resonance imaging; mtDNA, mitochondrial DNA; PBMCs, peripheral blood mononuclear cells; qPCR,
quantitative PCR; RNA-seq, RNA sequencing; scRNA-seq, single-cell RNA sequencing; TEs, transposable elements.
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revealed upregulation of the type I IFN response pathway, and

overlapping IFN-associated pathways were also found to be

increased in monocyte-derived macrophages (MDMs) derived

from C9-ALS patients (30). Additionally, our group has

confirmed the presence of heightened type I IFN-related gene

expression in peripheral blood cells in two independent cohorts

of symptomatic C9-ALS/FTD patients, compared to non-carrier

controls (31). Furthermore, a 2021 study found evidence that brains

donated by C9-ALS/FTD patients have increased neuronal levels of

cytoplasmic double-stranded RNA (cdsRNA), and in vitro

experiments showed that transfection of repeat-containing

dsRNA led to induction of IFN-stimulated genes (ISGs). Finally,

the presence of cdsRNA in mouse neurons was associated with type

I IFN signaling and cell death in vivo (32).
C9orf72 and STING pathway activation

Recent studies have investigated the molecular mechanisms

connecting C9orf72 and IFN signaling via the stimulator of IFN

genes (STING) pathway. Although a detailed description of the

STING pathway is beyond the scope of this article, excellent reviews

are available (33). When exposed to a STING inhibitor, both C9-

ALS patient peripheral blood mononuclear cells (PBMCs) and

MDMs exhibit a suppression of elevated ISG expression (30).

Partial C9orf72 deficiency due to C9orf72 HRE may thus lead to

an overactive type I IFN response via upstream activation of the

STING pathway. Consistent with this possibility, an independent

study recently reported elevated STING protein levels in a C9orf72-

deficient macrophage cell line and in C9orf72-deficient spleen (34).
C9orf72, DNA damage, and
transposable elements

C9orf72 haploinsufficiency is thought to synergize with DPR

proteins in the induction of DNA damage and/or inhibition of

efficient repair mechanisms (35–37). Notably, damaged nuclear

DNA is an activator of the non-canonical STING pathway (38),

and DNA damage is more broadly a hallmark of several

neurodegenerative diseases, including C9-ALS/FTD (39). A recent

study observed increased DNA damage and neuronal STING

pathway activation in human post-mortem tissue and several

models of C9orf72 HRE-associated toxicity (40). Taken together,

studies have identified that C9-ALS/FTD patients may possess an

altered immunophenotype due to both C9orf72 haploinsufficiency

and HRE-associated toxicity that is associated with heightened

DNA damage and subsequent activation of the STING pathway.

Beyond frank DNA damage, IFN signaling can also be triggered

by the de-repression of transposable elements (TEs), including long

interspersed elements (LINEs) that cause the production of

cytosolic LINE-1 cDNA (41). In symptomatic C9orf72 HRE

carriers, we observed a significant increase in the peripheral

expression of human LINE-1 element L1HS (31). Combined with

the finding that several IFN-associated signaling genes were highly

upregulated in the same cohort, the dysregulation of L1HS in these
Frontiers in Psychiatry 05
patients suggests that TE de-repression is another potential

mechanism for the enhanced innate immune response observed

in C9orf72 HRE carriers.
Interferon responses in
TDP-43 proteinopathy

Enhanced type I IFN signaling has also been observed in models

of TDP-43 proteinopathy independent of C9orf72-related

pathobiology. Physiologically, TDP-43 is involved in several facets

of RNA regulation (42, 43). In disease states, TDP-43 can undergo

mis-localization and post-translational modifications that promote

its misfolding and abnormal aggregation in the cytoplasm (44).

Depletion of TDP-43 has been implicated in regulating the

accumulation of double-stranded RNA (dsRNA), promoting

heightened IFN signaling (45). Additionally, recent in vitro

experiments have shown that mislocalization of TDP-43 to

mitochondria is associated with increased levels of mitochondrial

reactive oxygen species (mtROS), a hallmark of mitochondrial

stress (46, 47). Excessive production of mtROS in conjunction

with increased mitochondrial permeability is thought to promote

the errant release of mitochondrial DNA (mtDNA) into the

cytoplasm (47). Cytoplasmic mtDNA, in turn, is known to

precipitate the cGAS-STING cascade, initiating the activation of

type I interferon signaling (46–48).

Corroborating the in vitro work described above, increased levels

of cytosolic mtDNA have also been detected in cells derived from the

spinal cord and cortex in the TARDBP p.A315T mouse model of

TDP-43 proteinopathy. Strikingly, when the mutant TDP-43 mice

were crossed with a Sting-deficient model, disease progression was

slowed by nearly 60% andmedian lifespan was extended by 40% (46).

Finally, direct STING inhibition increased the viability of TDP-43-

mutant, iPSC-derived motor neurons; in vivo, Sting inhibition in the

TDP-43 A315T mouse model rescued neuron loss and improved

performance on a motor coordination test (46). In summary, given

the observed connection between aberrant, mitochondria-localized

TDP-43, mtDNA release, and STING activation, further research into

STING inhibition as a potential treatment for patients affected by

TDP-43 neuropathology is warranted.
Interferon responses in
Parkinson’s disease

Dysregulation of IFN signaling pathways is also implicated in

the development and progression of Parkinson’s disease (PD). The

underlying pathology of PD involves the accumulation of

aggregated a-synuclein (a-syn) protein in vulnerable

dopaminergic neurons in the substantia nigra (SN), leading to

their degeneration. Recent studies suggest that a-syn
dysregulation leads to activation of microglia and peripheral T

cells—especially CD4 T cells—generating an inflammatory cascade,

including a heightened IFN response, that may contribute to

neurodegeneration in PD (49–51).
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Viral infections are a well-known cause of parkinsonism, with

the most famous example the postencephalitic parkinsonism

associated with “encephalitis lethargica,” which was, in turn,

potentially associated with the 1918 influenza pandemic (52).

Certain viruses (e.g., influenza, HIV, West Nile virus) have been

linked to increased risk of idiopathic PD, with in vitro and in vivo

studies showing increased expression, decreased degradation, and

altered post-translational modification and aggregation of a-syn,
including in dopaminergic and dopaminergic-like neurons (53–56).

Furthermore, a-syn has been shown to be required for effective

immune response against viral pathogens. For example, both a-syn-
deficient mice and human stem cell-derived dopaminergic neurons

infected with neurotropic RNA viruses have higher viral loads, with

increased mortality in a-syn-null mice (56, 57). Notably, using a-
syn knockout human dopaminergic neurons, Monogue and

colleagues showed that a-syn is required for the IFN response

and effective control of viral infections, potentially through direct a-
syn interaction with phosphorylated STAT2 to activate ISGs (56).

Both type I and II IFN responses have been linked to PD,

although the results are mixed. Reduced type I IFN signaling

mitigates neuronal death in vitro after treatment with rotenone,

and dopamine neuron death in mice exposed to MPTP, two

neurotoxins linked to PD risk (58, 59). On the other hand, mice

lacking IFN-b function are reported to have increased a-syn
aggregation and dopaminergic degeneration, as well as motor and

cognitive deficits akin to human PD symptoms (60). Meanwhile,

PD patients have elevated IFN-g levels in the SN and striatum, as

well as peripherally in plasma and CD4 T cells; IFN-g is also

secreted by subsets of PD patient CD4 T cells recognizing a-syn
antigenic peptides (50, 61, 62). Overexpression of IFN-g causes

dopaminergic neuron death and nigrostriatal tract degeneration,

while midbrain neuron–microglia co-cultures treated with IFN-g
neutralizing antibody show reduced microglia-mediated neuron

loss when exposed to rotenone (61, 63). Altogether, these and

other studies suggest that dysregulation of either type I or II IFN

signaling may be a risk factor for PD.

Finally, a recent study indicates that an autoimmune response

to a-syn in the gut, potentially mediated via a heightened IFN

response, may directly contribute to PD symptoms (64). Circulating

CD4 T cells from PD patients recognize specific a-syn epitopes,

with strong affinity to a-syn32-46 peptide, which is highly restricted

to certain human leukocyte antigen (HLA) alleles, including the

PD-associated DRB1*15:01 allele. Using a mouse strain expressing

DRB1*15:01, Garretti et al. showed that immunization against a-
syn32-46 resulted in intestinal inflammation, enteric dopaminergic

neuron degeneration, as well as constipation and weight loss. These

changes could be partially reversed by depletion of CD4, but not

CD8, T cells. Subsequent differential gene expression analysis

showed upregulation of innate and adaptive immune responses,

including IFN-stimulated genes (Stat1/2, Oas2, Irf7, Isg15). These

results suggest that a dysregulated IFN response, acting in concert

with CD4 T cells recognizing specific a-syn epitopes, might

underlie both PD pathogenesis as well as clinical presentation.
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Interferon responses in
neuropsychiatric disorders
Recent research has begun to elucidate a significant role for IFN

responses in various neuropsychiatric disorders, including major

depressive disorder (MDD) and post-traumatic stress disorder

(PTSD). In the context of MDD, a recent single-nucleus RNA-seq

(snRNA-seq) study using samples from dorsolateral prefrontal

cortex has provided compelling evidence of altered IFN-g
signaling via identification of a distinct pattern of gene expression

changes associated with the IFN-g response (65). Given the higher

prevalence of MDD in women and emerging evidence suggesting

distinct, sex-specific molecular mechanisms in depression, this

study conducted many of its analyses in a sex-stratified manner.

Specifically, the authors found significant negative enrichment in

IFN-g and NF-kB signaling pathways in microglia from female

cases. This supports existing literature pointing to reduced

microglial activation and enhanced synaptic connectivity in

females, with the reverse observed in males (66). Furthermore,

alterations in microglial gene expression were more pronounced in

females than males, aligning with studies demonstrating that many

microglial immune functions are influenced by gonadal hormones

or exhibit sex-specific characteristics (67–69). Given the inherent

limitations related to the use of post-mortem tissue for snRNA-seq

studies, additional research has focused on identifying peripheral

blood biomarkers of MDD. For example, a large-scale, whole-blood

RNA-seq study of more than 900 individuals, including cases with

recurrent MDD and controls of European ancestry, revealed a

significant association of MDD with increased expression of genes

involved in IFN-a/b signaling, suggesting this pathway may lead to

or exacerbate depressive symptoms (70).

PTSD has also been linked to aberrant immune responses,

including those mediated by IFNs. A 2015 meta-analysis (71)

found that elevated levels of IFN-g, interleukin 1b, and

interleukin 6 are all robust features of PTSD. Additionally, a

comprehensive 2017 mega-analysis of transcriptome-wide gene

expression studies involving over 500 PTSD patients and controls

aimed to clarify molecular heterogeneities related to sex and trauma

types (72). This study identified significant alterations in type I IFN

response pathways. Notably, IFIT3 emerged as the sole gene

consistently differentially expressed across all examined trauma

groups (including interpersonal-related traumas in both females

and males, and combat-related traumas in males) albeit with

inconsistent direction of expression change. In cases of combat-

related trauma, another IFN-responsive gene, IFI44L, was

consistently upregulated across three different studies.

Furthermore, consensus gene co-expression network analyses

highlighted a type I IFN signaling cascade module as enriched in

all trauma groups. This underscores the importance of IFN-related

molecular pathways in PTSD despite variability related to sex and

trauma type in expression patterns among individual IFN-

responsive genes.
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Sex differences in interferon signaling

Several studies have recorded heterogeneities in immune

responses between biological males and females, including in the

context of neurodegeneration and aging (73–75). Briefly, females

more commonly experience enhanced immune cell activation after

viral exposure and vaccination (73, 75). Many viruses exhibit sex-

based differences in disease outcomes, including SARS-CoV-2 and

hepatitis B, with males typically experiencing increased disease

severity (76). Despite the apparent female advantage against viral

exposure, females in turn experience the highest burden of several

autoimmune and immune-mediated neurodegenerative diseases,

including SLE (77), primary Sjögren syndrome (78), multiple

sclerosis (79), and AD (80). Given that dysregulated type I IFN

signaling plays a major role in autoimmune diseases (as described

above), it is not surprising that sex differences also associate with

differential type I IFN responses. In particular, both the differential

expression of genes located on sex chromosomes as well as the

production of sex hormones have been shown to alter type I IFN

responses (81), but the precise immunological mechanisms

underlying sex differences in the prevalence and severity of

diseases associated with IFN signaling remain unclear.

Both mouse and human studies have revealed that sex may

modulate IFN responses in the context of AD. In a combined

tauopathy–TREM2 R47H mouse model, only female mice

demonstrated enhanced spatial memory deficits (82), and these

deficits occurred amid expansion of an IFN-responsive microglia

cluster. In a recent preprint, a similar mouse model was created by

combining TREM2 R47H and APOE4 knock-in alleles in mice

carrying a tau P301S transgene (83). Remarkably, female mice of

this model displayed robust evidence of neurodegeneration, again in

conjunction with expansion of an IFN-responsive microglial

subpopulation. In a striking convergence with other recent work on

tau- and TDP-43-mediated disease (46, 84), the heightened IFN

response in these mice appeared to be driven by upstream cGAS–

STING pathway activation. Taken together, these recent findings

suggest that the effect of variation in TREM2 and APOE, when

combined with sex-based IFN- and other immune-mediated

signaling differences, may convey unique risk for neurodegeneration

in females.

In humans, using single-cell RNA-seq analysis, we discovered

that female patients with sporadic early-onset AD were driving a

unique peripheral immune signature (19). Specifically, female

patients exhibited significantly elevated levels of a population of

highly IFN-responsive T cells. We confirmed this sex difference via

droplet digital PCR of isolated CD4 T cells, finding that females

with early-onset AD had heightened expression of the classical IFN

response gene, MX1. In parallel, a meta-analysis of over 1.8 million

CD4 T cells found that females have increased levels of a

subpopulation of naïve T cells identified by expression of the

same marker gene, MX1 (20). The exact mechanism driving sex

differences in the IFN response in early-onset AD, however,

remains an area of active inquiry. Interestingly, a 2022 preprint

found that early-onset AD is associated with a higher prevalence of

several autoimmune diseases relative to both late-onset AD and the
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general population (85). Whether the relative enrichment of

autoimmunity in both females and early-onset AD is related to

the female-driven expansion of IFN-responsive CD4 T cells in

early-onset AD remains to be determined. Further investigation

into the influence of sex chromosomes, hormones, and

environmental factors on IFN responses in neurodegenerative and

neuropsychiatric diseases is clearly warranted.
Ancestry-associated differences in
interferon signaling

In addition to sex, evidence also suggests that host genetic

factors, including genetic ancestry (GA), may influence IFN

signaling. GA describes the paths through which an individual

inherited their DNA; in a sample, shared GA is often measured by

calculating the genetic similarity between individuals to each other

or to a known reference population (86). A 2021 single-cell RNA-

seq study found that increasing genetic similarity to a European

ancestry reference panel was associated with heightened type I IFN

response after infecting PBMCs with influenza virus in vitro (87).

Relatedly, a recent study that analyzed the post-mortem brains of

self-identified Black Americans (most of whom have admixed GA)

found that increasing European GA was associated with enrichment

of various immune-related differentially expressed gene sets in the

dentate gyrus, dorsolateral prefrontal cortex, and hippocampus. In

contrast, in the caudate nucleus, increasing African GA was

associated with enrichment of largely distinct immune-related

gene ontology terms such as “response to virus” that are typically

enriched for IFN-responsive genes. This suggests that the influence

of GA on immune functions in the brain is complex and region-

specific (88), and supports the notion that GA may influence IFN

responsiveness in vivo.

Shared GA is frequently proxied by using self-reported or

assumed identities that are tied to socially defined labels, such as

race, ethnicity, nationality, or continental geography (89). Between

these socially defined groups, multiple neurodegenerative diseases

influenced by IFN signaling have disparate rates of prevalence,

disease severity, and/or mortality, including AD, ALS, and multiple

sclerosis (80, 90, 91). While observed health disparities may be

attributed to environmental and cultural factors, including access to

health care, genetic risk factors associated with shared ancestry have

also been identified (92–94).

The most striking example of an IFN-associated disease with

marked health disparities is SLE, which consistently displays

increased prevalence and severity in non-White populations, with

Black and American Indian/Alaskan Native women being the most

affected groups in the United States (77). Even after controlling for

socioeconomic status, studies have shown that non-White race

persists as a risk factor for SLE prevalence, severity, and outcome,

suggesting that there may be underlying genetic factors driving

these disparities (95, 96). Furthermore, ISGs associated with SLE

have higher expression levels in individuals of self-described East

Asian and African American descent, in comparison to Europeans

(97–99). While the exact contributions of genetic ancestry to IFN
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signaling in SLE remain to be elucidated, differential DNA

hypomethylation of ISGs between European American and

African American women with SLE has been observed.

Specifically, hypomethylation of IFI44L was observed only in

African American women (100). However, these patterns of DNA

hypomethylation may also reflect risk for developing lupus

nephritis (101), a severe disease outcome of SLE which European

ancestry is thought to be protective against (102).

A major limitation of many studies of SLE has been the usage of

race, ethnicity, or geography as a proxy for shared GA. Using

socially-defined labels as proxies for shared GA relies on inaccurate

assumptions about the genetic homogeneity of these groups (86). In

order to more accurately quantify the contributions of population

genetics on IFN signaling in SLE and beyond, it will be important to

move towards continuous measures of genetic similarity, such as

genetic distance (103). Furthermore, as noted in our recent

systematic review, non-European ancestry populations have been

significantly underrepresented in neurodegenerative disease

research, particularly in genetic studies. The intentional inclusion

of genetically diverse cohorts will be essential to our understanding

of the host and population genetic factors contributing to IFN

signaling, not only in autoimmune disease but also in the context of

neurodegenerative and psychiatric disease (104).

Similar to human populations, wild-derived mice with distinct

genetic backgrounds can be leveraged to explore the impact of genetic

background on immune function. Indeed, a single-cell RNA-seq study

of four genetically distinct, wild-derived strains of mice found that a

cluster of microglia expressing IFN-responsive genes was significantly

enriched in APP/PS1 mice, but only on the background of the PWK

strain; this effect was not observed in commonly used C57BL/6J mice

or other wild-derived strains (105). Taken together, multiple lines of

evidence suggest that the expression of IFN- and other immune-related

genes is potently influenced by genetic variation.
Interferon responses in aging

Beyond biological sex and ancestry, the process of aging is

thought to exert a major effect on the IFN response. This

phenomenon, explored recently in several excellent review articles

(106, 107), has been studied primarily in model systems (108) but is

also likely to play an important contributory role in human diseases

of aging such as AD. While some studies have found elevated type I

IFN responses associated with aging (e.g., at the choroid plexus

(108)), others have found decreased IFN signaling potential (e.g., in

peripheral myeloid cells (109)). Given that inappropriate IFN

pathway hyperactivation may underlie diseases of premature

aging (110), it is reasonable to hypothesize that aging-associated

neurodegenerative diseases are also driven, in part, by augmented

IFN signaling. How these findings can be reconciled with the

known, aging-associated reduction in peripheral innate immune

IFN signaling (109, 111) remains an important open question

worthy of careful future investigation.
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Clinical and neuroimaging features of
interferon response

While there has been marked progress in our understanding of

how dysregulated IFN signaling contributes to neurologic disease in

model systems, there is relatively limited information on its

contribution to behavioral symptoms and risk for neurodegenerative

disease in human populations. In this section, we provide a focused

summary of the clinical and neuroimaging features of IFN response as

they relate to neuropsychiatric and neurodegenerative disease.
Clinical features of interferon treatment
and response

Our clinical understanding of the behavioral symptoms of IFN-

pathway dysregulation stems from two key clinical populations:

patients receiving exogenous IFN therapeutically and patients with

intrinsic interferonopathies. Interestingly, some of the earliest

clinical evidence that IFN dysregulation caused neuropsychiatric

symptoms was incidentally discovered during IFN treatment for

hepatitis C, hepatitis B, and melanoma (112–114).

Several key features of IFN-related neurotoxicity are shared –

depression and fatigue are the most common behavioral symptoms

and occur in up to 70% of patients while rarer symptoms such as

mania, seizures, and psychosis occur in less than 5% (112, 115).

These symptoms have been most thoroughly characterized in the

setting of IFN treatment (112), but overlap with behavioral

symptoms in multiple diseases including primary immune-

mediated diseases such as HIV-associated neurocognitive disorder

(HAND) (116, 117) and subsets of SLE (118), neuropsychiatric

diseases such as major depression (119) and schizophrenia (120),

and neurodegenerative diseases like AD (80). In the case of HAND,

type I IFN responses are thought to be important for maintaining

virological control, both systemically and in the brain (121, 122),

but may also contribute to cognitive dysfunction. Multiple

mechanisms have been hypothesized to explain the connections

between IFN pathway dysregulation and psychiatric symptoms

including increased degradation of serotonin, decreased synthesis

of dopamine, and altered glutamatergic signaling (123), all of which

are key regulators of mood and behavior. Interestingly, an

additional modulator of clinical symptoms has been hypothesized

in neurodegenerative diseases – IFN indirectly promotes NMDA

receptor activation, a possible driver of neurotoxicity and worsening

symptoms (123).

Treatment of the behavioral effects of interferonopathies

remains in its infancy with many promising treatment paradigms

though few validated treatments. For example, tyrosine kinase

inhibitors have successfully treated Aicardi–Goutières syndrome

(AGS) (124–126), an inherited type I interferonopathy which

presents with immune dysfunction, motor deficits, and

developmental delay (127). Whether the findings from inherited
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syndromes can be extrapolated to IFN-related neuropsychiatric and

neurodegenerative diseases is an exciting area for future research.
Neuroimaging features of
interferon response

Neuroimaging is an important though underutilized tool in the

study of interferonopathies, highlighting promising links between

the above-described clinical symptoms and the underlying IFN-

mediated pathobiology described elsewhere in this review.

Exogenous IFN administration has been shown to alter brain

structure and function in both patient populations and healthy

controls. Patients undergoing IFN-a treatment demonstrate

decreased functional activity in basal ganglia during reward

processing tasks (128), increased amygdala activity during

emotion processing tasks (129), and impaired whole-brain

connectivity during resting state MRI (130). Furthermore, early

imaging evidence indicates that dopamine and glutamate

concentrations are altered in basal ganglia and that these changes

correlate with functional connectivity and depressive symptoms

(128, 131). Remarkably, IFN-b administration in healthy controls

also decreases functional activity in the ventral striatum during

reward processing tasks and amygdala during emotion-recognition

tasks (132). Interestingly, one quantitative MRI study in healthy

controls demonstrated that IFN-a administration alters the

intrinsic T1-relaxation values (a measure of tissue composition

impacted by factors such as protein levels, water content, etc) for

hippocampus and that these changes correlated with markers of

decreased blood brain barrier integrity (133). Despite the

methodological differences, these findings suggest that the effects

of administered type I IFN are likely independent of disease status,

point to neuroanatomic pathways by which IFN alters behavior,

and further highlight the importance of dopamine in the brain’s

response to IFN.

Compared to imaging studies of exogenous IFN administration,

there are relatively few studies of intrinsic interferonopathies. While

uncommon, inherited interferonopathies such as monogenic SLE

and AGS most commonly present with intracerebral calcifications

and T2 white matter hyperintensities (134, 135). Not surprisingly,

imaging findings are variable depending on each syndrome’s

underlying genetic mutation (134). For example, AGS patients

with SAMHD1 mutations may present with intracranial

vasculopathy while patients with ADAR1 mutations present with

striatal necrosis (134). There is limited literature directly testing

whether IFN levels alter brain structure or function in

neurodegenerative disease, but indirect evidence suggests that IFN

signaling plays an important role in brain structure in C9-FTD (31).

Future studies will be required to determine whether IFN levels are

associated direct ly with neuroanatomic correlates of

neurodegenerative disease progression.
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Overlapping interferon pathway
dysregulation in neurodegenerative
and psychiatric disease: the
way forward

In summary, we have reviewed key evidence from both basic

and translational scientific approaches to show that aberrantly

upregulated IFN and downstream IFN signaling not only

predispose patients to neurodegenerative diseases but may also

modulate risk for psychiatric diseases. Indeed, the links between

IFN and both neurodegenerative and neuropsychiatric diseases go

far beyond overlapping clinical features and behavioral symptoms.

At the molecular level, broad-ranging data from mice, human brain

tissue, and even neuroimaging studies suggests that IFN-mediated

neurotransmitter dysregulation, particularly dopamine and

glutamate dysfunction, is a shared risk factor for psychiatric

symptoms in both neurodegenerative and neuropsychiatric

diseases (56, 60, 128, 131). Future studies should aim to directly

address the question of whether IFN pathway dysregulation in the

context of neurodegeneration drives psychiatric symptoms in

addition to cognitive decline.

At the cellular level, converging evidence from mouse and

human studies suggests that microglia play a key role in IFN

pathway dysregulation and that microglial dysfunction associates

broadly with risk for neurodegenerative diseases like AD (4, 82, 83)

and PD (61) alongside sex-specific effects in psychiatric diseases like

MDD (66). Beyond the large body of literature connecting aberrant

microglial IFN signaling in neurodegenerative disease, additional

evidence points to important roles for endothelial cells (12), the

choroid plexus (136), and IFN-responsive CD4 and CD8 T cells (5,

19, 23) in neurodegenerative disease. IFN-responsive CD4 T cells

remain poorly understood and are particularly intriguing given

their expansion in sporadic early-onset AD (19), viral encephalitis

(18), and autoimmune disease (20). That autoimmune disease is

found at higher-than-expected prevalence in early-onset AD (85)

suggests a mechanistic explanation for dysregulated peripheral IFN

signaling in early-onset AD and the potential for shared immune-

mediated etiology, although additional study is needed to confirm

this possibility.

The primary source(s) of type I IFN for modulating T cell and

microglial activity in the context of neurodegenerative and

psychiatric disease represents an important yet unresolved

question. Plasmacytoid dendritic cells (pDCs) are a major source

of type I IFN in the context of viral infection (137), but their role in

producing IFN during neurodegeneration remains unclear.

Intriguing recent work suggests that a pathogenic variant in TLR9

may represent a novel, autosomal-dominant cause of early-onset

AD (138). Interestingly, TLR9, while robustly expressed in pDCs, is

apparently not expressed in human microglia (138). Strikingly,

TLR9 is a major regulator of type I IFN production by pDCs
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(139). Taken together, these findings suggest that dysregulated

production of type I IFN by pDCs may promote risk for early-

onset AD. Further research into the potential role of TLR9 signaling

in AD, including the identification of additional families with early-

onset dementia harboring pathogenic TLR9 mutations, is

now needed.

Beyond these connections, many psychiatric symptoms in

primary autoimmune diseases such as SLE and Sjögren syndrome

are also increasingly attributed to microglial dysfunction (140, 141).

At the network level, early evidence has shown broad, IFN-associated

dysregulation of genetic networks (3), linked inflammatory cytokines

(120), and even functional neuroanatomic networks (130). Most

relevant network analyses to date, however, have focused relatively

narrowly on a single data modality or disease state. It stands to reason

that combined analyses of multiple data modalities (e.g., genetic and

functional brain networks) and disease states (e.g., neurodegenerative,

primary autoimmune, and psychiatric) will reveal scientifically and

clinically relevant information about the shared biology underlying

these complex diseases. With large and publicly available multimodal

datasets available for these diseases, integrative analyses represent a

promising, even vital, area for future research.

There is now well-established evidence for type I IFN pathway

dysregulation—generally manifesting as pathologic upregulation of

IFN-response genes—in a range of neurodegenerative and

neuropsychiatric diseases. In addition, clear evidence shows that

recombinant IFN-a/b treatment can promote cognitive and

behavioral dysfunction. Given the reasonable hypothesis that

aberrant IFN signaling may exacerbate pathology and contribute

to cognitive dysfunction and/or decline in these diseases, is it

similarly reasonable to postulate that inhibiting excessive IFN

signaling would represent an attractive therapeutic strategy? A

monoclonal antibody that inhibits signaling through the IFN-a/b
receptor has been approved by the United States Food and Drug

Administration (FDA) for use in SLE and could represent a

promising candidate for early clinical testing in neurodegenerative

disease. Caution is warranted, however, given the reported increase

in herpes zoster (142, 143) and influenza infections (144, 145) in

those being treated with this antibody. Because viral infections may

also increase risk for neurodegenerative disease (146), this

therapeutic strategy could perversely promote incipient

neurodegeneration and cognitive decline. Indeed, a precise

homeostatic balance in IFN signaling may be required to enable

effective antiviral responses throughout life while, at the same time,

not unnecessarily promoting risk for neurodegeneration.
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