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GRAPHICAL ABSTRACT
1 F

Fron
‘Iracema comes with the pot full of the green liquor. The shaman

decrees the dreams to each warrior and distributes the wine of
jurema, which carries the brave Tabajara to heaven.’1

José de Alencar, in his poetic novel “Iracema” (1865)
1 Introduction

The “wine of jurema”, used in ancient Brazilian shamanic

rituals, is rich in N,N-dimethyltryptamine (DMT), a naturally

occurring tryptamine like serotonin and melatonin. Widely

found in plants and animals, DMT is the main component

of some botanical tisanes used for centuries as a channel of

communication with the otherworld (1, 2). Despite being

classified as a “classical psychedelic” (2–4), DMT’s unique effects

are often overlooked due to an overemphasis on serotonin (5HT)

2A receptors as the key pharmacological feature of serotoninergic

psychedelics. This simplification ignores DMT’s broader receptor

interactions, lack of tolerance, and distinct subjective experiences. A
reely translated from the Portuguese; bold highlight not on the original.
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nuanced understanding of DMT’s pharmacology and its

redefinition among psychedelics is necessary to recognize its

full potential.

DMT was originally synthesized by Canadian chemist Richard

Manske in 1931, before it had ever been discovered in any plant (5),

but its hallucinogenic properties were confirmed only in 1956 when

chemist and psychiatrist Stephen Szara administered DMT

intramuscularly to healthy volunteers, who experienced LSD-like

effects (6). However, DMT had been identified earlier in Mimosa

hostilis roots (the main component of the “wine of jurema”) by

chemist O. Gonçalves de Lima in 1946 (7) and was later recognized

in 1957 as a key psychoactive ingredient in ayahuasca (“vine of the

souls”) (8).

These brews produce intense closed-eye (and, less frequently,

open-eye) visual effects, known in Portuguese as “miração”

(“seeings”), with immersive dream-like states and rich internal

imagery (9–11). In contrast to other serotoninergic psychedelics,

individuals who use ayahuasca and DMT report stronger visual

effects, breakthrough experiences, near-death experiences, and

encounters with entities (12–16).

This distinct phenomenology reflects DMT ’s unique

pharmacological profile, defying its simplistic classification as a

classical psychedelic. In fact, DMT (a) activates sigma-1 receptors,

trace amine-associated receptors (TAAR1), and intracellular
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5HT2A receptors; (b) acts as a substrate of the serotonin uptake

transporter (SERT) and the vesicle monoamine transporter

(VMAT2); (c) and modulates dopaminergic, noradrenergic,

adrenergic and cholinergic neurotransmission (1, 4, 17–19).

Unlike LSD, which induces complete tolerance after four

consecutive daily doses (20), DMT’s effects remain minimally

reduced with repeated use (21, 22). Moreover, DMT ’s

endogenous presence in the human body (urine, blood,

cerebrospinal fluid) suggests roles in neuroplasticity, immune

function, and other physiological processes, further distinguishing

it from other psychedelics.

In mental health treatment, an exploratory study with

intravenous DMT has shown next-day antidepressant effects in

treatment-resistant depression (23). Ayahuasca has been long used

in traditional Amazonian ceremonies with the aim of facilitating

profound introspection and emotional healing. Modern preliminary

research suggests its therapeutic potential for treating mood, anxiety,

substance use, and trauma-related disorders (24–35), as well as

suicidality (34) – possibly by modulating emotion and trauma

processing (36–41).

However, these studies remain in their early stages, often

involving small sample sizes and variability in methodologies. In

contrast, LSD has a long tradition of studies, MDMA is approved in

Australia for PTSD, and psilocybin, now also approved in Australia,

shows promising potential for treatment-resistant depression. Hence,

this study aims to highlight the unique characteristics of DMT that

make it a promising candidate for psychedelic therapeutics.
2 DMT unique features

2.1 There is an endogenous production
of DMT

A distinguishing feature of DMT is its natural production in the

human body. Although often associated with hallucinogenic

experiences when administered exogenously, DMT’s presence and

role in the brain under normal physiological conditions remain an

area of active investigation. Since the 1960s and 1970s we have

known that mammals, including humans, endogenously produce

DMT (18, 42, 43); for a comprehensive review, see Barker et al.

(2012) (44). However, recent rodent studies show that DMT is

present in the brain at levels akin to canonic neurotransmitters like

serotonin and dopamine (45, 46).

Early research confirmed the presence of endogenous DMT in

various tissues, including the liver and lungs, using techniques like

gas chromatography and mass spectrometry (43). Traditionally,

DMT synthesis have been attributed to the enzyme indolethylamine

N-methyltransferase (INMT) (47). Nonetheless, Glynos et al.

(2023) demonstrated that INMT is not essential for DMT

production in rats, suggesting alternative enzymatic pathways (48).

Nichols (2018) critically examined the functional significance of

endogenous DMT, particularly its secretion from the pineal gland

and its link to near-death or out-of-body experiences (49). He

argues that DMT concentrations in the brain are too low to produce

psychoactive effects and emphasized the need for rigorous research.
Frontiers in Psychiatry 03
Until 2018, few studies quantified DMT levels in rodent brains

(50, 51), possibly losing sequestered DMT during tissue processing

from whole-brain homogenates (17). However, Dean et al. (2019)

provided substantial evidence of endogenous DMT in the rat brain

(45), finding levels in the pineal gland and visual cortex comparable

to other neuroamines. This suggests that DMT could be part of a

functional system in normal brain physiology.

Dean et al. (2019) also observed a sudden increase in DMT

levels in rats during cardiac arrest (45). However, Li et al. (2015)

and Nichols (2018) (49, 52) noted that the time of death involves a

“brainstorm” with a surge in neurotransmitters and synchronous

electroencephalographic (EEG) signaling, indicative of high

cognitive processing (53, 54), which aligns with experiences

reported by cardiac arrest survivors.

Glynos et al. (2024) further explored DMT’s effects in animal

models, finding that intravenous DMT administration in rats

increased serotonin and dopamine levels, altered EEG spectral

power, and enhanced functional connectivity (46). Importantly,

they also detected endogenous DMT in the prefrontal and

somatosensory cortices at levels comparable to serotonin and

dopamine. These findings suggest that endogenous DMT may

have functional significance in the mammalian brain (46),

supporting previous results that DMT may accumulate and be

stored in neuron vesicles (19, 55).

Although the natural role of DMT remains elusive, it has been

suggested that DMT may be involved in diverse normal

physiological functions: synaptic plasticity (56), neonatal brain

development (50), adult neurogenesis regulation (57), normal

sensory perception (58), modulation of brain mitochondrial

function (59), adaptative immune response to stress (60–62), and

protection against hypoxia and oxidative stress (63, 64).
2.2 DMT has an unique phenomenology

Compared to the other traditional psychedelics, DMT has a

distinct phenomenology. When injected intravenously, DMT

induces visions so strong that having one’s eyes open or closed

barely affects what is seen (14). Breakthrough experiences, marked by

profound changes in temporal and spatial perception, are common

with ayahuasca and DMT, leading to feelings of being in a different

reality, intense ego dissolution, and time dilation (15, 65, 66).

Near-death experiences (NDEs), featuring inner peace, out-of-

body experiences, and exploration of otherworldly realms, closely

resemble DMT-induced experiences. Accordingly, Timmermann

et al. (2018) found striking parallels between actual NDEs and those

induced by DMT (67).

A survey by Griffiths et al. (2019) on mystical experiences

induced by classical psychedelics found that participants using

DMT more often had complete mystical experiences, scoring

higher on ineffability and transcendence of time and space

compared to the use of psilocybin and LSD (68). In another survey

by the same team, investigating interactions with sentient entities

during DMT experience, 80% of respondents reported the experience

profoundly altered their perception of reality, with 65% describing

them as more real than typical waking consciousness (12).
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Of note, although ayahuasca contains beta-carbolines, which act

as monoamine oxidase inhibitors (MAOIs), its primarily

psychedelic effect is mainly due to DMT. Beta-carbolines inhibit

DMT’s metabolization by MAO enzymes in the gut and liver,

allowing DMT to reach the brain and extending its effects from

minutes to several hours (22, 69, 70). However, despite differences

in duration and intensity, the experiences from ayahuasca are

similar to those from exogenous DMT administration (71).

Interestingly, despite the molecular similarity between DMT

and its derivative 5-methoxy-N,N-dimethyltryptamine (5-MeO-

DMT), they have distinct characteristics. Both cause ego

dissolution and time dilation, but 5-MeO-DMT often induces a

sense of void or “whiteout”, contrasting with DMT’s vivid and

intense visual phenomena (72).
2.3 DMT has unique
pharmacokinetic properties

Tachyphylaxis, or rapid tolerance, is common with most classic

serotoninergic psychedelics like LSD, psilocybin, and mescaline.

Repeated administration of these substances quickly diminishes

their subjective effects, usually within a few days, due to the

downregulation and desensitization of extracellular cortical 5-

HT2A receptors (73, 74). For instance, after four days of daily

LSD administration, its hallucinogenic effects simply vanish

(20, 75–79). Additionally, cross-tolerance between these

substances is common; individuals tolerant to LSD, for example,

show reduced sensitivity to psilocybin and mescaline, indicating

shared mechanisms of action (80–88).

In contrast, DMT is unique in that it does not induce tolerance

to its psychological effects, even with closely spaced repeated use.

Studies in humans have consistently shown no significant

attenuation in the subjective experiences elicited by DMT. For

instance, Strassman (1995, 1996a) demonstrated that volunteers

who received four closely spaced doses of DMT experienced no

reduction in hallucinogenic intensity (21, 89). Similarly, Dos Santos

et al. (2012) observed no tolerance to the subjective effects of two

consecutive doses of ayahuasca (22). DMT also does not produce

cross-tolerance to other hallucinogens like LSD, further

highlighting its distinct pharmacodynamic properties (90–95).

DMT’s unique lack of tolerance suggests a different mechanism of

action compared to other serotoninergic psychedelics, making it a

valuable compound for psychopharmacological research.

As with other psychedelics, there is the possibility of

pharmacodynamic drug-drug interactions between DMT and other

serotoninergic drugs, especially by competition at the receptor level (96).

For instance, concomitant DMT administration with serotonin and

norepinephrine reuptake inhibitors, or MAO inhibitors, may reduce

DMT’s subjective effects by increasing serotonin levels and by

downregulating 5-HT2A receptors after chronic use, and 5-HT2A

antagonists may reduce the effects of DMT (96). Regarding possible

toxicity in humans, human studies usually report a good tolerability

profile (23), but elevations of cardiovascular parameters, anxiety, and

unpleasant psychological reactions have been observed in clinical

settings after acute DMT administration (4, 6, 14).
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2.4 DMT has unique mechanisms of action

In 2009, Fontanilla and colleagues discovered that DMT is an

endogenous ligand for sigma-1 receptors, found throughout the

central nervous system and peripheral tissues (97). Initially

mistaken for an opioid receptor, the sigma-1 receptor is now

known as an orphan receptor because it binds synthetic

compounds but not opioid peptides (97). Sigma-1 receptors act as

transmembrane chaperone proteins, controlling anti-inflammatory

reactions, cell survival, and neuronal differentiation (62). They have

neurorestorative effects and protect cells against oxidative stress,

underscoring their importance for brain health and function (60).

Unlike other classical psychedelics, DMT’s interaction with

sigma-1 receptors may enhance neuroplasticity, neuroprotection

and cognitive function. Cheng et al. (2024) showed that long-term

DMT administration improved neurogenesis and cognitive function

in rat models of Alzheimer’s disease by activating sigma-1 receptors,

confirming its therapeutic potential in neurodegenerative disorders

(59). Morales-Garcia et al. (2020) found that DMT promotes adult

neurogenesis in the hippocampus via sigma-1 receptors, stimulating

neural stem cell proliferation, neuroblast migration, and new neuron

generation (57). These effects likely explain the improved spatial

learning and memory observed in DMT-treated mice compared to

controls (57).

DMT’s interaction with sigma-1 receptors also influences the

immune system. DMT and its derivative 5-MeO-DMT modulate

human monocyte-derived dendritic cells by activating sigma-1

receptors, reducing pro-inflammatory cytokine production and

increasing anti-inflammatory cytokine secretion (62). This

suggests that DMT may help maintain immune homeostasis and

manage autoimmune and chronic inflammatory diseases.

Additionally, DMT’s activation of sigma-1 receptors may offer

therapeutic benefits in neuropsychiatric disorders characterized by

low-level inflammation and cytokine imbalance (60).
2.5 DMT has unique effects
in neuroplasticity

In a landmark study, Vargas et al. (2023) described how DMT

and psilocybin activate intracellular cytoplasmic pools of 5HT2A

receptors to promote neuroplasticity (98). This confirmed Cornea-

Hébert et al. (1999) previous finding that 5HT2A receptors in the

neuronal cortex are primarily intracellular rather than on the

membrane surface (99). Remarkably, although serotonin is a

potent 5HT2A receptor agonist, it cannot cross the cellular

membrane to activate these receptors. However, the lipophilic

nature of DMT allows it to cross cellular membranes and bind to

these intracellular receptors, suggesting DMT, rather than

serotonin, may be the endogenous agonist.

Moreover, downregulation and internalization of 5-HT2A

receptors on the cell surface play a role in tolerance to

psychedelics (20, 100–102). Interestingly, DMT’s action on

intracellular pools of 5HT2A receptors may partially explain the

lack of tolerance with repeated use (21). Accordingly, chronic DMT

use does not induce 5HT2A receptor desensitization (2, 70).
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Given its ability to promote neuroplasticity, DMT may be

categorized as a psychoplastogen, a group of substances that may

directly and rapidly change brain structure and function. This

unique characteristic makes them promising therapeutic agents

for neuropsychiatric disorders. By promoting dendritic growth

and synapse formation, psychoplastogens like DMT may quickly

alleviate symptoms of conditions such as anxiety and

depression (103).
3 Discussion

DMT stands out among serotoninergic psychedelics for its potent

visual effects, lack of tolerance, and unique neurophysiological

properties. Its natural production and interaction with sigma-1 and

intracellular 5HT2A receptors play important roles in brain plasticity

and immune regulation. Evidence of substantial DMT levels in the rat

brain, including its accumulation in neuron vesicles and alternative

production pathways, suggests a broader role in neurobiology. While

endogenous DMT is confirmed in the rat brain, its presence in the

human brain and exact physiological roles need further exploration.

Despite its therapeutic potential, research on DMT faces key

limitations, including uncertainty about the optimal dose and

duration of therapeutic benefits, besides the challenge of

functional unblinding due to its rapid and intense effects (23, 25).

Variability in dosing, administrations routes, and the combination

with a MAOI (in ayahuasca) further complicates cross-study

comparisons (17). The long-term impacts of repeated dosing also

require further investigation (104). It is crucial to have larger, well-

designed trials to better understand DMT’s safety and efficacy

(29, 30).

In addition to its unique pharmacological and therapeutic

benefits, DMT could offer a cost-effective psychiatric treatment

option if approved globally (39, 105, 106). Although the substance

itself may not be patentable, like psilocybin, the processes and

formulations used in different routes of administration (e.g.

inhalation, intranasal, buccal or sublingual) could be, which could

influence its accessibility (107). Nonetheless, DMT’s potential as a

widely accessible treatment is significant, particularly given its

potential to yield different treatment outcomes compared to other

psychedelics, such as for neuropsychiatric disorders involving low-

level inflammation.

DMT’s rapid onset and short duration (20-30 minutes when

inhaled or injected) (17, 23) make it practical for clinical use

compared to longer-acting psychedelics like psilocybin (4-6 hours),

MDMA (4-6 hours), and LSD (8-12 hours) (108, 109). Its brief effects

reduce supervision needs, and its lack of tolerance allows for repeated

dosing. However, its short half-life and intense acute effects could
Frontiers in Psychiatry 05
complicate clinical use if frequent administration is needed,

increasing demands on personnel and risk of adverse reactions

(2, 3). Extended DMT infusion may address these limitations by

offering more controlled, sustained effects (104, 110). While DMT

shows promise in psychedelic therapy, more research is needed to

explore its benefits, especially in combination with other

molecules (111).
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