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Reducing maladaptive behavior
in neuropsychiatric disorders
using network modification
Nicholas M. Timme*

Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati - College of
Medicine, Cincinnati, OH, United States
Neuropsychiatric disorders are caused by many factors and produce a wide

range of symptomatic maladaptive behaviors in patients. Despite this great

variance in causes and resulting behavior, we believe the maladaptive

behaviors that characterize neuropsychiatric disorders are most proximally

determined by networks of neurons and that this forms a common conceptual

link between these disorders. Operating from this premise, it follows that treating

neuropsychiatric disorders to reduce maladaptive behavior can be accomplished

by modifying the patient’s network of neurons. In this proof-of-concept

computational psychiatry study, we tested this approach in a simple model

organism that is controlled by a neural network and that exhibits aversion-

resistant alcohol drinking – a key maladaptive behavior associated with alcohol

use disorder. We demonstrated that it was possible to predict personalized

network modifications that substantially reduced maladaptive behavior without

inducing side effects. Furthermore, we found that it was possible to predict

effective treatments with limited knowledge of the model and that information

about neural activity during certain types of trials was more helpful in predicting

treatment than information about model parameters. We hypothesize that this is

a general feature of developing effective treatment strategies for networks of

neurons. This computational study lays the groundwork for future studies

utilizing more biologically realistic network models in conjunction with in

vivo data.
KEYWORDS

computational psychiatry, network control theory, neuropsychiatric disorder,
addiction, neural network, precision medicine, alcohol use disorder, side effects
Introduction

A central goal of neuroscience is the discovery of new treatments for neuropsychiatric

disorders like addiction, depression, schizophrenia, anxiety, and attention-deficit/

hyperactivity disorder (ADHD). Patients with neuropsychiatric disorders present with a

wide range of symptomatic behavior (1) and many causal factors are thought to contribute

to these disorders (2–4). Despite this heterogeneity, we believe it is helpful to focus our
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attention at the level of networks of neurons because we believe the

maladaptive behaviors associated with these neuropsychiatric

disorders are most proximally produced by the network of

neurons in the patient’s brain. In other words, we believe

maladaptive behaviors such as consuming a drug of abuse,

inattention to the task at hand, or suffering a hallucination can be

viewed as the manifestation of malfunctioning networks of neurons.

Adopting this view, the question of how to reduce maladaptive

behavior can then be recast as what parameters of the patient’s

network of neurons should be modified to reduce maladaptive

behavior (Figure 1). In this way, the question of how to treat

maladaptive behavior can be reduced to questions about neural

populations, such as what populations of neurons are too active or

not active enough, what connections are too strong or too weak, and

so forth.

We recognize that our network centric viewpoint may seem

controversial because it appears to discard known causal factors for

neuropsychiatric disorders and existing treatments. On the

contrary, we wish to emphasize that we believe it is vital to

understand how causal factors – such as social factors, genetic

vulnerabilities, past trauma, or other life experiences – drive these

disorders. We believe these causal factors can fit within the network

centric viewpoint as factors that alter the network of neurons,

ultimately leading to the aberrant network behavior that

determines maladaptive behavior associated with the disorder

(Figure 1). Furthermore, we believe existing treatments – such as

pharmacological treatments and cognitive behavioral therapy – can

be viewed as processes that modify the network of neurons to
Frontiers in Psychiatry 02
reduce maladaptive behavior, even though these treatments are not

typically conceptualized in those terms.

We believe explicitly focusing on networks of neurons possesses

a key advantage when studying neuropsychiatric disorders. These

disorders are driven by multicausal factors that are personalized to

each patient (2–4). However, previous studies have primarily

focused on identifying isolated individual causal factors that

contribute to neuropsychiatric disorders (5–8). Understanding

how multiple causal factors interact in each individual patient is a

daunting task that is not well suited to these traditional reductive

investigatory methods. It may be the case that manipulating the

brain to reverse one causal factor found in isolation is insufficient to

effectively treat the disorder (9, 10) or produces unintended off

target effects (i.e., side effects) (11, 12). Despite the highly varied

nature of patient specific multicausal factors, we believe all of these

factors exert their influence by altering neural activity. Even in the

case causal factors that are external to brain, such as the ability of

chronic pain to contribute to an opioid use disorder or the ability of

certain genetic variants of the genes that encode alcohol

dehydrogenase to protect against alcohol use disorder, these

causal factors alter the activity of certain neural populations

which then influences the behavior of the network of neurons to

produce drug taking or drug abstaining behavior. Therefore, by

understanding the neural cause of symptomatic maladaptive

behavior, it may be possible to substantially improve treatment.

In other words, it may be the case that the universe of neural

mechanisms that drive symptomatic maladaptive behavior is

smaller than the universe of causal factors that can produce those
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FIGURE 1

Treating neuropsychiatric disorders can be recast as modifying network parameters. A central goal of neuroscience is to treat neuropsychiatric
disorders by reducing symptomatic maladaptive behavior and increasing healthy behavior. Crucially, these behaviors are determined by activity
patterns within the patient’s networks of neurons. Therefore, to alter behavior, it is necessary to identify and manipulate network parameters. Causal
factors for the disorder can be conceptualized as influencing this system by altering the network of neurons in certain ways to produce malfunctions
that then drive symptomatic maladaptive behavior.
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neural mechanisms. Thus, focusing on the network of neurons and

how it should be modified to reduce symptomatic maladaptive

behavior may identify more and better treatments than attempting

to understand complex interactions between multiple causal factors

because different causal factors may ultimately produce the same

malfunction in the network of neurons.

The general view that neuropsychiatric disorders originate from

malfunctioning networks of neurons is implicit in a great deal of

neuroscientific research given the existence of treatments that

modify neural activity (e.g., pharmacotherapies). However, we

have not found previous research explicitly formulating

neuropsychiatric treatment as network modification. That said,

we believe this approach generally falls within the domain of

computational psychiatry (13, 14), which seeks to leverage

computational approaches to model neural behavior (15, 16) and

predict treatment of neuropsychiatric disorders (17). Some studies

have sought to use neural networks to understand interactions

between symptoms (so called, “symptom networks”) (18).

Alternatively, connectionist (14, 19, 20) approaches have sought

to use abstract neural networks to model the generation of the

maladaptive behavior associated with neuropsychiatric disorders

(21). Though we ultimately desire to utilize more biologically

realistic models than are often used in these computational

approaches, we will use computational techniques like these to

develop, test, and employ network modification. The program we

propose is also closely related to network control theory, which

seeks to develop methods to control network behavior, typically by

identifying which parts of the network can control the rest of the

network (22). This work has been pursued in generalized types of

networks (23), as well as in models of brain networks (24, 25). In

brain networks, the goal of this research is to produce behavior

changes by controlling neural activity in certain key nodes in the

network (26), using tools such as transcranial magnetic stimulation

(27). Work has also been done on structural control theory to

examine how changing the structure of networks can produce

different behavior, though often in abstract terms (28–30).

Overall, our goal of modifying behavior by changing network

parameters is well aligned with network control theory and

structural control theory.

Taken together, previous work in computational psychiatry and

network control theory provides numerous connection points in

terms of methods and motivations for our program of neural

network modification. However, we are unaware of a previous

example explicitly involving the treatment of neuropsychiatric

disorders by modifying network parameters. Thus, we believe a

feasibility study with this goal that uses a simple computational

model organism with behavior controlled by a network of neurons

would help to build intuition about this method and drive

development of more advanced techniques that could be applied

in vivo. We will focus on a particular example of maladaptive

behavior associated with a particular neuropsychiatric disorder:

aversion-resistant alcohol drinking in alcohol use disorder. This

key symptom of alcohol use disorder involves continuing to drink

alcohol despite negative consequences (1). Using a computational

model will provide us with a best-case scenario in terms of

knowledge of the parameters that control the network in the
Frontiers in Psychiatry 03
model organism. This will allow us to explore the feasibility of

using network modification techniques to reduce maladaptive

behavior. At this early stage of development, we chose to use a

simple model that is not biologically realistic and is not bound by

patient data, other than with regards to exhibiting general

symptomatic behavior associated with the disorder. Due to the

simplicity of this model and its lack of biological realism, it is not

possible to utilize the model to predict human aversion-resistant

drinking behavior or treatments. Also, though this model may

appear very similar to a connectionist model, we wish to

emphasize that we are not adopting a connectionist perspective.

Rather, we are adopting the view that the neural network within the

model is the network of neurons responsible for producing behavior

in a model organism, which will serve as a first step towards future

studies using biologically realistic whole-brain network models.

Furthermore, our focus at this stage is not to explicitly relate

network modification with existing or potential clinical

treatments, though this will be an important consideration in

later stages of developing this method (see Discussion section).

Our primary goal is to determine the feasibility of using

network modification techniques to reduce maladaptive behavior.

We hypothesize that (1) it will be possible to identify key

parameters in the model that can reduce maladaptive behavior

without producing side effects, (2) that it will be possible to predict

effective treatments that are individualized to each specific model,

and that (3) it will be possible to create these predictions with

limited knowledge of the model. We will begin by building a simple

neural network model that produces aversion-resistant alcohol

drinking behavior. Next, we will use traditional systems

neuroscience techniques to characterize this model. Finally, we

will treat the model to reduce maladaptive behavior and examine

techniques to make personalized network modifications. This study

will lay the groundwork for future studies utilizing more

biologically realistic models and in vivo data.
Results

Task and network structure

We created a simple model organism that produces aversion-

resistant alcohol drinking (Figure 2A) and is controlled by a network

of neurons to easily explore the role played by network parameters in

aversion-resistant drinking and how these parameters can be changed

to reduce maladaptive behavior. Prior to selecting the model

structure, we designed a task with four possible inputs and four

possible action outputs (Figure 2B) that allows for specificity to

aversion-resistant drinking. We intentionally limited the stimuli and

behavioral outputs to a few simple options to ease interpretation of

results. The model was trained and tested on trials, during each of

which the model was presented with one of six possible combinations

of inputs (i.e., trial types) and the model selected one of the four

possible output actions. The target input to action mappings for the

six trial types used in training (Figure 2C) were chosen because they

demonstrate proper danger processing, appropriate eating behavior,

and aversion-resistant or aversion-sensitive alcohol drinking. For
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instance, an immediate danger cue (e.g., a large oncoming truck)

should produce an output/action of escape. A food availability cue

(e.g., a cheeseburger) should produce an output/action of eat, unless it

appears that the food is not safe due the presence of a consumption

risk cue (e.g., a nearby bottle of poison). An alcohol availability cue

(e.g., a glass of wine) should produce an output/action of drink.

However, if a consumption risk cue (e.g., needing to drive) is present

along with the alcohol availability cue, aversion-sensitive models

should choose to wait and aversion-resistant models should choose

to drink. We chose to construct models that exhibit maladaptive

behavior selectively to allow for the assessment of side effects

produced by network parameter manipulation. In this case, side

effects were incorrect responses on non-aversion-resistance related

trials, such as immediate danger avoidance trials.

We chose to use a small feedforward neural network to study

the behavior associated with these aversion-resistant or aversion-

sensitive behavior rules (Figure 2D). We chose this model because it

was the smallest feedforward neural network with a hidden layer

that could learn the aversion-resistant and aversion-sensitive rules.
Frontiers in Psychiatry
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(See Discussion Section for more information about the realism of

the model.) We refer to the hidden layer nodes as “processing”

nodes because they do not receive stimuli or determine behavioral

outputs. Initially random networks were trained on either the

aversion-resistant or aversion-sensitive rules to greater than 95%

accuracy using 1000 randomly selected input/output training

combinations (Figure 2E). This model possessed 31 parameters

including 12 connection weights from input nodes to processing

nodes, 12 connection weights from processing nodes to output

nodes, 3 biases associated with processing nodes, and 4 biases

associated with output nodes. Note that connection weights could

be positive (excitatory) or negative (inhibitory). Note that unlike

many connectionist models, we do not assume that the network

model represents some type of abstract relationship between stimuli

and behaviors that could be applied to empirical data from humans.

Rather, at this stage of method development, we adopt the view that

the network model is the network of neurons that produces the

behavior in a model organism (see Discussion for more information

about future research involving more realistic models).
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FIGURE 2

Demonstration of neuropsychiatric disorder treatment via network modification in a simple computational model organism that exhibits aversion-
resistant alcohol drinking. (A) Consider two computational models that exhibit aversion-resistant and aversion-sensitive alcohol drinking. Our goal is
to modify the aversion-resistant model so that it becomes aversion-sensitive. (B) Four possible inputs/cues (immediate danger, food available,
alcohol available, and consumption risk) were supplied to the model and the model selected one of four possible output actions (escape, eat, drink,
or wait). (C) Six patterns of inputs (i.e., trial types) were used, each of which possessed a target output that was used in model training. Aversion-
resistant and aversion-sensitive models were trained on identical input/output mappings, except for trials where both alcohol availability and
consumption risk inputs were active. In these trials, aversion-resistant models were trained to select drink and aversion-sensitive models were
trained to select wait. (D) A simple three-layer feedforward neural network was capable of learning both types of rules. This network possessed one
hidden layer with 3 processing nodes and non-linear activation functions. (E) 2000 initially random networks were trained on either aversion-
sensitive or aversion-resistant rules to produce 1000 networks of each type.
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Characterizing the network with systems
neuroscience techniques

Following network training, we used traditional systems

neuroscience techniques in an attempt to determine the role played

by the processing neurons in the model networks (Figures 3A–E).

First, we silenced each processing node and examined the resulting

changes in network behavior (Figures 3A, B). This method is similar

to ablation/lesion experiments (31) or studies of behavioral changes

following localized brain injuries. Silencing processing node 1

resulted in deficits in correct escaping behavior, silencing

processing node 2 resulted in deficits in correct eating behavior,

and silencing processing node 3 resulted in deficits in drinking

behavior (Figure 3B). In addition, silencing processing node 3 in

aversion-sensitive networks also reduced correct eating behavior.
Frontiers in Psychiatry 05
We also examined encoding by processing nodes of input stimuli

and behaviors (Figures 3C, D), which is similar to neural encoding

experiments that seek to relate BOLD or electrophysiological signals

to stimuli or behaviors. Processing node 1 most encoded danger and

escaping, processing node 2 most encoded risk and eating, and

processing node 3 most encoded drinking (Figure 3D). We also

found that in aversion-resistant networks, processing node 3 encoded

very little information about risk and a great deal of information

about drinking. Overall, these analyses indicate that, in general,

processing node 1 most influenced escaping, processing node 2

most influenced eating, and processing node 3 most influenced

drinking (Figure 3E). However, we wish to emphasize that the roles

identified with these methods are not clearly delineated and they do

not lend themselves to a clear and obvious hypothesis about how the

model could be manipulated to reduce aversion-resistant drinking.
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Traditional systems neuroscientific techniques elucidate processing node roles and identify potential treatment targets. Examining behavioral
changes following damage to a population of neurons (e.g., ablation, stroke, injury) (A) and studying encoding of stimuli and behaviors by brain
signals (e.g., electrophysiology, fMRI) (C) are common methods to determine the role of neural populations in behavior. (B) Silencing (artificially
setting node activity to 0) resulted in key deficits in correct escaping (node 1), correct eating (node 2), and correct drinking behavior (node 3) for the
three processing nodes, respectively. (D) Neural encoding by each node of the stimuli and behavioral outputs indicated that node 1 best encoded
signals related to escaping immediate danger (orange arrows), node 2 best encoded signals related to eating (cyan arrow), and node 3 best encoded
signals related to drinking (purple arrows). Though, note that node 3 encodes almost no information about danger and much more information
about drinking in aversion-resistant networks. (E) Taken together, (A-D) indicate that node 1 was most involved with escaping, node 2 was most
involved with eating, and node 3 was most involved with drinking. (F) Brain features (e.g., gene expression, brain structure, neural activity) of patients
and healthy controls are often compared to identify the cause of maladaptive behavior. (G) The distributions of parameter values for aversion-
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aversion-sensitive models possessed elevated drive from the consumption risk input, elevated excitability of the wait output, weakened drive from
the alcohol input and to the drink output, and weakened excitability of processing node 3 and the drink output (portion of the model with only these
parameters shown). (I) The distributions of processing node activity values for each type of trial for aversion-sensitive and aversion-resistant models
were compared. Activity values differed most in processing node 3. (Median and interquartile range shown in all bar graphs, N = 1000 for aversion-
resistant and aversion-sensitive models).
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To further investigate the function of the network, we compared

the parameter values and processing node activity levels between

aversion-resistant and aversion-sensitive networks (Figure 3F). This

type of comparison is similar to studies that examine differences

between patients and healthy subjects in terms of brain structure

(32, 33), gene expression (34, 35), or neural activity (36, 37). We

compared the distribution of parameters using the KS-statistic,

which assesses how similar the distributions of parameter values

were in these two types of models (Figure 3G). We highlighted six

parameters with the large differences that were related to processing

node 3. Aversion-sensitive networks had higher connection

strengths from the consumption risk input to processing node 3,

lower connection strengths from the alcohol input to processing

node 3, lower connection strengths from processing node 3 to the

drink output, higher excitability (bias) in the wait output, and lower

excitability (bias) in processing node 3 and the drink output

(Figure 3H). Thus, aversion-sensitive networks functioned such

that the alcohol stimulus stimulated processing node 3 less, which

was less excitable, which drove the drink output less, which was also

less excitable. We also compared the distributions of processing

node mean activity values between aversion-resistant and aversion-

sensitive networks for each of the six different types of trials

(Figure 3I). In alignment with differences found in parameters,

we found differences in activity were highest in processing node 3,

but surprisingly the largest difference was on trials with the food cue

despite the fact that both types of models engaged in aversion-

sensitive eating behavior.
Network treatment

While the traditional systems neuroscience approaches above

provided a characterization of the network function and identified

differences between the networks, it is difficult to determine based

on this information why the aversion-resistant networks produce

different behavior from the aversion-sensitive networks.

Furthermore, it is not clear how the network should be

manipulated to treat aversion-resistant drinking behavior (see

Discussion section).

To move beyond simply characterizing the networks and their

differences, we examined ways to treat aversion-resistant networks

by modifying their parameters. First, we retrained the aversion-

resistant networks using the aversion-sensitive rules (Figure 4A). As

expected, this treatment dramatically reduced aversion-resistant

drinking (trials where the model selected drink when the alcohol

and consumption risk inputs were active) without increasing side

effects (errors on all other types of trials) (Figure 4B). While this

result is encouraging, it required retraining the whole network and

adjusting all parameters. To assess whether it was necessary to

retrain the whole network, we instead sequentially imposed only the

largest parameter changes from retraining (Figure 4C). We found

that network performance improved with additional parameter

changes, but it was necessary to impose several parameter

changes to reach aversion-sensitive network performance levels.

While this method demonstrated that it was not necessary to

change every network parameter to effectively treat aversion-
Frontiers in Psychiatry 06
resistant drinking, we wondered if another method would yield

better improvement with fewer parameter changes. To investigate

this possibility, we exhaustively searched through each parameter to

minimize the aversion-resistant drinking and side effects

(Figure 5A). The best parameter change found using this search

method produced substantially reduced aversion-resistant drinking

in comparison to the largest magnitude change from the whole

network retraining or the average parameter modification for the

best search parameter (Figure 5B), demonstrating the power of

personalized treatments even in this simple model. We then

examined how performance improved for each of the networks’

31 parameters (Figure 5C). In particular, parameter 12 (CoR3:

connection weight from consumption risk input to processing node

3) often reduced aversion-resistant drinking dramatically without

increasing side effects and was the parameter that, when modified,

most frequently reduced total error (aversion-resistant drinking rate

plus side-effects rate) the most (Figure 5D). Note that this

parameter was one of the parameters with the largest difference

between aversion-resistant and aversion-sensitive models

(Figure 3G), but that other parameters identified in that analysis

were not as capable of reducing aversion-resistant drinking

behavior alone. We examined the relationship between the

original CoR3 parameter value in the aversion-resistant network

and the new value found via search to reduce aversion-resistant

drinking (Figure 5E). We found a weak relationship between the

two parameter values, indicating that new CoR3 parameter values

could not be easily estimated based solely on the CoR3 parameter

value in aversion-resistant networks. We also compared model

performance following CoR3 modification to the average model

performance following modification of the seven parameters with

the largest difference between aversion-resistant and aversion-

sensitive network (Figure 5F). We found that the search method

reduced aversion-resistant drinking substantially more compared to

the parameters identified with the traditional approach.

We also examined how effective parameter changes were if only

considering aversion-resistant drinking and ignoring side effects

(Figure 5G). We found that it was possible to substantially reduce

aversion-resistant drinking by modifying numerous parameters, but

these changes resulted in increased side effects.
Network treatment prediction

We have shown that it is possible to find individual parameters

such that their modification can substantially reduce aversion-

resistant drinking without increasing side effects. However,

finding these parameter changes was time consuming and

required computationally expensive searches across all network

parameters. In the future, with more complex and biologically

realistic network models, this strategy may become prohibitive.

So, we examined whether it was possible to predict parameter

changes from the network parameters or processing node activity

patterns using partial least squares (PLS) methods (Figure 6, see

Methods Section for a detailed description of the PLS models).

Given the success of CoR3 modification in the parameter search,

we first constructed PLS models to predict new values of CoR3 that
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would reduce aversion-resistant drinking without increasing side

effects (Figure 6A). In these PLS models, model predictors were

either network parameters or the average processing node activities

on the six different types of input trials. Furthermore, we tested

whether it would be possible to make effective CoR3 predictions with

only subsets of the parameters or activities. To do so, we ranked the

parameters and the activities by their separation (KS-statistic)

between aversion-resistant and aversion-sensitive models

(Figures 3G, I) and we tested 1-6 of the parameters or activities in

descending order of separation. The parameter and activity with the

largest KS-statistic were, respectively, Cor3 and the average activity of

processing node 3 on safe eating trials. The human treatment analog

for this treatment prediction would be predicting how to use the best

population level treatment in a patient based on their brain structure

or neural activity.

We found that PLS models could predict CoR3 modifications

that successfully treated the aversion-resistant models to a degree

similar to the search method (Figure 6B). Furthermore, we found that

prediction treatment performance improved substantially with the

inclusion of more parameters as predictors and that this performance

reached asymptote near the search method performance at 5

parameters. The value of CoR3 was the parameter with the highest

separation (i.e., Predict/1 in Figure 6B), so note that knowledge of

CoR3 alone was not sufficient to accurately predict the best CoR3

treatment (see Figure 5E).We also found that inclusion of parameters

with high aversion-resistant vs. aversion-sensitive separations

reduced treatment failure rates (proportion of networks with
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aversion-resistant drinking rates over 0.1) faster than randomly

selected parameters. We found that treatment performance was

substantially better using activity as the predictor relative to

network structure when only one predictor variable was used.

Though treatment by CoR3 modification was found to be

successful in many models, we utilized a second type of PLS

model to instead predict the best modification (Figure 6C). This

PLS model used the same types of predictors as the previous model.

However, instead of predicting just the new Cor3 value, all new

parameter values and their corresponding total error rates

(aversion-resistant drinking rate plus side effects rate) were

predicted. After predicting the new parameter changes and their

corresponding error rates, the eight parameters with the lowest

predicted error rates were tested in the aversion-resistant model and

the one with the lowest error rate was selected. The human

treatment analog for this type of treatment prediction would be

predicting what would be the best treatment in a patient and how to

use it based on their brain structure or neural activity.

Similar to the PLS model used to predict the best CoR3 change,

predicting the best parameter to change produced low aversion

resistant drinking rates that were generally improved by adding

more predictors (Figure 6D), especially when using parameters as

predictors. Furthermore, we found that activity values were again

better able to predict treatment in comparison to network structure,

especially when including only one predictor variable. Overall,

using both PLS treatment prediction methods, we found that

network activity predicted treatment better than network

structure when few variables were used for prediction (Figure 6E).

Lastly, we examined networks for which the search of all single

parameter changes did not produce a network with sufficiently low

aversion-resistant drinking behavior (Figure 7A). About 4.2% of

networks did not achieve aversion-resistant drinking rates of less

than 10%, the threshold we set for insufficient aversion-resistant

drinking reduction (Figure 7B). In these networks, we employed an

exhaustive search of all pairs of parameters and found that it was

possible to reduce aversion-resistant drinking yet further in these

networks (Figure 7C).
Discussion

We demonstrated that it was possible to effectively treat

aversion-resistant drinking in a computational model organism

by modifying network parameters, that these treatments were

personalized to each individual model, and that these treatments

could be predicted using computationally efficient predictions with

limited information about the model. This provides proof of

concept evidence that it is possible to reduce maladaptive

behaviors associated with neuropsychiatric disorders using these

network modification techniques.
Treatment prediction with limited data

We found that processing node activity was better able to

predict effective treatments when only limited information is
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known about the model (Figures 6B, D). We hypothesize that this is

a general feature of the network modification treatment approach

for situations with limited data. This result is intuitive because node

activity is what ultimately determines behavior, so knowledge of

node activity will likely be more helpful in determining how to

change parameters to correct aberrant node activity than

information about one of the numerous parameters that goes into

determining node activity. This hypothesis, if true, has important

implications for testing decisions and the development of new tests

because it indicates that methods that measure neural activity (e.g.,

electrophysiology and fMRI) will be best positioned to predict

treatment in vivo.
Limitations and advantages of the model

In this study we examined a specific type of neuropsychiatric

disorder and a simple model organism that exhibits one of its

associated maladaptive behaviors. This model is not an adequate

model of the human brain, but we wish to emphasize that this was

not the goal for this project. Rather, we sought to create a model
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organism that balanced detail with generalizability in a way where

treatment predictions in a neural network that governed behavior

could be tested and interpreted. The model we created strikes this

balance appropriately because it is defined by numerous parameters

that can be related to networks of neurons (e.g., connection weights,

biases), but it could be altered to address many different types of

maladaptive behaviors, it is conceptually tractable, and it could

incorporate analyses of side effects. We make no claim that this

model is superior to other existing or potential models of aversion-

resistant drinking and so we performed no comparison with other

models. Rather, the goal of our model was to serve as a test bed for

the network modification program.

While the model organism we created met the goals of this

project, it possesses many shortcomings, especially regarding

behaviors and phenomena specific to alcohol use. For instance,

our model did not incorporate information about the temporal

structure of drinking (both within and between drinking episodes),

the pharmacology of alcohol, the effects of alcohol history on brain

function, or the role of specific vs. generalized deficits in decision-

making. Furthermore, it did not incorporate various other

psychological factors involved in alcohol use disorder, such as
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Most aversion-resistant models could be effectively treated by modifying one parameter. (A) Rather than retraining the whole network, each
individual parameter was modified to search for the best possible reduction in aversion-resistant drinking for each parameter. (B) Imposing the single
best parameter change from the search process (1/Search) reduced aversion-resistant drinking substantially more than imposing the largest
magnitude parameter change from whole network retraining (1/Full), without substantially increasing side effects. For comparison, imposing the
average parameter modification for the parameter found via search did not reduce aversion-resistant drinking (1/Ave) (i.e., the non-personalized
approach). (C) Aversion-resistant drinking and side effect rates found for each parameter modification individually using the exhaustive search.
Despite identifying several parameters with substantial differences between aversion-resistant and aversion-sensitive model (Figure 3G), only
modification of parameter 12 (connection weight from the consumption risk input to processing node 3 (CoR3), cyan box) could reduce aversion-
resistant drinking to low levels for nearly all models while maintaining low side effect rates. (D) Histogram of parameter changes that were found to
produce the best treatment in terms of reduction in aversion-resistant drinking rate and side-effect rate (CoR3: 82.2% of networks). (E) The CoR3
parameter value found via search was weakly related to the original CoR3 parameter value in the aversion-resistant network. (F) Aversion-resistant
drinking was substantially lower in models following CoR3 modification than the average aversion-resistant drinking following modification of the
seven parameters that were found to be most different between aversion-resistant and aversion-sensitive models (Figure 3G). (G) The lowest
aversion-resistant drinking rates (regardless of side effect rates) for each parameter individually using the exhaustive search. Note that aversion-
resistant drinking could be substantially reduced by modifying numerous parameters (cyan boxes) if side effects were ignored. (Median and
interquartile range, N = 1000 for aversion-resistant and aversion-sensitive models).
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craving, stress, or negative affect. Also, the stimuli presented to the

model and actions performed by the model were dramatically

simplified in comparison to the rich array of stimuli and

behaviors associated with alcohol use disorder in humans. Finally,

the simplicity of the model rendered it impossible to relate model

behavior with actual in vivo data from pre-clinical or clinical

studies, other than with regards to the fact that the model

produced behavior that generally aligns with the aversion-

resistant drinking phenotype that is central to the alcohol use

disorder diagnosis (1). In addition, this model organism would

likely require modification to adequately capture maladaptive

behaviors associated with other neuropsychiatric disorders. We

believe all of these are important factors in developing a more

thorough model of alcohol use disorder and other neuropsychiatric

disorders, and we aim to include them in the future. Other

researchers have included some of these features in models of

alcohol use disorder (38–40), but these other models were not

structured as neural networks making it difficult to understand how

modifications to the models could translate to potential treatments.

In this study, by ignoring these complicating factors, we were able to
Frontiers in Psychiatry 09
improve generalizability and simplicity, which we felt was

paramount to our research program at this stage.
Future research

In the future, we will improve the techniques developed herein

(Figure 8). Next, we will aim to improve the biological realism of the

neural network model organism to include features such as time,

learning, realistic neural connectivity [e.g., whole-brain models (41,

42)] and firing properties, and realistic neurotransmitter dynamics,

as well as other neuropsychiatric disorders. A crucial question in

these studies will be how to predict effective treatments in more

complex models that will likely possess many more parameters.

Following these improvements in silico, we will apply these

methods in vivo by fitting a computational model to the in vivo data,

then testing modification methods in the computational model, and

then testing whether those manipulations resulted in effective

treatments when applied in vivo (13, 16). By leveraging neural

network models in concert with in vivo data, it will be possible to
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Effective treatments could be predicted from model structure and neural behavior. (A) Treatment by modification of CoR3 was predicted using a PLS
model based on network parameters or processing node activity. Three types of predictors were used: all parameters, the average processing node
activities on all trial types, or subsets of 1-6 parameters/activities [in descending KS-statistic rank (Figures 3G, I)]. CoR3 values found via search
(Figure 5C) were used as responses for PLS fitting. New CoR3 values produced by the PLS model were imposed on each model and tested.
(B) Model behavior with a PLS predicted CoR3 update using parameters or processing node activity as predictors. Activity predicted successful
treatment better than network parameters when prediction was performed with 1 activity value or parameter (magenta arrow). (C) Instead of
predicting CoR3 values, new PLS models were created to predict the best new value for each parameter and the corresponding total error rate
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were then tested and the parameter change with the lowest error rate was selected. (D) Model performance with a PLS model predicted parameter
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about the model was available. (Median and interquartile range, N = 1000 models).
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generate and test falsifiable hypotheses about how in vivo neural

networks function (20). These studies will likely be first conducted

in pre-clinical rodent models, but our hope is that these techniques

will be usable in human subjects.
Protective factors

We did not explicitly investigate protective factors in this

analysis, but we believe this will be an important topic to

investigate in future studies. It may be the case that certain model

parameters are particularly helpful in preventing maladaptive

behavior and we hypothesize that these parameters would be

effective treatment targets. Furthermore, in the future we plan to

investigate how existing treatments like cognitive behavioral

therapy may confer protection against parameter changes that

worsen maladaptive behavior, especially in the context of learning.
Treatment feasibility

We believe a strength of the network modification method is its

ability to predict the efficacy of new and existing treatments. In the

future, these methods may indicate that a certain type of network

parameter modification is necessary, but there may be no feasible

technique to do so in humans. If so, this result will drive
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development of new methods to manipulate neural populations in

humans. Furthermore, these methods can be applied to existing

treatments to better understand how they operate, if they can be

improved, and how they could be personalized to individual

patients. Finally, the network modification method could be used

to select the best treatment that is currently feasible.
Characterizing neural function

We utilized several traditional system neuroscience techniques

to characterize the role played by processing nodes and the network

parameters in the model. The processing node silencing

manipulations and neural encoding analyses provided a picture of

the roles for the three processing nodes. However, processing node

silencing often produced minor deficits in several behaviors and

most processing nodes encoded some information about all inputs

and outputs. Thus, though certain processing nodes appeared to

most contribute to certain behaviors, the roles played by these nodes

were complex and not precisely delineated.

Examining parameter differences between aversion-resistant

and aversion-sensitive networks highlighted several parameters as

potential targets for treatment. These differences produced a logical

explanation for how aversion-sensitive networks produced more

wait outputs rather than drink outputs during aversion-resistant

drinking test trials. However, when these parameters were

individually manipulated, only one was found to substantially

reduce aversion-resistant drinking without inducing side effects.

Numerous other parameters could be modulated to reduce

aversion-resistant drinking, but at the cost of increased side

effects. We suggest this demonstrates a significant concern

regarding neural manipulation experiments in pre-clinical rodent

models in particular. Frequently, these studies use optogenetics or

chemogenetics to increase or decrease activity in a certain neural

population and then assess behavioral changes that result. While

these studies typically utilize controls, such as locomotor behavior

to ensure that decreases in a maladaptive behavior are not simply

due to a general decrease in activity, it is extremely difficult to assess

all possible side effects of the neural activity manipulation in vivo.

As a result, this type of study may produce a false confidence that

the neural population that was manipulated can be best understood

as controlling the maladaptive behavior, when really the

manipulation of that population may just be capable of disrupting

the maladaptive behavior and many other untested behaviors.

Modeling approaches such as those used in this study are more

capable of quickly testing all possible side effects and identifying

targeted manipulations that minimize side effects.

Overall, we are concerned that these types of systems

neuroscience analyses lean heavily on the assumption that

individual parts of the brain or any network should have clear

roles that we can understand (43, 44). Rather, there is substantial

evidence that understanding synergistic neural behavior across

multiple neural populations is necessary to understand complex

behaviors (45–47). Furthermore, it has been shown that traditional
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Networks that were not effectively treated with one modification
could be treated with two modifications. (A) For a small subset of
networks, an exhaustive search of individual parameter changes did
not reduce aversion-resistant drinking sufficiently. (B) Approximately
4.2% of networks did not achieve aversion-resistant drinking rates
below 10% with only one parameter modification. (C) An exhaustive
search of all two parameter changes in these networks did
substantially reduce aversion-resistant drinking. (Median and
interquartile range shown in all bar graphs, N = 1000 models).
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systems neuroscience tools like those used here are not capable of

providing thorough explanations for complex information

processing systems and that non-linear dynamical models, such

as neural network models we propose to use in the future to capture

in vivo network behavior, are better suited to this goal (48). Even

though we showed that modification of one parameter in particular

(CoR3) was an effective treatment, it was not possible to determine

how to modify this parameter using only information about that

parameter. In other words, even in the case of this simple network,

it was necessary to incorporate information from multiple parts of
Frontiers in Psychiatry 11
the network to determine the correct parameter modification. In

more complicated networks, we hypothesize that the need to utilize

information from multiple parts of the network will become even

more critical and that it will be necessary to modify more than one

parameter to effectively treat neuropsychiatric disorders.

Furthermore, when more complex models are used, it may be

necessary to employ advanced techniques like artificial intelligence

and machine learning (49, 50) to predict effective treatments instead

of the PLS methods used herein.
Methods

Data and analysis code availability

All Matlab code necessary to reproduce the data and analysis

discussed in this article, along with the Prism file used to generate

figures, is available online (51).
Model networks

Each model network possessed four input nodes, three hidden

nodes in a single layer, and four output nodes. In the manuscript we

refer to the hidden layer nodes as “processing” nodes. Strictly

feedforward connections existed from the input layer to the

hidden layer and from the hidden layer to the output layer. The

connection weight from input layer node j to hidden layer node i

was given by wi,j,1 and the connection weight from hidden layer

node j to output layer node i was given by wi,j,2.

The activity of input layer node i was given by xi,1 and was set

for each run of the network by a unique combination of four input

variables that corresponded to the four possible stimuli (danger,

food, drug, and consumption risk). Each stimulus could be off (0) or

on (1). Noise, in the form random gaussian variables with a

standard deviation of 0.2 was added to these input values.

The activity of hidden layer node i was given by Equation 1,

where bi,1 was the bias for hidden layer node i and the tansig

activation function was used.

xi,2 = tansig o
4

j=1
wi,j,1xj,1 + bi,1

 !
(1)

The activity of output layer node i was given by Equation 2,

where bi,2 was the bias for output layer node i and the softmax

activation function was used.

xi,3 = softmax o
3

j=1
wi,j,2xj,2 + bi,2

 !
(2)

Due to the softmax activation function, the output layer node

activities were bound between 0 and 1 for all inputs. The output

behavior of the network was set according to the output node with

the highest value.

The networks were trained using one of nine randomly selected

training algorithms (52) and a training data set of 1000 randomly

generated input/output combinations set according to the rules for
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simple feedforward neural network as a model system to
demonstrate the feasibility of reducing maladaptive behavior by
modifying neural network parameters. Key parameters were found
in this model and effective treatments were predicted based on
model structure and model behavior. In the future, it will be vital to
expand this research to include other neuropsychiatric disorders and
more biologically realistic models. Following that work, it will be
possible use computational psychiatry approaches and leverage
computational models to predict in vivo treatments by fitting
computational models to in vivo networks, using those models to
test treatments in silico, and then predicting in vivo treatments.
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aversion-resistant and aversion-sensitive behavior (Figure 2).

Random networks were created and trained on either aversion-

resistant or aversion-sensitive training data. Aversion-resistant

networks were stored and then retrained on the aversion-sensitive

data to produce fully retrained networks. If a network produced

error rates of less than 5% for the given training rules, it was

accepted and used in further analyses. Random network creation

and training continued until 1000 aversion-resistant and 1000

aversion-sensitive networks were produced.

Following training, a testing data set of 1000 randomly

generated input combinations was run through all networks.

Output node activities and hidden layer node activities were

recorded for these test input combinations. All remaining

analyses utilized these activities as well as the parameters (wi,j,1,

wi,j,2, bi,1, and bi,2) associated with each network.
Information theory analysis

The encoding of network inputs and outputs by hidden layer

activities was calculated to characterize the behavior of the hidden

layer neurons (53). For inputs, the encoding was calculated as the

difference between the total joint mutual information with all inputs

and the joint mutual information with the other inputs in order to

remove interactions between inputs. Furthermore, the information

was normalized by dividing by the entropy of the hidden layer

neuron. The input and output states were already discretized to be 0

or 1. The hidden layer activities were discretized using four equal

counts bins. The encoding of input j by hidden layer node i was

given by Equation 3, where the mutual information was given by

Equation 4, the entropy was given by Equation 5, Xi was the set of

possible hidden layer activity values (four discretized values), Y½1,4�,1
was the set of all possible combinations of input values, and Y½1,4�−j,1
was the set of all possible combinations of inputs values excluding

input j.

Ii,j,1 =
I(Xi,Y½1,4�,1) − I(Xi,Y½1,4�−j,1)

H(Xi)
(3)

I(X,Y) = o
x∈X,y∈Y

pX,Y (x, y)log
pX,Y (x, y)
pX(x)pY (y)

� �
(4)

H(X) = −o
x∈X

pX(x)log(pX(x)) (5)

The encoding of output j by hidden layer node i was given by

Equation 6, where Yj,2 was the set of possible output values of

output j.

Ii,j,2 =
I(Xi,Yj,2)

H(Xi)
(6)

Note that because the outputs were mutually exclusive due to

the softmax activation function, it was not possible to remove

interactions between outputs.
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Hidden layer node number

Due to the random initial structure of the networks, it was

necessary to renumber hidden layer nodes according to their

functional role because nodes serving the same role could have

been assigned to different numbers in the hidden layer by chance.

To do so, we used an unsupervised method to cluster nodes into

three functional groups. First, the eight encoding values for each

hidden layer node (encoding of four inputs and encoding of four

outputs) were subjected to a principal component analysis across all

hidden layer nodes from all networks of a given type (aversion-

resistant or aversion-sensitive). The first two principal component

scores then underwent k-means clusters to detect 3 clusters. The

hidden layer nodes for each network were then assigned to one of

these clusters based on minimum overall distances in principal

component space. The mean cluster encodings were then assigned a

label such that the cluster with the highest encoding of the escape

output was labeled node 1, then the highest encoding of the eat

output was labeled node 2, and the remaining node was labeled

node 3. These new numbers were then used for the hidden layer

nodes throughout the analysis and the connection weight and bias

parameters were adjusted to function with this renumbering.
Hidden node silencing

To investigate the role of hidden layer nodes, each node was

systematically silenced or ablated by artificially setting its output

value to 0 regardless of its inputs and the test data set was run

through the model. The performance was then assessed by

calculating the rate of correct task performance on a variety of

task scenarios. For instance, for the immediate danger/escape task

scenario, the rate of correct escaping was the number of trials where

the model selected escape (i.e., the output node with the largest

activity was escape) divided by the number of trials where it should

have selected escape (i.e., the danger input was active).
Model comparison

To investigate the differences between aversion-resistant and

aversion-sensitive models, the KS-statistic was calculated for the

distributions of parameter values and average processing node

activities between aversion-resistant and aversion-sensitive

models. Larger KS-statistics indicated that the distributions of

parameter values were more different.
Model retraining

Following initial training for aversion-resistant rules, models

were retrained with aversion-sensitive rules. The performance of the

models was assessed by calculating the aversion-resistant drinking
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rate and the side effect rate. The aversion-resistant drinking rate was

the proportion of trials where the alcohol and consumption risk

inputs were active and the model selected drink. The side effect rate

was the proportion of all trials where the model did not select the

correct action (e.g., the model did not select escape when the input

was danger).

In addition to assessing the performance of the aversion-

resistant, fully retrained network, and aversion-sensitive network,

performance was also assessed in models with partial retraining. In

these networks, the parameter changes were ordered by the

magnitude of the parameter change during retraining. Parameter

changes were imposed in order from largest to smallest and the

performance of the network was assessed with each additional

parameter change.
Parameter search

Each parameter in the aversion-resistant models was optimized

to reduce overall error on aversion-sensitive rules (i.e., reducing

both aversion-resistant drinking and side effects) and just

minimizing aversion-resistant drinking. This minimization was

accomplished using an iterative random search process of

parameter values. On each iteration, 100 random numbers were

selected near the current parameter values using a gaussian

distribution (initial standard deviation equal to 10, centered on

current parameter value). The network was run for each of these

parameter values and the value with the lowest error (either on

aversion-sensitive rules or on just aversion-resistant drinking) was

selected. In the next iteration, the standard deviation of the new

random numbers was set as the minimum of 0.5 and the difference

between the previous iteration parameter value and the new

iteration. This process was continued until the new iteration error

improved by less than 1% of the previous iteration error.

For networks that failed to produce a single parameter change

that resulted in less than a 10% aversion-resistant drinking rate

when considering all aversion-sensitive rules, a second search was

performed for each pair of parameters using the same methods as

those described for a single parameter search, with one exception.

For searches of two parameters, instead of 100 randomly selected

new parameter values, there were 100 randomly selected new

parameter value pairs for the two parameters being searched.
Treatment/parameter prediction

A partial least squares (PLS) method was used to predict

parameter changes using a variety of predictor and response

combinations. In all cases, responses for PLS fitting were taken

from parameter search results and fitting was performed using data

from all models other than the individual model for which PLS was

used to predict parameter modification. This implies that the results

we obtained for PLS predicted treatments could be applied

successfully to new aversion-resistant models without requiring
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computationally expensive parameter searches in new aversion-

resistant models.

Let Ai,j,k represent the average activity for processing node j on

trial type k (recall, there are six types of trials (see Figure 2C)) for

aversion-resistant model i. Let Ai,j,k

� �
represent the set of Ai,j,k

values for all processing node and trial type combinations. Let

Ai,j,k

� �
1−l represent the set of Ai,j,k values for the processing node

and trial type combinations that had the one through l largest KS-

statistics between aversion-resistant and aversion-sensitive model

(see Figure 3I). Let Bi,j represent parameter j for aversion-resistant

model i. Let Bi,j

� �
represent the set of Bi,j values for all parameters.

Let Bi,j

� �
1−l represent the set of Bi,j values for the parameters that

had the one through l largest KS-statistics between aversion-

resistant and aversion-sensitive model (see Figure 3G). Let B*i,j
represent parameter j for aversion-resistant model i found via

search that most reduced aversion-resistant drinking and side

effects. Let B*i,j
n o

represent the set of B*i,j for all parameters. Let

C*i,j represent the total error rate (aversion-resistant drinking rate

plus side effect rate) found in model i after imposing parameter B*i,j.

Let C*i,j
n o

represent the set of C*i,j for all parameters.

Two types of PLS models were produced. First, some PLS

models attempted to predict the new parameter 12 (CoR3) value

for a given network that was found via the search algorithm above.

Parameter 12 was the connection weight from the consumption risk

input node to hidden layer node 3. It was selected because it was

found to reduce aversion-resistant drinking most substantially

while simultaneously not increasing side effects. In these PLS

models, the response for the PLS model fit for aversion-resistant

model m :m ≠ i was B*i,12
n o

and the combinations of predictors

used in different PLS models were subsets of activities ( Ai,j,k

� �
1−1,

Ai,j,k

� �
1−2, …, Ai,j,k

� �
1−6), all activities ( Ai,j,k

� �
), subsets of

parameters ( Bi,j

� �
1−1, Bi,j

� �
1−2, …, Bi,j

� �
1−6), or all parameters

( Bi,j

� �
). In these PLS fits, each model i was a single observation.

After fitting each PLS model for modelm based on one of the sets of

predictors, the PLS model was used to predict a new value for

parameter 12 based on the corresponding predictors from modelm.

This new parameter was then imposed on the model and its

performance was assessed.

Second, some PLS models attempted to predict all parameters

found by search and their associated total error rate. In these PLS

models, the responses for the PLS model fit for aversion-resistant

model m :m ≠ i were B*i,j
n o

and C*i,j
n o

and the combinations of

predictors used in different PLS models were subsets of activities

( Ai,j,k

� �
1−1, Ai,j,k

� �
1−2, …, Ai,j,k

� �
1−6), all activities ( Ai,j,k

� �
),

subsets of parameters ( Bi,j

� �
1−1, Bi,j

� �
1−2, …, Bi,j

� �
1−6), or all

parameters ( Bi,j

� �
). In these PLS fits, each model i was a single

observation. After fitting each PLS model for modelm based on one

of the sets of predictors, the PLS model was used to predict new

parameter and total error rates based on the corresponding

predictors from model m. Of these new parameters, the eight

with the lowest predicted total error rate were each imposed on

the model and its performance was assessed. The parameter change

that produced the lowest total error rate was then selected and used

as the predicted treatment.
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