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Background: Exposure to metal could impact women’s depression risk.

However, the connection and mechanisms between metalloestrogens

exposure and depression are still not fully understood. We aim to explore the

associations between metalloestrogens and the risk of depression in women

across reproductive lifespan.

Methods: Using data from NHANES 2011-2018, we employed logistic regression

and baknernel machine regression (BKMR) to study links between

metalloestrogen exposure and depression in US women. We analyzed how

contraceptive use affects this relationship.

Results: The study involved 3,374 adult women, with 345 of them experiencing

depression. Our research revealed that certain metalloestrogens like Ba, Ca, Pb,

Sb, and Sn were linked to higher depression risk in women, while Hg was

associated with lower depression risk in older women. For women aged 18-44,

a blend of metalloestrogens showed a significant positive correlation with

depression risk, and the likelihood of depression in later years notably rose

when the metal mixture concentration reached or exceeded the 60th percentile.

Oral contraceptives would have an effect on the impact of metalloestrogen

mixture exposure on depression in women during the reproductive stage.

Conclusions: Our study indicates a significant link between metalloestrogen

exposure and a higher risk of depression in adult women in the United States. This

finding can aid in identifying the connection and enhancing women’s mental

well-being.
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1 Introduction

Depression, a prevalent mental illness, is marked by significant

disability and mortality rates (1). Epidemiological studies indicate

that major depression affects over 10 to 20 percent of the

population, with more than 39 percent of individuals displaying

suicidal tendencies (2). Moreover, depression stands as a key

contributor to the global disease burden and is anticipated to

become the second leading cause of disease burden by 2030 (3).

Notably, gender variations in depression prevalence are substantial.

For instance, research in China revealed a threefold higher

prevalence of depression among women compared to men (4). In

the U.S., depression rates among adolescents were approximately 25

percent for females and 10 percent for males (5). The reasons

behind women’s susceptibility to depression remain unclear, yet

studies suggest that women face a heightened risk of depression

during hormonal fluctuations in specific reproductive stages like the

perinatal and perimenopausal phases (6). This underscores the

potential role of sex hormones in the biological predisposition

to depression.

Estradiol (E2), also known as 17b-estradiol, is the most potent

endogenous estrogen and a key sex hormone in the body (7). It is

mainly produced by the ovaries during ovulation and plays a crucial

role in regulating mood, cognitive function, and the immune system

(8, 9). E2 has been shown to positively influence neurotransmitter

systems such as glutamate, gamma-aminobutyric acid (GABA), 5-

hydroxytryptophan (5-HT), and dopamine (10). Additionally, it

controls and stimulates hypothalamus–pituitary–adrenals (HPA)

axis activity, which is essential for stress response (11, 12). By

modulating the emotional and cognitive systems involved in stress

processing, E2 fluctuations may impact the risk of depression in

women. Research indicates that women with depression tend to

have lower E2 levels compared to healthy individuals (12). Animal

studies have also demonstrated that abrupt E2 reduction post-

ovariectomy can lead to increased depressive-like behavior in

rats (13).

Metal ions have recently been discovered to imitate or interfere

with natural estrogens, which interact with hormone receptors to

produce agonistic or antagonistic endocrine effects (14). These

inorganic xenoestrogens, known as metalloestrogens, include

aluminum (Al), arsenic (As), barium (Ba), cadmium (Cd),

chromium (Cr), cobalt (Co), copper (Cu), antimony (Sb), lead

(Pb), mercury (Hg), molybdenum (Mo), nickel (Ni), selenium (Se),

tin (Sn), and vanadium (V) (15). They are widespread in the

environment and can infiltrate the body via food, water, or air

(16). Organisms gradually accumulate metalloestrogens via the food

chain or through the absorption of metallic elements. This

bioaccumulation can lead to prolonged exposure, impacting the

body’s endocrine system and causing hormonal disruption (17).

Additionally, it may contribute to various health issues, including

breast cancer, prostate cancer, endometriosis, reproductive

disorders, and gestational diabetes (17, 18).

Recent studies have indicated a potential connection between

metalloestrogens and a higher risk of depression in women. For

instance, a cross-sectional study revealed a significant link between
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exposure to Cd and Pb and depression, particularly in women aged

20–59 (19). Another US study also showed a possible positive

association between Cd levels in the blood and depression in

adult women (20). Metalloestrogens can induce oxidative stress,

disrupt neurotransmitter release, damage neurons, and harm the

central nervous system (21). Furthermore, higher exposure to

metalloestrogens may worsen inflammation, contributing to

depressive episodes (22). These findings suggest that

metalloestrogens might impact mood, cognitive function, and

ultimately depression by influencing estrogen changes in the body.

However, current epidemiologic studies primarily focus on the

effects of individual metalloestrogens on depression in women,

neglecting the combined impact of multiple exposures. Women

are not exposed to these substances in isolation; they encounter

various environmental factors simultaneously. Metalloestrogens are

commonly detected in urine and blood samples from the general

population and may produce synergistic or cumulative effects (23).

Thus, relying solely on individual exposure levels is inadequate for

understanding depression’s development. Further research is

necessary to examine the combined effects of metalloestrogens on

depression risk. Additionally, since endogenous estrogen levels in

women fluctuate with different reproductive stages and the use of

external steroids like contraceptive use (24, 25), the impact of

metalloestrogen exposure may also differ.

In this study, we analyzed data from the National Health and

Nutrition Examination Survey (NHANES) to explore potential

links between metalloestrogen exposure and depression in adult

women in the United States across various reproductive stages. To

evaluate interactions and determine overall effects, we applied

several statistical methods, such as multivariate logistic regression

and baknernel machine regression (BKMR). Our study is the first to

explore how mixed exposure to various metalloestrogens affects

depression in women, offering new insights into the relationship

between metalloestrogen exposure and depression risk during

different reproductive stages.
2 Study participants and methods

2.1 Study participants

The data utilized in this study were sourced from NHANES, a

biennial survey carried out by the Centers for Disease Control and

Prevention (CDC) to oversee public health in the nation. This

database gathers a broad array of demographic, physiological,

nutritional, and health-related information via periodic surveys of

the health and nutrition status of the U.S. populace. Information is

gathered through interviews conducted in homes and at mobile

survey sites. Quality control measures, such as randomized repeat

testing, are applied to laboratory samples to detect patterns,

alterations, and uncertainties in the gathered data.

For our study, we procured data from four survey cycles

spanning from 2011 to 2018, each lasting two years. We gathered

information from women aged 18 years and older with full data on

metalloestrogen exposure and details from the Depression and
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Reproductive Health Scale. Women with primary amenorrhea and

pregnant individuals were excluded to precisely investigate the

impact of metalloestrogens. In the end, 3,374 women were part of

the analysis.
2.2 Methods

2.2.1 Metalloestrogen exposure assessment
Urine samples were collected at the Mobile Examination Center

(MEC) and then processed, stored, and transported to the Laboratory

Sciences Division of the National Center for Environmental Health

for analysis. We identified various metalloestrogens exhibiting

relatively high estrogenic efficiency (15), such as Ba, Cd, Pb, Sb, Sn,

Hg, and Mn (Supplementary Table S1), and quantified their

concentrations in urine samples via Inductively Coupled Plasma

Mass Spectrometry (ICP-MS). The laboratory techniques are

detailed in the NHANES Official Instructions document. All test

results reported adhere to environmental laboratory QC and QA

standards, with comprehensive quality control and assurance

guidelines outlined in the NHANES Laboratory/Medical

Technician Procedures Manual (LPM).

The lower limits of detection (LOD) were 0.06 mg/L for Ba,

0.036 mg/dL for Ca, 0.13 mg/L for Mn, 0.03 mg/L for Pb, 0.022 mg/L
for Sb, and 0.09 mg/L for Sn. The LOD for Hg was 0.13 ng/ml.

2.2.2 Identification of depression
Depression was evaluated using the Patient Health

Questionnaire-9 (PHQ-9), a reliable and valid tool in community

samples for detecting the varying severity of depressive symptoms

(26). The PHQ-9 comprises nine items assessing symptoms over the

past two weeks. Each item is rated on a 4-point Likert scale from 0

to 3: 0 (not at all), 1 (a few days), 2 (no more than half the days), and

3 (almost every day). Total scores were calculated by summing all

item scores. Participants with a total score of ≥10 were classified as

having depressive symptoms (27).

2.2.3 Covariates
The selection of covariates for this study was informed by

previous research examining the association between exposure to

environmental pollutants and depression (19). The covariates

included age, defined according to the female reproductive

lifespan, which begins with menarche and ends with menopause

(24, 25, 28). Age categories were: 18-44 years as reproductive, 45-55

years as perimenopausal, and ≥56 years as the elderly group.

Additional covariates were age at menarche, body mass index

(BMI), diabetes mellitus, hypertension, and alcohol consumption

(categorized as >12 drinks a year and ≤12 drinks a year).
2.3 Statistical analysis

When presenting basic data for women, continuous variables

were shown as means and standard deviations, while categorical

variables were shown as counts and percentages. The Pearson’s Chi-

squared test and Wilcoxon rank sum test were utilized to compare
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differences in categorical and continuous variables between the

depressed and non-depressed groups. As the metals had a skewed

distribution, a log10 transformation was applied to normalize them.

Spearman’s correlation analysis was used to examine the

correlations between metals. Covariates included in all statistical

models included age, drinking (number of drinks per year),

diabetes, hypertension, age of menarche, family members, and

BMI. In addition, we conducted subgroup analyses to examine

potential age- and oral contraceptive-related variations in the

associations between metalloestrogens exposure and depression.

Violin plots were employed to illustrate variations in the

distribution of metal estrogens among age groups. Binary logistic

regression modeling was utilized to investigate the correlation

between metals and depression. Urinary levels of metalloestrogens

were divided into quartiles (Q1-Q4), and the links between urinary

metals and depression were analyzed across various concentration

gradients. Statistical findings were presented as odds ratios (OR)

and a 95 percent confidence interval (95% CI). Furthermore, a four-

node restricted cubic spline was applied to observe the potential

dose-response association between metals and depression.

In addition to examining the link between specific metals and

depression, we applied BKMR to study how combined exposure to

metalloestrogens relates to depression. We assessed the collective

impact of metalloestrogen exposure on depression by maintaining

all metalloestrogens within a set concentration range and observing

outcomes with each 5% rise. We conducted 30,000 iterations for

dependable estimates. Because major chronic disease (e.g., diabetes,

hypertension) have effects on depression (29, 30), we conducted

another separate sensitivity analysis by excluding participants with

these diseases.

Statistical analysis was performed using SPSS 25.0 and R

(version 4.2.3), with the utilization of the “ggcorrplot”,

“gtsummary” and “bkmr” packages for the respective analyses.

The significance level chosen for the study was P < 0.05.

3 Results

3.1 Population characteristics and
metalloestrogens distribution

Throughout 2011 to 2018, NHANES included 19851 women

participants. Initially, we excluded individuals under 18 years old

(n = 6366), those with unreliable or missing health questionnaire

and laboratory data (n = 9595), pregnant women (n = 233), primary

amenorrhea (n = 4), and individuals with uncertain or missing

values for other variables (n = 279). Ultimately, our sample

comprised 3374 American women, among whom 345 were

identified as experiencing depression (Supplementary Figure S1).

The women’s baseline characteristics are presented in Table 1. 44%

were aged 18-44 years, 18% were aged 44-55 years, and 38% were 56

years of age or older. Among depressed patients, 40% were in the

18-44 age group (reproductive years), 22% were in the 45-55 age

group (perimenopausal years), and 38% were 56 years and older

(old age). Age at menarche, BMI, hypertension, diabetes, and oral

contraceptives varied between depressed and non-depressed

groups (p<0.05).
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1486402
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Ren et al. 10.3389/fpsyt.2024.1486402
The correlation heatmaps for the seven metallestrogens are

displayed in Supplementary Figure S2. Strong positive correlations

were observed between Sb, Pb, and all other metals. Correlations

across all metals varied from 0.23 to 0.6. Figure 1 illustrates the

distribution characteristics of Log10 transformed metalloestrogens

across various age groups. Ba, Cd, Pb, Sb, Sn, and Hg exhibit

significant differences among the three age groups.
3.2 Association between individual
metalloestrogen exposure and depression

Using logistic regression to explore the association between

metalloestrogens and depression (Table 2). Ba and Sb showed a

positive association with the risk of depression in the crude model
Frontiers in Psychiatry 04
(Ba, Crude OR 95%CI: 1.04 (1~1.08) *; Sb, Crude OR 95%CI: 2.78

(1.29~6) **). Cd and Pb showed positive associations with the risk

of depression in both crude and corrected models (Cd, Crude OR

95%CI: 1.59 (1.32~1.93) ***, OR 95%CI: 1.62 (1.32~1.93) ***; Pb,

Crude OR 95%CI: 1.4 (1.21~1.63) ***, OR 95%CI: 1.51 (1.29~1.77)

***). In addition, the second, third, and fourth quartiles of

metalloestrogens were associated with a higher risk of depression

compared to the lowest quartile (Cd, Q3, OR 95% CI: 1.51

(1.06~2.13) *, Q4 OR 95%CI: 1.98 (1.4~2.8) ***; Pb, Q3 OR 95%

CI: 1.75 (1.22~2.5) **, Q4 OR 95%CI: 2.28 (1.61~3.23) ***; Sb, Q4

OR 95%CI: 1.84 (1.33~2.55) ***; Sn, Q2 OR 95%CI: 1.63 (1.11~2.4)

*, Q3 OR 95%CI: 1.79 (1.22~2.62) **, Q4 OR 95%CI: 2.71

(1.88~3.91) ***.

We also stratified by age, exploring the relationship between

metalloestrogen exposure and depression during the reproductive
TABLE 1 Basic characteristics of participants by depression in the U.S. women, NHANES 2011–2018.

Characteristic
Overall,
N = 3374

No Depression,
N = 3029

Depression,
N = 345

p-value

Drinking in a year, n (%) 0.081

≤12 times 1971 (58%) 1750 (58%) 221 (64%)

>12 times 1279 (38%) 1166 (38%) 113 (33%)

Missing 124 (3.7%) 113 (3.7%) 11 (3.2%)

Age of Menarche,
Mean (SD)

12.69 (1.82) 12.71(1.80) 12.49 (1.95) 0.016

BMI, n (%) <0.001

<18.5 kg/m2 75 (2.2%) 68 (2.2%) 7 (2.0%)

18.5-24.9 kg/m2 1093 (32%) 1,019 (34%) 74 (21%)

25.0-29.9 kg/m2 1034 (31%) 937 (31%) 97 (28%)

≥30 kg/m2 1172 (35%) 1005 (33%) 167(48%)

Hypertension, n (%) <0.001

No 2197 (65%) 2,022 (67%) 175(51%)

Yes 1177 (35%) 1,007 (33%) 170(49%)

Diabetes, n (%) <0.001

No 2875 (85%) 2615 (86%) 260 (75%)

Yes 403 (12%) 327 (11%) 76 (22%)

Missing 96 (2.8%) 87 (2.9%) 9 (2.6%)

Age, n (%) 0.064

18-44 years 1,488 (44%) 1351 (45%) 137 (40%)

44-55 years 610 (18%) 533 (18%) 77 (22%)

≥56 years 1276 (38%) 1145 (38%) 131 (38%)

Oral Contraceptive, n (%) 0.009

No 153 (34%) 1057 (35%) 96 (28%)

Yes 2221 (66%) 1972 (65%) 249 (72%)

Family members, Mean (SD) 3.08 (1.73) 3.09 (1.73) 3.00 (1.78) 0.13
N, number; SD, Standard Deviation.
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years (18-44 years), perimenopause (45-55 years), and old age (>55

years) (Table 3). Logistic regression found that Pb was positively

associated with the risk of depression in reproductive women (Crude

OR 95%CI: 1.34 (1.08~1.66) **, OR 95%CI: 1.4 (1.11~1.77) **). Ba,

Cd, Pb, and Sb were positively associated with the risk of depression

in perimenopausal women (Ba, crude OR 95%CI: 1.11 (1~1.22) *; Cd,

Crude OR 95%CI: 1.99 (1.35~2.93) **, OR 95%CI: 2.19 (1.43~3.36)

***; Pb, Crude OR95%CI: 1.66 (1.03~2.69) *, OR 95%CI: 2.1

(1.21~3.66) **; Sb, Crude OR 95%CI: 9.5 (1.56~57.7) *, OR 95%CI:

12.1 (1.64~89.44)*). Cd and Pb were positively correlated with the risk

of depression in old age (Cd, Crude OR 95%CI: 1.43 (1.11~1.83) **,

OR 95%CI: 1.49 (1.15~1.93) **; Pb, Crude OR 95%CI: 1.39

(1.07~1.81) *, OR 95%CI: 1.57 (1.2~2.06) **. The highest tertile of

Cd in any period was associated with a higher risk of depression

compared to the lowest tertile (Q4: 18-44years OR 95%CI: 1.72

(1.01~2.95) *; 45-55years OR 95% CI: 1.39 (1.09~1.76) **; >55years

OR 95%CI: 2.1 (1.24~3.55) **). Higher quartiles of Pb in any period

were associated with a higher risk of depression compared to the

lowest quartile (18–44 years, Q3 OR 95%CI: 2.59 (1.44~4.64). **, Q4,
Frontiers in Psychiatry 05
OR 95%CI: 2.41 (1.33~4.36) **; 45-55 years, Q4 OR 95%CI: 2.3

(1.09~4.82) *; >55 years, Q3 OR 95%CI: 1.73 (1~2.98) *, Q4, OR 95%

CI: 1.94 (1.12~3.35) *). Compared with the lowest quartile, the highest

quartile of Sb in the reproductive period was positively associated with

the risk of depression (OR 95%CI: 2.45 (1.45~4.12) **). Compared to

the lowest quartile, the high quartile of Sn in any period was positively

associated with the risk of depression (18–44 years, Q2 OR 95%CI:

2.55(1.37~4.73) **, Q3 OR 95%CI: 2.45(1.31~4.58) **, Q4 OR 95%CI:

2.37(1.27~4.42) **. 45-55years, Q4, OR 95%CI: 4.43(1.88~10.44) **;

>55years, Q3, OR 95%CI: 2.09 (1.16~3.76) *, Q4 OR 95%CI: 2.69

(1.51~4.79) **. Compared with the lowest quartile, the higher quartile

of Hg in old age was negatively associated with the risk of depression.

(Q2, OR 95%CI: 0.37 (0.14~0.97) *; Q4, OR 95%CI: 0.32 (0.11~0.88)

*). In all women, the dose-response relationship between

metalloestrogens and depression is shown in Supplementary Figure

S3. All seven metalloestrogens showed linear associations with

depression (p-non-linear > 0.05). In the sensitivity analyses,

exclusion of the women with diabetes and hypertension

(Supplementary Tables S2– S7) found similar results.
FIGURE 1

Violin plot of the distribution of metalloestrogens in different women reproductive cycles. ***: p < 0.001; ****: p < 0.0001; ns: p > 0.05.
TABLE 2 Association of metalloestrogens with depression, NHANES, 2011–2018.

Variables Crude OR
(95%CI)

OR (95%CI)1 OR (95%CI)1 P for trend

ug/L Continuous Q1 Q2 Q3 Q4

Ba 1.04 (1~1.08)* 1.03(1~1.07) Reference 1.36 (0.98~1.89) 1.24 (0.89~1.74) 1.36 (0.98~1.9) 0.129

Cd 1.59 (1.32~1.93) *** 1.62(1.32~1.93) *** Reference 1.02 (0.71~1.47) 1.51 (1.06~2.13) * 1.98 (1.4~2.8) *** <0.001

Mn 1.12 (0.99~1.28) 1.09(0.96~1.25) Reference 0.9 (0.6~1.35) 1.2 (0.79~1.81) / 0.071

Pb 1.4 (1.21~1.63) *** 1.51(1.29~1.77) *** Reference 1.33 (0.92~1.92) 1.75 (1.22~2.5) ** 2.28 (1.61~3.23) *** <0.001

Sb 2.78 (1.29~6) ** 2.25 (0.99~5.15) Reference 1.05 (0.74~1.5) 1.06 (0.75~1.51) 1.84 (1.33~2.55) *** <0.001

Sn 1.02 (0.99~1.04) 1.01 (0.98~1.03) Reference 1.63 (1.11~2.4) * 1.79 (1.22~2.62) ** 2.71 (1.88~3.91) *** <0.001

Hg 2 0.87 (0.73~1.04) 0.9 (0.76~1.06) Reference 0.67 (0.34~1.36) 0.83 (0.41~1.7) 0.68 (0.33~1.4) 0.947
Since the 25th percentile of Mn is equal to the 50th percentile, Mn is divided into three categorical variables.
1Adjusted for age, diabetes mellitus, hypertension, household size, age at menarche, number of drinks in a year, and BMI. Q, quartile.
2 ng/ml.
*: p < 0.05; **: p < 0.01; ***: p < 0.001.
Bold indicates p < 0.05.
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3.3 Association of metalloestrogens
mixture exposure with depression

What’s more, to further explore the role of metalloestrogens in

depression, multiple metalloestrogens exposure model were be

analyzed by using BKMR. When all seven metalloestrogens were set

at a specific percentile (ranging from the 5th to the 95th percentile), the

difference in depression levels was estimated in comparison to when

these metalloestrogens were all at the 50th percentile. In Figure 2A, it is
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evident that among all women, the likelihood of depression rose when

the concentrations of the metalloestrogens blend were at or above the

50th percentile. For women aged 18-44, there was a significant and

positive correlation between metalloestrogens and depression risk

(Figure 2B). Conversely, for women aged 45-55, metalloestrogens

mixture did not show a significant association with the risk of

depression (Figure 2C). As shown in Figure 2D, it is highlighted that

the risk of depression in older age groups notably increased when the

concentrations of metal mixtures were at or above the 60th percentile.
TABLE 3 Association of metalloestrogens with depression after age subgroup, NHANES, 2011–2018.

Variables Crude OR
(95%CI)

OR (95%CI)1 OR (95%CI)1 P
for

trend
ug/L Continuous Q1 Q2 Q3 Q4

Ba

18-44 1.04 (0.99~1.09) 1.03(0.98~1.08) Reference 1.2(0.72~2.02) 1.18(0.7~2) 1.09 (0.64~1.84) 0.806

45-55 1.11 (1~1.22) * 1.1 (0.99~1.22) Reference 2.03 (0.95~4.36) 1.62 (0.75~3.51) 1.61 (0.74~3.48) 0.397

≥56 1.02 (0.94~1.1) 1.03 (0.96~1.1) Reference 1.1 (0.64~1.9) 1.11 (0.64~1.92) 1.6 (0.95~2.71) 0.088

Cd

18-44 1.56 (0.94~2.59) 1.62(0.91~2.86) Reference 1.09(0.62~1.88) 1.34(0.78~2.3) 1.72(1.01~2.95) * 0.032

45-55 1.99 (1.35~2.93) ** 2.19(1.43~3.36) *** Reference 1.52 (0.67~3.45) 1.65 (0.73~3.72) 1.39(1.09~1.76) ** 0.008

≥56 1.43 (1.11~1.83) ** 1.49(1.15~1.93) ** Reference 1.02 (0.57~1.83) 1.28 (0.74~2.23) 2.1 (1.24~3.55) ** 0.003

Mn

18-44 1.07 (0.75~1.52) 1.03 (0.71~1.5) Reference 1.02(0.54~1.93) 1.25(0.65~2.39) / 0.331

45-55 1.03 (0.77~1.38) 1.03 (0.71~1.5) Reference 0.56 (0.23~1.33) 0.97 (0.4~2.3) / 0.336

≥56 1.19 (0.98~1.44) 1.17 (0.93~1.46) Reference 1.08 (0.53~2.2) 1.37 (0.67~2.83) / 0.214

Pb

18-44 1.34 (1.08~1.66) ** 1.4(1.11~1.77) ** Reference 1.88(1.02~3.45) 2.59(1.44~4.64) ** 2.41(1.33~4.36) ** 0.002

45-55 1.66 (1.03~2.69) * 2.1 (1.21~3.66) ** Reference 0.94 (0.41~2.16) 1.7 (0.81~3.57) 2.3 (1.09~4.82) * 0.009

≥56 1.39 (1.07~1.81) * 1.57 (1.2~2.06) ** Reference 1.22 (0.69~2.17) 1.73 (1~2.98)* 1.94 (1.12~3.35) * 0.008

Sb

18-44 2.19 (0.84~5.72) 1.45 (0.51~4.11) Reference 1.18 (0.66~2.1) 0.95 (0.52~1.72) 2.45(1.45~4.12) ** 0.001

45-55 9.5 (1.56~57.7) * 12.1(1.64~89.44) * Reference 0.77 (0.34~1.74) 1.41 (0.67~2.95) 1.81 (0.89~3.68) 0.037

≥56 2.54 (0.43~15.01) 2.41 (0.32~18.38) Reference 1.27 (0.72~2.24) 1.05 (0.59~1.87) 1.64 (0.96~2.82) 0.111

Sn

18-44 1.01 (0.97~1.05) 1 (0.95~1.05) Reference 2.55(1.37~4.73) ** 2.45(1.31~4.58) ** 2.37(1.27~4.42) ** 0.027

45-55 1.02 (0.98~1.07) 1.03 (0.98~1.08) Reference 1.53 (0.61~3.81) 1.85 (0.75~4.58) 4.43(1.88~10.44) ** <0.001

≥56 1.01 (0.98~1.05) 1.01 (0.97~1.04) Reference 1.26 (0.67~2.37) 2.09 (1.16~3.76) * 2.69 (1.51~4.79) ** <0.001

Hg 2

18-44 0.91 (0.69~1.19) 0.92 (0.7~1.2) Reference 1.3 (0.38~4.48) 1.21 (0.34~4.27) 1.32 (0.38~4.63) 0.89

45-55 0.87 (0.64~1.19) 0.89 (0.65~1.22) Reference 0.88 (0.1~7.65) 0.89 (0.1~7.92) 0.85 (0.09~7.67) 0.913

≥56 0.78 (0.54~1.11) 0.82 (0.58~1.15) Reference 0.37 (0.14~0.97) * 0.46 (0.17~1.25) 0.32 (0.11~0.88) * 0.354
fr
Since the 25th percentile of Mn is equal to the 50th percentile, Mn is divided into three categorical variables.
1Adjusted for, diabetes mellitus, hypertension, household size, age at menarche, number of drinks in a year, and BMI. Q, quartile.
2ng/ml
*: p < 0.05; **: p < 0.01.
Bold indicates p < 0.05.
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3.4 Oral contraceptive may influence the
association of metalloestrogen mixture
exposure with depression in women aged
18-44 years

No significant association was found between oral contraceptive

use and depression among women aged 18-44 years (Supplementary

Table S8). However, BKMR analysis, when stratified by history of oral

contraceptive use among women aged 18-44 years, revealed a

significant positive association between metalloestrogens and

depression in women with a history of oral contraceptive use

(Figure 3A). Conversely, no such association was observed in

women without a history of oral contraceptive use (Figure 3B).
4 Discussion

In this study, we firstly explored the risk of metalloestrogens

exposure for depression in women across reproductive lifespan.

Our results showed that exposure to Ba, Ca, Pb, Sb, and Sn alone

was positively linked to depression risk in women. Conversely, Hg

exposure was negatively correlated with depression risk in older

women. Furthermore, BKMR analyses indicated that the depression

risk in women of reproductive age could be influenced by exposure
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to a blend of metalloestrogens. The risk of depression significantly

rose when the metalloestrogen mixture concentration reached or

exceeded the 60th percentile in older women. Additionally, we

observed that oral contraceptives might mediate the impact of

metalloestrogens mixture exposure on depression in women

during the reproductive stage.

Ba primarily enters the human body through water, food, and

air, with industrial production, wastewater discharge, and fertilizer

use also contributing to exposure (31). Our research discovered a

positive association between Ba exposure and depression in women,

particularly in perimenopausal women. In contrast, a previous

study on depression in pregnant women did not find a link

between Ba and maternal depression (32). This could be

attributed to the unique nature of pregnancy, a special phase in a

woman’s life characterized by significant hormonal and lifestyle

changes (33). Perimenopausal women, however, undergo a gradual

decline in physiological function, including irregular menstruation

or its cessation. While hormone levels fluctuate, there is a gradual

reduction in estrogen production by the ovaries (24). Further

research is necessary to investigate the interplay between women’s

physiological changes mediating Ba exposure and depression.

Cd is widely present in the environment as both an agricultural

and industrial pollutant (34). The primary sources of Cd exposure

for the population are smoking and diet (35). Cd can penetrate the
FIGURE 2

Association of metalloestrogen mixture exposure with depression in women. (A) Association of metalloestrogen mixture exposure with depression
among whole women. (B) Association of metalloestrogen mixture exposure with depression among women aged 18-44 years. (C) Association of
metalloestrogen mixture exposure with depression among women aged 45-55 years. (D) Association of metalloestrogen mixture exposure with
depression among women aged >55 years.
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blood-brain barrier, affecting glial cells and altering several

molecular pathways, such as increasing lipid peroxidation,

impairing antioxidant defenses, and lowering glutathione levels

(21). Moreover, Cd can influence the monoaminergic

neurotransmission system, which regulates mood states and plays

a role in depression development (36, 37). Our study revealed a

significant positive correlation between urinary Cd levels and

depression risk. While consistent with previous research (19, 38),

a study from China found no link between blood cadmium levels

and depression incidence, particularly among the elderly (39). This

discrepancy arises from differences in exposure characteristics.

Blood Cd reflects recent and cumulative exposure, while urinary

Cd indicates lifetime exposure, making urinary measurements the

gold standard for assessing Cd exposure (40). Furthermore,

demographic differences play a role. Our study focused on U.S.

females at various reproductive stages, showing a stronger

association between Cd exposure and depression in women

during perimenopause and old age. Despite discrepancies, it is

crucial to highlight the impact of Cd exposure on depression and

implement effective intervention strategies to reduce its incidence.

For Mn, an essential micronutrient for life processes, plays a

crucial role in various kinases and enzymes like glutathione lyase,

guanidine aminopeptidase, glutamine synthetase, and superoxide

dismutase (SOD) (41). For instance, Mn is a vital component of

MnSOD, an antioxidant mitochondrial metalloenzyme that shields

cells from oxidative stress (42). A prior cross-sectional study

revealed that higher blood manganese levels in women were

linked to a lower risk of depression (43). Furthermore, a recent

meta-analysis indicated a negative correlation between dietary

manganese intake and depression risk, suggesting that manganese

supplementation could be a potential intervention to prevent

depression (44). Our study, however, contrasts with these

findings, possibly due to our use of urine samples and stricter

inclusion criteria for females. Further research is required to

investigate the connection between urinary Mn levels and

depressive symptoms.
Frontiers in Psychiatry 08
Pb, a highly toxic heavy metal, accumulates in bones over time

and is released slowly (45). It disrupts enzyme activity and

structural proteins, resulting in various harmful effects such as

anemia, hypertension, cognitive deficits, immune imbalances,

delayed bone and tooth development, as well as neurological and

behavioral impacts (46). Our research indicates a strong link

between Pb exposure and depression, and this association

continues throughout a woman’s adult life. Recent studies have

shown a positive association between blood Pb levels and

depression in females aged 20–59 years (19). Furthermore,

NHANES data from 2011–2012 revealed a connection

between Pb exposure and depressive symptoms (47). However, a

Korean study found no significant correlation between serum Pb

levels and depression (38), possibly due to demographic and

sample differences.

Sb is a crucial industrial raw material used in various valuable

products such as flame retardants, paints, pigments, and electronics

(48). Some studies consider it a novel neurotoxicant (49). We

discovered a significant link between Sb exposure and depression

risk, particularly among perimenopausal women. Research based

on NHANES 2007–2016 also revealed a positive connection

between urinary Sb levels and depressive symptoms in women

(50). Sb induces autophagy through reactive oxygen species (ROS)-

mediated cytotoxicity, with excessive autophagy potentially

leading to neuronal apoptosis and depression (51). Animal

studies demonstrated that prolonged Sb exposure increased

levels of inflammatory factors (interleukin-1b (IL-1b), IL-6, and
TNF-a) and pro-oxidant substances (glutathione peroxidase,

malondialdehyde) (49), indicating that Sb boosts inflammatory

responses, closely tied to depression (52).

Sn exists in both inorganic and organic forms, with the former

used primarily as tin-plated cans and containers and in personal

care products, such as stannous chloride, and the latter as a

stabilizer and biocide for polyvinyl chloride, such as tributyltin

(TBT) (53). Stannous chloride has been found in animal

experiments to accelerate the release of transmitters from nerve
FIGURE 3

Oral contraceptive may influence the association of metalloestrogen mixture exposure with depression in women aged 18-44 years. (A) Association
between metalloestrogens mixture exposure and depression during the women with a history of oral contraceptive use. (B) Association between
metalloestrogens mixture exposure and depression during the women without a history of oral contraceptive use.
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endings in mice to promote neuromuscular transmission and thus

stimulate or inhibit the central nervous system (54). TBT may alter

levels of neurotransmitters, including dopamine and g-
aminobutyric acid, and affect gene expression related to mood,

potentially contributing to instability and depression (55, 56).

Additionally, TBT exposure can provoke inflammatory responses

and increase oxidative stress, decreasing antioxidant levels, as seen

in rat models (57). Our study aligns with previous findings (58),

suggesting that high Sn levels are strongly associated with

depression. Therefore, reducing Sn exposure levels may help

prevent depression.

Hg, a common neurotoxin, is found in nature in elemental,

organic, and inorganic forms (59). Human exposure to Hg primarily

occurs through consuming fish, air pollution, and occupational

settings (60). Hg can induce psychiatric symptoms by causing

oxidative stress on the central nervous system, potentially

disrupting serotonin metabolism (61). A study in South Korea

revealed that elevated blood Hg levels, particularly in conjunction

with low fish consumption, were linked to a higher risk of depression

in Korean women (62). Interestingly, our study showed a contrasting

result, indicating a negative correlation between urinary Hg levels and

depression risk in older women. The consumption of fish and

seafood, rich in polyunsaturated fatty acids (PUFA), could

introduce variables affecting the link between urinary Hg and

depression (63). Previous research has suggested that PUFA may

have a role in preventing or treating depression (64). Moreover, older

individuals, who often have a diet high in fish and nutrients, represent

a unique demographic. Notably, the average urinary Hg

concentration in our study was only 0.498 mg/L, significantly below

the Environmental Protection Agency’s reference dose (65). Moving

forward, further investigations are warranted to explore the

relationship between consuming fish and seafood products and

urinary Hg levels in the context of depression.

Our previous research has shown that metalloestrogens have

distinct mechanisms that affect the onset of depression (17), mainly

through neuropeptide and epigenetic pathways (Figure 4).

Kisspeptin (KP), a neuropeptide produced from the breakdown of

a 145-amino-acid polypeptide precursor encoded by the KISS1/

Kiss1 gene, plays a crucial role in regulating the hypothalamic-

pituitary-gonadal axis (HPG) activity (66). Among the KP neurons

situated in the arcuate nucleus of the hypothalamus is the

Kisspeptin neurokinin B-dynorphin (KNDy) neuron, which not

only produces KP but also co-produces two other neuropeptides,

neurokinin B (NKB) and dynorphin (Dyn) (67, 68). Due to

estrogen’s negative feedback on KNDy neurons, the activation of

metalloestrogens with estrogen receptors on KNDy can suppress

KP and NKB secretion while promoting dynorphin release (69). On

the other hand, gonadotropin-releasing hormone (GnRH) neurons

in the preoptic area are primarily influenced by circulating KP

stimulation, leading to the release of endogenous GnRH (69). With

inhibited KP secretion, reduced GnRH acts on the anterior

pituitary, resulting in decreased gonadotropins (luteinizing

hormone (LH) and follicle-stimulating hormone (FSH)) release

(70). LH and FSH released further stimulate the ovaries to secrete

E2 and progesterone, providing additional negative feedback on the

KNDY neurons in the hypothalamus and the anterior pituitary (66,
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71). Metalloestrogens disrupt the HPG axis by targeting KNDY

neurons in the hypothalamus, leading to decreased E2 and

progesterone secretion. This imbalance in E2 levels can heighten

depression risk by impacting neurotransmitter production,

inflammation, oxidative stress, reward circuits, and brain-derived

neurotrophic factor (BDNF) (8–10).

Metalloestrogens can impact the expression of the KISS 1 gene

through epigenetic mechanisms. Firstly, they can modify gene

transcription through DNA methylation (72). Methylation in the

promoter region or the first exon of the gene can silence gene

activity (73), while demethylation can lead to gene reactivation. The

promoter region of the KISS 1 gene is often methylated, potentially

reducing KP expression (74). Secondly, acetylation, a common

histone modification, along with metalloestrogens, can induce

promoter deacetylation in KNDy neurons, contributing to the

negative feedback of estrogen on KNDy (75). Lastly, microRNAs

(miRNAs) are small non-coding RNAs approximately 22 bp in

length that regulate gene expression post-transcriptionally by

targeting specific sequences in mRNAs (76). They are involved in

various health conditions, like inflammation and metabolic

disorders (77). E2 can regulate miRNA transcription through

estrogen receptors a and b (ERa and ERb) in a tissue-specific

and cell-dependent manner (78). A recent study showed that E2 can

modify miRNAs post-injury, impacting genes linked to

depression (79).

When stratified by women’s reproductive stages, it was

observed that those in the reproductive period (18-44 years)

showed higher vulnerability to metalloestrogens. The mixture of

metalloestrogens was notably linked to an increased risk of

depression in this group. Conversely, no significant correlation

was detected in the perimenopausal phase (45-55 years old). This

difference might stem from the normal estrogen levels within the

reproductive stage, allowing the female brain to adjust to fluctuating

estradiol levels and receptor activity (80). The impact of

metalloestrogen exposure on the homeostatic balance appears to

be more pronounced in women of reproductive age. In contrast,

perimenopausal women undergo a gradual and irregular decline in

estradiol levels, affecting the brain’s response to hormonal changes

and potentially leading to an elevated risk of initial depressive

episodes (81). Notably, external metalloestrogens seem to influence

estrogen effects to a lesser extent than internal hormonal shifts in

early perimenopause. As perimenopause progresses, the brain

gradually adapts to these abnormal hormonal fluctuations,

potentially clarifying the observed alleviation of perimenopausal

symptoms (80). In older women, we noted a notable rise in the risk

of depression in late life when the metalloestrogen mixture

concentration reached or exceeded the 60th percentile. Estrogen

deficiency in older women is caused by ovarian failure (24), and

increased levels of metalloestrogen exposure worsen this condition,

leading to significantly lower estrogen levels compared to typical

older women, consequently elevating the depression risk in women.

BKMR, when stratified by history of oral contraceptive use

among reproductive-age women (18-44 years), revealed an

intriguing finding. It showed that for women with a history of

oral contraceptive use, metalloestrogen mixtures were significantly

and positively linked to depression. However, for women without a
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history of oral contraceptive use, there was no such association

between metalloestrogen exposure and depression. Oral

contraceptives act as exogenous steroids, leading to a chronic

suppression of ovarian estradiol and progesterone production by

disrupting the release of hypothalamic and pituitary hormones (82).

Research indicates that women on hormonal contraception exhibit

endogenous sex steroid levels akin to those seen in the early

follicular phase of naturally cycling women (82). The presence of

metalloestrogens further disrupts the homeostasis of endogenous

sex steroids, rendering women vulnerable and heightening the

likelihood of experiencing depression.

This study has numerous strengths. Firstly, we utilized a

broader NHANES dataset across 4 cycles, along with a more

comprehensive statistical analysis than prior studies, enabling a

deeper understanding of the link between metalloestrogen exposure

and depression risk in women. Secondly, we identified the

connection between metalloestrogen exposure and depression risk

based on women’s various reproductive cycles. Lastly, we explored

the impact of contraceptive use on the relationship between

metalloestrogen exposure and depression risk. However, there are

several limitations to note. Firstly, this is a cross-sectional study, and

different metals have varying half-lives. Secondly, to increase the

sample size, our study only focused on metalloestrogens found in

urine, excluding those in blood. Hence, future research should

investigate the effects of blood-borne metalloestrogens. Then

again, because the types of oral contraceptives were not specified

in the database, we were unable to specify the specific ingredients in

them to explore more deeply the mechanism of oral contraceptives

in influencing the re lat ionship between exposure to

metalloestrogens and depression in women. Lastly, due to sample

constraints, we did not examine the association between
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metalloestrogen exposure and depression risk in adolescent and

pregnant women.

In conclusion, our study shows a strong link between

metalloestrogen exposure and increased depression risk in adult

women in the US. More research is necessary to validate these

results and explore the biological mechanisms involved. This will

aid in confirming the connection and promoting women’s

mental health.
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