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Background: Individuals with cocaine use disorder experience heightened

motivation to pursue rewards tied to cocaine, often triggered by associated

cues. Cue reactivity and subsequent craving significantly elevate the risk of

substance use, creating a pressing need for treatments that can help alleviate

cravings. However, no pharmaceutical therapies for treating cocaine use disorder

have been approved. Preclinical findings reveal dysfunctions in the glutamatergic

pathway connecting prefrontal regions with the nucleus accumbens, which are

correlated with cue-induced substance-seeking behaviour. These alterations, at

both molecular and behavioural levels, can be reversed in rodents with N-

acetylcysteine, a modulator of glutamatergic signalling. In contrast, the

therapeutic potential for humans remains uncertain.

Methods: Here, we assessed the impact of a short-term challenge with N-

acetylcysteine on neural responses to cocaine cues and cue-induced craving in a

randomised, placebo-controlled cross-over trial using a fMRI cue reactivity

paradigm. In total, 44 fMRI cue reactivity scans of 22 individuals with cocaine

use disorder were recorded—once after the administration of 2,400 mg of N-

acetylcysteine/day for 2 days and once after placebo intake.

Results: In the placebo condition, participants showed increased cue reactivity

towards cocaine pictures, accompanied by significantly higher cravings as

compared to neutral images. In accordance with recent meta-analyses, cue

reactivity was evident in parietal regions such as the posterior cingulate and

precuneus, temporal regions like the hippocampus, the bilateral insula, and

medial prefrontal regions, namely the inferior, middle, and superior frontal

gyrus. Cue-induced activity in the superior frontal gyrus was strongly predicted

by the individual duration of cocaine use. While N-acetylcysteine showed no

impact on subjectively rated cocaine craving, neural cue reactivity in the superior

frontal gyrus was significantly decreased under N-acetylcysteine compared

to placebo.
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Conclusions:Our findings show that prefrontal reactivity to cocaine cues can be

reduced even by a brief pharmacological challenge with N-acetylcysteine. Since

neural drug cue reactivity has been shown to be a precursor of relapse behaviour,

N-acetylcysteine’s therapeutic potential should be further investigated in future

studies by extending treatment periods.

Clinical Trial Registration: https://clinicaltrials.gov, identifier NCT02626494.
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Introduction

Vulnerable individuals can lose control over initially

recreational substance use and, thus, experience a transition to

addiction (1). In individuals with substance use disorder (SUD),

repeated substance use has profoundly remodelled the reward

system. While it is important for survival to remember cues that

predict natural rewards, memories related to substance-induced

rewards can become particularly robust and persistently

predominant over natural rewards, even after long periods of

abstinence (2, 3). The remodelled reward system characterising

SUD therefore leads to maladaptive reward-seeking behaviour. This

manifests in heightened cue reactivity in individuals with SUD

when confronted with substance-associated cues (4–6). Exposure to

substance-related cues often leads to craving and potential

substance use, even in the face of well-known adverse

consequences (5). In addition to the increased pursuit of the

psychoactive substance, the interest in natural rewards declines

(e.g., food, sex, and social interactions) (7–9). This reward

imbalance has been found to be reflected in profound alterations

within the frontostriatal network. While the prefrontal cortex (PFC)

shows generally reduced basal activity in SUD and when processing

naturally rewarding stimuli (4, 7, 8, 10, 11), the responsiveness of

the PFC and the nucleus accumbens is heightened when exposed to

substance-related stimuli (4, 10, 12, 13), which is linked to increased

craving (10, 14). This is in accordance with the notion that the

frontostriatal network normally governs adaptive behaviours

towards internal and environmental stimuli [for review, see (15)].

As a consequence of chronic cocaine use, adaptations in

frontostriatal connectivity lead to hampered prefrontal control

over the nucleus accumbens, which translates into difficulty in

inhibiting substance-seeking behaviours (16). This might explain

why individuals with cocaine use disorder (CUD) cannot effectively

regulate cocaine craving and, consequently, choose to use cocaine

over other rewarding activities when confronted with cues or stress.

The fact that cue-induced craving substantially contributes to the

persistence of this disease and leads to chronic progression

emphasises the need for a pharmacological intervention with

anticraving properties. However, despite the detrimental impact
02
of cocaine use and CUD on individual and public health (17, 18),

there is currently no approved pharmacotherapy for cocaine

craving or other symptoms of CUD (19). Thus, it is essential to

understand the underlying mechanisms of cocaine craving and

target the neurobiological underpinnings.

In rodents, dysregulation of glutamatergic signalling between

the PFC and the nucleus accumbens appears to be responsible for

the maintenance of SUD (20–22). While withdrawal is paralleled by

reduced levels of extracellular glutamate in the nucleus accumbens

(23), reinstatement of prime- and cue-induced substance-seeking is

associated with prefrontal glutamate release (24–30). The

consequent spillover of glutamate in the nucleus accumbens is

critical for the initiation of relapse (26, 27, 31, 32). These

disruptions in glutamate homeostasis were restored, and

associated substance-seeking was inhibited by N-acetylcysteine, a

modulator of glutamate synthesis (N-AC) (21, 22).

In humans diagnosed with CUD (22), similar changes at both

the neurometabolic and circuit levels associated with cue exposure

and craving experience have been observed (33–35). Individuals

with CUD show decreased glutamate concentrations in the ventral

and dorsal striatum compared to healthy controls (33, 35), while

during cue-induced craving states, glutamate is significantly

increased (33). Thus, N-AC has the potential to counterbalance

these alterations in glutamatergic signalling underlying craving and,

thereby, diminish the vulnerability to relapse in humans with SUD

(23, 36–45). Initial pilot studies investigating the therapeutic effect

of N-AC on CUD led to promising findings (46–49). While larger

placebo-controlled clinical trials in CUD showed beneficial effects

on the salience of cocaine cues, cocaine craving, and cocaine use

(48–51), the largest clinical trial in CUD failed to demonstrate

significant reductions in cocaine use (52). A restoring effect of N-

AC on glutamate in the anterior cingulate cortex was reported in

CUD by one study (53); conversely, others did not succeed in

verifying these observations in individuals who regularly use

cocaine (54). Correspondingly, our recent research found no

significant impact of N-AC on glutamate in the nucleus

accumbens among individuals with CUD (33). Finally, cue

reactivity and craving have often been found unaffected, even in

studies that reported a beneficial impact on cocaine consumption
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patterns (51, 55). This is surprising, given that the predictive value

of cue reactivity and craving for relapse has been consistently shown

across psychoactive substances (56, 57).

Given the promising but inconsistent evidence on N-AC in

SUD (33, 46–55), we investigate the impact of a short-term N-AC

challenge on cue reactivity in individuals with CUD in a

randomised, placebo-controlled, double-blind, cross-over trial.

We hypothesised that (i) exposure to cocaine cues, compared to

neutral cues, induces changes in the blood oxygen level-dependent

(BOLD) signal in the prefrontal-striatal network, which is crucial

for cue-induced substance seeking in rodents (22) and other brain

regions found to be involved in cue reactivity across psychoactive

substances in individuals with SUD (58, 59); and (ii) these changes

positively correlate with the severity of CUD (57). Furthermore, we

anticipate that N-AC reduces (iii) cue reactivity in the brain and (iv)

the subjective experience of craving.
Materials and methods

Participants

In total, we recruited 36 participants, of whom 14 had to be

excluded due to incomplete or incompliant study participation (for

details, see Supplementary Material), leaving an effective sample

size of N = 22. This study sample constitutes a subset of a

multimodal study, the findings of which were published

previously (33, 34).

General inclusion criterion for all participants was age between 18

and 50 years, and the exclusion criteria included allergy to N-AC,

contraindications to magnetic resonance imaging, serious somatic

illness, previous head injury, neurological disorders, family history of

severe psychiatric disorders according to the Diagnostic and Statistical

Manual of Mental Disorders Version IV (DSM-IV) (60), pregnancy,

lack of contraception, current participation in another clinical trial, and

other current Axis I psychiatric disorders according to DSM-IV,

excluding nicotine use disorder and attention-deficit/hyperactivity

disorder, as both are highly prevalent in individuals with CUD.

Participants were requested to abstain from alcohol for 48 h and

from illicit substances for 72 h prior to both MRI measurement

days. Compliance with abstinence was monitored by self-reports

and urine samples. Nicotine use was permitted until 1 h before the

MRI measurements.

The study was approved by the ethics committee of the Canton

of Zurich (No. 2014-0010), and all participants gave written

informed consent in accordance with the Declaration of Helsinki

prior to study participation. Participants received financial

compensation both after completion and after discontinuation of

the study.
Study design

This study was designed as a randomised, double-blind,

placebo-controlled, cross-over, and counter-balanced investigation

(see Figure 1). To assess neural cue reactivity under N-AC and
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compare it to cue reactivity under placebo, two identical

measurement sessions were performed and spaced 14 days (± 4)

apart to ensure a complete washout of the compound. All subjects

received a placebo (1,600 mg mannitol/day) for one of the

measurement sessions and N-AC (2,400 mg/day) for the other.

Both substances were administered in four identical capsules per

day over two consecutive days, 1 day before and on the

measurement day. The dose of N-AC was chosen based on

previous studies showing that it is well tolerated in this

population (21, 46) and may modulate cocaine craving, relapse

risk, and glutamate levels (21).
Questionnaires

At the assessment visit, we collected the following data:

demographic data, an interview on consumption patterns of

cocaine and other psychoactive substances (61), and a

questionnaire assessing general craving over the past weeks by the

obsessive-compulsive cocaine scale (OCCUS (62);. All analyses with

questionnaires were conducted using R version 4.1.2 within RStudio

version 2023.06.0 + 421.
Cue reactivity fMRI task

We implemented a previously established visual cue reactivity

task that allowed us to compare neural responses to cocaine-related

pictures with neutral pictures (63, 64). Since substance use

behaviours differ strongly between cultures, the task was adapted

to ensure authenticity by including locally characteristic cocaine

cues. Specifically, seven of the original cocaine-related pictures,

which predominantly showed crack cocaine inhalation by people of

colour, were replaced with new images showing (i) intranasal

cocaine use and the respective paraphernalia (e.g., cocaine

powder, banknotes) and (ii) Caucasian protagonists to address

the anticipated study population. The visual complexity, attention

to detail, luminosity, and composition of both cocaine-related and

neutral pictures were matched.

Overall, the picture set consisted of full-colour cocaine-related

pictures (n = 30) and neutral pictures (n = 30), presented in 10

pseudo-randomised blocks, each consisting of seven randomised

pictures. The blocks were pseudo-randomised to control for time

and expectation effects. To ensure participants’ engagement, they

were asked to press a button whenever a target picture of an animal

was detected. One target picture was presented in each block at a

randomised position (n = 10). Every picture was presented for 4 s,

with a fixation cross displayed for an average of 1s between pictures

(jittered between 750 ms and 1,250 ms). An additional fixation cross

appeared for 15 s between blocks. The total task duration was

approximately 8.5 min. The task was presented to the participants

using MR-compatible goggles (Resonance Technologies,

Northridge, CA, USA). Prior to the task, participants were asked

to rate their current cocaine craving (precraving) using a visual

analogue scale (VAS; 0 = no craving to 10 = strong craving). After

the task, participants rated the intensity of the cocaine craving
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experienced during cue exposure on the VAS (postcraving). To

analyse the potential change in cocaine craving due to the cue

presentation, we conducted repeated measures analyses of variance

(ANOVA) using R version 4.1.2 within RStudio version 2023.06.0 +

421 with N = 21 due to one missing value.
MRI acquisition

All magnetic resonance imaging data were obtained using a

Philips Achieva 3-T whole-body scanner (upgraded to the dStream

platform) equipped with a 32-channel head coil (Philips Healthcare,

Best, The Netherlands). First, high-resolution anatomical images

(voxel size: 1 mm × 1 mm × 1 mm) were acquired using a standard

T1-weighted 3D turbo field echo sequence. Functional data during

the cue reactivity task were acquired using a whole-brain gradient-

echo imaging planar (EPI) sequence (repetition time = 2,000 ms,

echo time = 35 ms, flip angle = 82°, field of view = 220 mm2 × 220

mm2, acquisition matrix = 80 × 80, in-plane voxel size

reconstructed to 2 mm2 × 2 mm2, slice thickness = 3 mm, slices

= 27, SENSE reduction factor 2.0).
fMRI: preprocessing and analysis

MRI preprocessing was carried out using SPM8 and analysis

with SPM12 (http://fil.ion.ucl.ac.uk/spm), based on MatLab 2023a
Frontiers in Psychiatry 04
(The MathWorks, Natick, MA, USA, www.mathworks.com).

Following standard procedures, preprocessing included slice-time

correction, realignment, spatial normalisation to the standard EPI

template of the Montreal Neurological Institute (MNI), and spatial

smoothing using a Gaussian kernel of 6 mm full width at half

maximum to fulfil the statistical requirements for a general

linear model.

Using ART within the CONN toolbox (release 22.a) (65),

potential outlier scans were identified as acquisitions with

framewise displacement exceeding 0.9 mm or global BOLD signal

changes above 5 standard deviations. A reference BOLD image was

computed for each subject by averaging all scans excluding outliers.

In addition, functional data were denoised using a standard

denoising pipeline, which included the regression of potential

confounding effects characterised by white matter timeseries (5

CompCor noise components), CSF timeseries (5 CompCor noise

components), outlier scans (below 137 factors), motion parameters

and their first-order derivatives (12 factors), and linear trends (two

factors) within each functional run. This was followed by bandpass

frequency filtering of the BOLD timeseries between 0.008 Hz and

0.09 Hz. CompCor noise components within white matter and CSF

were estimated by computing the average BOLD signal, as well as

the largest principal components orthogonal to the BOLD average,

motion parameters, and outlier scans within each subject’s eroded

segmentation masks.

In the first-level analysis for each participant, a general linear

model was implemented, including the exact onset time for all
FIGURE 1

Experimental study design. During the first visit (T0), standardised interviews were conducted, and participants completed questionnaires. Based on
double-blinded randomisation, participants either received N-AC or placebo 1 day and 1 h before the first MRI session (T1). After a 14-day washout
period, participants were crossed over to receive the other compound for the second MRI session (T2). Both MRI sessions were identical and
included a functional magnetic resonance imaging (fMRI) sequence during a cocaine cue reactivity task. Before and after each session, participants
reported the intensity of their current cocaine craving on a visual analogue scale (VAS).
frontiersin.org

http://fil.ion.ucl.ac.uk/spm
http://www.mathworks.com
https://doi.org/10.3389/fpsyt.2024.1489194
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Engeli et al. 10.3389/fpsyt.2024.1489194
pictures, which were convolved with a canonical hemodynamic

response function. A 128-s high-pass filter was applied to remove

low-frequency signal drifts. Regressors were modelled according to

an event-related design. For each participant, contrasts neutral cue

> cocaine cue, and cocaine cue > neutral cue were computed for each

pharmacological condition and included in the interaction term

placebo > N-AC (i.e., [cocaine cue placebo > neutral cue placebo] >

[cocaine cue N-AC > neutral cue placebo]).

These individual contrasts were entered into a second-level

analysis with a flexible factorial design to test within-group effects of

the challenge and the interaction of challenge condition × cue

condition using t-test, applying Family-Wise Error (FWE)

correction for multiple comparisons with a threshold of p < 0.05.

Effects were first analysed at the whole-brain level and, in a second

step, using small-volume correction [SVC; (66)] with a priori-

defined regions of interest (ROI). The selection of ROI was based

on two recent meta-analyses applying different approaches to

identify drug cue reactivity in SUD, which included data from

over 4,000 or 5,000 participants, respectively (58, 59). All masks for

these ROI were created with the WFU PickAtlas (RRID:

SCR_007378) according to the AAL3 atlas (Rolls et al., 2020).

Detailed descriptions of all ROI, including AAL3 labelling, are

presented in the Supplementary Material. All brain coordinates

are reported in the MNI atlas space.
Robust regression analysis

A regression model was applied to test whether the severity of

CUD predicts the neural reactivity to cocaine cues. During outlier

screening, extreme values were identified; however, due to their

consistent increase across different variables reflecting CUD severity,

they were considered real data rather than measurement errors.

Consequently, these data points were included in robust regression,

an approach that employs differentiated weighting to mitigate the

impact of extreme data points, thereby providing a better fit for the

predominant portion of the data. To evaluate different models of robust

regression, we compared their residual standard error to assess the

standard deviation. We found that for all tested variables, the robust

regression based on least-trimmed squares (LTS) showed a lower

residual standard error compared to other robust regression

estimations, thus providing the best fit to the data.

The variables reflecting CUD severity were general craving

(OCCUS), cue-induced craving (VAS), and variables for cocaine

use patterns (IPDC).

As measures for cue reactivity, we extracted the first

eigenvariates during the condition cocaine cue placebo and neutral

cue placebo in SPM12, without adjustment, as no covariates were

included in the general linear model. Two separate robust

regression models were applied to test the prediction of the

severity of CUD on BOLD response to cocaine cues and to

neutral cues. The robust regression model for the difference

between cocaine cue placebo and neutral cue placebo leads to an

analogous result (cocaine cue placebo > neutral cue placebo; see

Supplementary Figure S2 in the Supplementary Material).
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Results

Sample characteristics

As shown in Table 1, the final sample consisted of 22 individuals

with CUD, including five women. The overall mean age was 30.7

years (SD = 6.1, range: 19.2–45.8). The most common

administration route was nasal use (n = 19), while three

participants predominantly inhaled cocaine. On average,

participants used cocaine 3.2 times per week (SD = 1.8, range: 0–
TABLE 1 Sample characteristics and patterns of substance use in
individuals with CUD.

Individuals with CUD (N = 22)

Mean (SD)

Male/female 16/6

Age in years 30.72 (6.07)

OCCUS 20.65 (7.89)

Cocaine

Grams/week 5.68 (10.92)

Frequency/week 3.16 (1.81)

Duration of use (years) 6.53 ± 3.96

Cumulative dose (grams/lifetime) 1,989.92 (2,528.32)

Alcohol

Grams/week 310.65 (581.97)

Nicotine

Cigarettes/week 97.91 (72.97)

Cannabis

Grams/week 1.96 (5.96)

Amphetamine

Grams/week 0.17 (0.58)

MDMA

Milligrams/week 22.80 (44.22)

Opioid

Grams/week 0.02 (0.05)

GHB

Millilitres/week 0.01 (0.03)

Hallucinogens

Trips/week 0.17 (0.64)

Ketamine

Grams/week 0.03 ± 0.07
Means and standard deviations (SD) of sample characteristics assessed using the obsessive–
compulsive cocaine use (OCCUS) questionnaire, which ranges from 0 to 56, and the interview
on psychotropic drug consumption.
MDMA, 3,4-methylenedioxymethamphetamine; GHB, gamma-hydroxybutyric acid.
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7) and consumed a total of 5.7 g/week (SD = 10.9, range: 1–52.5)

over the last 6 months. Urine drug screening, with a sensitivity to

detect metabolites of psychoactive substances between days and

weeks following the last use, identified cocaine metabolites in

probes of eight participants before the placebo measurement and

in the probes of 11 participants before the N-AC measurement.

However, self-reports indicated that only three participants had

used cocaine within 3 days prior to the placebo measurement and

two before the N-AC measurement. Overall, other substances

detectable with the applied urine drug screening (amphetamine,

benzodiazepines, cannabis, and opiates) yielded positive results in
Frontiers in Psychiatry 06
six participants before the placebo measurement and in seven

participants before the N-AC measurement. According to self-

reports, two participants used another psychoactive substance

(including amphetamine, MDMA, psychedelics, ketamine, GHB,

opiates, and opioids) within 3 days before the placebo measurement

and four participants before the N-AC measurement. All

participants reported no alcohol use in the 2 days leading up to

the placebo measurement, while one participant indicated having

drunk alcohol before the N-AC measurement. Further information

regarding the use of other psychoactive substances is summarised

in Table 1.
TABLE 2 Brain regions exhibiting increased cocaine cue reactivity under placebo conditions.

Coordinates (mm) Brain region Side Cluster
size

Statistics SVC
(p-value)

x y z t z FWE
(p-value)

Cocaine cue placebo > neutral cue placebo

12 68 12 Superior frontal gyrus R 54 4.61 4.34 0.067 0.01

− 2 68 6 Superior frontal gyrus L/R 33 4.23 4.02 0.304 0.046

22 36 50 Superior frontal gyrus R 35 4.32 4.09 0.263 0.022

42 40 2 Inferior frontal gyrus R 126 3.95 3.77 0.001

Middle frontal gyrus

56 16 28 Inferior frontal gyrus R 20 3.84 3.68 0.703 0.019

Precentral gyrus

− 56 10 34 Inferior frontal gyrus L 49 4.37 4.14 0.095 0.006

Precentral gyrus

− 38 − 8 12 Insula posterior L 34 4.12 3.92 0.283 0.021

42 − 8 14 Insula posterior R 27 4.74 4.45 0.461 0.002

− 52 − 28 42 Postcentral gyrus L 287 4.76 4.61 0.000

Supramarginal gyrus

− 4 − 34 32 Posterior cingulate gyrus L/R 77 4.9 4.58 0.014

Middle cingulate gyrus

30 − 34 − 4 Hippocampus R 38 4.56 4.3 0.212 0.005

− 26 − 34 − 6 Hippocampus L 12 4.13 3.93 0.947 0.042

58 − 44 − 8 Middle temporal gyrus R 53 4.4 4.16 0.072 0.032

Inferior temporal gyrus

2 − 54 30 Precuneus L/R 134 5.08 4.34 0.000

Posterior cingulate gyrus

− 50 − 66 6 Middle temporal gyrus L 124 4.76 4.47 0.001

Occipital lobe

Neutral cue placebo > cocaine cue placebo

− 12 − 38 46 Precuneus 92 4.56 4.29 0.005
For both whole-brain analysis and small volume correction (SVC), the significance threshold was set at p < 0.05 at the cluster level, with family-wise error (FWE) correction for multiple
comparisons, an initial voxel-level threshold of p (uncorrected) < 0.001, and an extent threshold of k = 10 voxels. N = 22. L, left; R, right. Significant p-values are indicated in bold.
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Cue-induced craving

After the cue reactivity task, craving levels were significantly

increased compared to before the task, as indicated by self-reports

in the placebo condition on the VAS (precraving: M = 3.41, SE =

0.57; postcraving: M = 4.27, SE = 0.65; main effect cue: F = 8.28, p =

0.009, N = 21). Contrary to our hypothesis, N-AC did not lead to a

significant reduction in subjective craving levels (precraving: M =

3.91, SE = 0.65; postcraving: M = 4.92, SE = 0.62; main effect of

challenge: F = 3.94, p =0.15; cue-by-challenge interaction effect: F =

0.0004, p = 0.98, N = 21).
Cue reactivity in the brain

In contrast, cocaine cue placebo > neutral cue placebo revealed

significantly increased cue reactivity, predominantly in the

prefrontal cortex, bilaterally in the precentral gyrus/inferior

frontal gyrus (IFG), in the right IFC/middle frontal gyrus, and in

three clusters of the superior frontal gyrus (SFG), including lateral

and dorsal activation, as well as a cluster in the medial frontal pole.

Furthermore, significantly elevated cue reactivity was observed in

the bilateral posterior insula, bilateral hippocampus, precuneus,

posterior and medial cingulate cortex, postcentral gyrus, and two

clusters in the middle temporal gyrus. For an overview of regions

with significantly increased BOLD signals, along with their

respective coordinates and statistical values, see Table 2

and Figure 2A.

Notably, no significantly enhanced neural cue reactivity was

observed in the contrast cocaine cue placebo > neutral cue placebo in

the following regions, as assessed with SVC: amygdala, anterior

cingulate cortex, pallidum, putamen, nucleus accumbens, substantia

nigra, thalamus, and ventral tegmental area.
Cue reactivity in the brain under
N-acetylcysteine

The contrast cocaine cue N-AC > neutral cue N-AC indicates

how neural cue reactivity manifests under the influence of N-AC. In

the N-AC condition, significantly increased neural cue reactivity

was observed in a fewer activity patterns compared to the placebo

condition, including the postcentral gyrus, supramarginal gyrus,

bilateral hippocampus, precuneus, and two clusters in the middle

temporal gyrus. In contrast, significantly reduced BOLD signals

were observed in the medial PFC, including the bilateral SFG/MFG,

another lateral MFG cluster, and in both the anterior and posterior

insula (see Table 3; Figure 2B).

The comparison between the contrast (cocaine cue N-AC >

neutral cue N-AC) > (cocaine cue placebo > neutral cue placebo)

revealed a cue-by-challenge interaction in a cluster within the

medial PFC, with neural cue reactivity being significantly reduced

by N-AC (see Table 3; Figure 2C). In other a priori-defined ROI, no

significant interaction effects were observed.
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The link between CUD severity and
cue reactivity

The LTS regression model was not significant for the subjective

experience of general and cue-induced craving (OCCUS; VAS) or

neural cue reactivity in the medial PFC (SFG; 14 64 14) under

placebo (first eigenvariates extracted from the condition cocaine cue

placebo [k = 54]).

In contrast, the cocaine consumption pattern, reflected by the

duration of cocaine use (IPDC; self-reports), significantly

predicted reactivity to cocaine cues within the medial PFC

under placebo, showing a strong prediction of reactivity to

cocaine cues (Intercept = − 0.44, x = 0.13; R2 = 0.42, p < 0.001,

N = 22, Figure 3). No significant relationship was observed

between the duration of cocaine use and reactivity to neutral

cues (for results, see Supplementary Figure S1).
Discussion

This study confirmed increased neural cue reactivity in response

to cocaine stimuli among individuals with CUD in most of the neural

networks established by extensive meta-analyses (58, 59), with a

strong focus on the PFC (67). Most importantly, the cue-induced

increase in activity in one of the prefrontal clusters, which was

strongly predicted by the individual duration of cocaine use, was

significantly reduced by a short-term challenge of N-AC (2,400 mg of

N-AC on two consecutive days). This provides the first evidence

demonstrating the modulatory impact of N-AC on neural cue

reactivity, a strong risk factor for relapse in CUD (56, 68), while

there was no effect on the subjective experience of craving.

These findings are in line with consistent preclinical data

suggesting that dysfunctional glutamatergic signalling between the

PFC and the nucleus accumbens underlies cue-induced urges to

seek addictive substances (for overview see (22, 69). N-AC prevents

relapse in animals by restoring substance-induced neuroplastic

changes in the glutamate system within the PFC-nucleus

accumbens pathway (22). The involvement of the PFC in reward

processing of both natural and substance-related rewards has

become evident through neuroimaging studies emerging over the

last two decades (70, 71). The PFC attributes value to stimuli and

actions, aiding in the selection of adaptive actions. It is also engaged

when the devaluation of stimuli–outcome association is required,

allowing for appropriate action switching when circumstances

change. The goal-directed behaviour enables efficient functioning

in our environment but is often severely disrupted in psychiatric

disorders (71). Within the context of SUD, the inability of

individuals to devalue previous cue–action coupling may play a

significant role in their challenge to modify behaviours

appropriately when required to prevent adverse outcomes. As a

result, individuals continue engaging in addictive behaviours

despite being aware of the high likelihood of experiencing long-

term negative physical and psychological effects. This notion is

consistent with prevailing evidence that natural rewards elicit
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decreased prefrontal cortex activity, whereas substance-related cues

trigger an amplified response in the PFC, contributing to

compulsive urges to use a substance in individuals with SUD

despite the adverse consequences.

Prefrontal reactivity observed here is consistent with recent

meta-analyses of neuroimaging studies investigating cue reactivity

across different SUDs, which showed relatively robust heightened
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activity in response to substance-related cues in the PFC, including

clusters in the medial and dorsolateral PFC, anterior cingulate, and

orbitofrontal cortex (58, 59). A transdiagnostic study aimed at

identifying the most effective target for neuromodulation of

craving found the largest percentage of cue-induced activation in

the PFC, specifically in the frontal pole, for cocaine alone and across

substances (72). This region overlaps with the medial PFC cluster,
FIGURE 2

Changes in blood oxygenation level-dependent (BOLD) signal during the cocaine cue reactivity task in individuals with cocaine use disorder. (A)
Cocaine cue reactivity increases the BOLD signal under placebo in four prefrontal regions, spanning the superior frontal gyrus, medial frontal gyrus,
and inferior frontal gyrus; in the bilateral insula and hippocampus; in the postcentral gyrus; in the posterior cingulate cortex; in the supramarginal
gyrus; in the precuneus, and in additional temporal and parietal regions (contrast cocaine cue placebo > neutral cue placebo). (B) Cocaine cue
reactivity increases the BOLD signal under placebo in regions similar to those in the placebo condition, including the bilateral hippocampus,
precuneus, and temporal and parietal regions (contrast cocaine cue N-AC > neutral cue N-AC). In contrast, there is reduced BOLD signal in three
prefrontal regions and in the insula. (C) A cue-by-challenge interaction effect shows significantly increased BOLD signal in a medial prefrontal region
during placebo compared to N-AC, as indicated by the contrast (cocaine cue placebo > neutral cue placebo) > (cocaine cue N-AC > neutral cue N-
AC). The colour spectra represent the t-scores.
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which shows increased neural cue reactivity in the placebo

condition, is predicted by the duration of cocaine use, and was

significantly reduced by N-AC. Furthermore, it has been shown to

be an effective target for transcranial magnetic stimulation, with

reduced functional connectivity during cue exposure in individuals

with CUD and alcohol use disorder (73).

Contrary to previous studies and to our a priori hypothesis,

we found no significant neural cue reactivity to cocaine stimuli

in other key areas of the reward system associated with SUD,

despite consistent reports of neural cue reactivity in the striatum,

ventral tegmental area, thalamus, and other regions (for an

overview, see (58, 59). For example, a study investigating the

effect of modafinil on neural cue reactivity with the same task

as in the present study found heightened activity in the medial

PFC and in the ventral tegmental area under placebo (63).

Similar to our observation, prefrontal reactivity was reduced after

pharmacological modulation (63). However, a comparison of three

studies that aggregated cue reactivity data from individuals with

SUD reveals substantial differences. One meta-analysis identified a

broad range of brain regions activated by drug cues (59), while

others reported drug cue reactivity limited to a few regions, notably

excluding the nucleus accumbens (58, 72). These significant

discrepancies may stem from variations in methodological
TABLE 3 Brain regions with increased cocaine cue reactivity following N-acetylcysteine.

Coordinates (mm) Brain region Side Cluster size Statistics SVC
(p-value)

x y z t z FEW (p-value)

Cocaine cue N-AC > neutral cue N-AC

− 54 − 16 26 Postcentral gyrus L 96 5.41 4.99 0.004

Supramarginal gyrus

32 − 32 − 6 Hippocampus R 34 5.55 5.11 0.283 0.005

− 26 − 34 − 4 Hippocampus L 13 3.92 3.75 0.926 0.033

− 50 − 38 44 Supramarginal gyrus L 58 4.37 4.13 0.050 0.029

12 − 52 44 Precuneus R/L 36 4.05 3.86 0.245 0.019

− 58 − 62 12 Middle temporal gyrus L 29 4.14 3.94 0.402 0.025

−54 − 66 0 Middle temporal gyrus L 32 3.98 3.8 0.326 0.023

Neutral cue N-AC > cocaine cue N-AC

24 58 − 4 Superior frontal gyrus R 289 5.32 4.92 0.000

Middle frontal gyrus

− 36 52 14 Superior frontal gyrus L 48 3.95 3.77 0.102 0.005

Middle frontal gyrus

38 32 24 Middle frontal gyrus R 79 4.66 4.39 0.012

34 18 − 6 Insula anterior R 27 4.21 4 0.461 0.015

34 − 18 18 Insula posterior R 56 4.69 4.4 0.058 0.006

Placebo > N-AC

14 64 14 Superior frontal gyrus R 69 4.57 4.3 0.024
For both whole-brain analysis and small volume correction (SVC), the significance threshold was set at p < 0.05 cluster level, with family-wise error (FWE) correction for multiple
comparisons, an initial voxel-level threshold of p (uncorrected) < 0.001, and an extent threshold of k = 10 voxels. N = 22. N-AC, N-acetylcysteine; L, left; r: right. Significant p-values are
indicated in bold.
FIGURE 3

Link between cocaine cue reactivity in the medial prefrontal cortex
(PFC) and duration of cocaine use. The duration of cocaine use in years
significantly predicted neural cue reactivity to cocaine stimuli within the
medial PFC under placebo, as measured by first eigenvariates extracted
from the condition cocaine cue placebo (R2 = 0.42, p < 0.001, N = 22).
The colour shading on the graph represents the duration of cocaine use
in years.
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approaches and differences in the populations studied. An early

review highlighted inconsistencies across studies, suggesting that

participant characteristics, such as treatment status, may contribute

to divergent findings in cue reactivity research (74). Conversely,

given the substantial variability in the results, the identification of a

common substrate for cue reactivity in the medial and dorsolateral

PFC across different psychoactive substances—which aligns with

our results—is particularly noteworthy (58, 59, 72).

Examining the pharmacological conditions separately, exposure to

cocaine cues activated certain brain regions similarly, but the overall

brain response patterns varied. Prefrontal cue reactivity, which was

prominent in the placebo condition (cocaine cues placebo > neutral

cues placebo), was absent with N-AC. Instead, N-AC significantly

reduced reactivity to cocaine cues in three PFC clusters (cocaine cues

N-AC > neutral cues N-AC). Additionally, while the placebo condition

heightened reactivity in the bilateral posterior insula (cocaine cues

placebo > neutral cues placebo), N-AC led to significantly decreased

reactivity in both the posterior and anterior insula (cocaine cues N-AC

> neutral cues N-AC). The insula, a key region in introspection and

self-awareness, is notably involved in SUD, as evidenced by findings

that nicotine use disorder ceased immediately in individuals with insula

damage (75) and that decision-making in SUD is characterised by

reduced insula engagement, which predicted relapse (76). Notably,

these differences in cue reactivity were observed only when analysing

the pharmacological contrasts separately, not in a direct statistical

comparison of the two pharmacological conditions. Larger sample sizes

may be necessary to clarify subtle differences between the groups.

In contrast to other studies demonstrating a significant

reduction of cocaine use and cocaine craving after N-AC

administration (46–51), we observed only a change in neural cue

reactivity but no impact of N-AC on the subjective experience of

craving for cocaine. Notably, most of the recent clinical trials report

a distinct impact of N-AC on some but not all outcome measures;

i.e., in a clinical trial with 24 individuals with CUD, N-AC over 25

days had a beneficial effect on cocaine use and CUD severity but no

effect on cue reactivity and cocaine craving (51, 54, 55). In a large

sample of over 150 individuals with methamphetamine use

disorder, N-AC showed a therapeutic effect, albeit to the same

extent as a placebo (77), while N-AC intake over 28 days had a

reducing effect on some but not all measures of alcohol use in two

different studies with individuals with alcohol use disorder (78, 79).

Consequently, the effect of N-AC does not consistently manifest

across all clinically relevant outcomes measured. Given that some of

the studies that yielded therapeutic effects adopted longer N-AC

interventions over several weeks (51, 78, 79), an extended duration

of N-AC treatment may be necessary to effectively promote

behavioural change in individuals with CUD.

However, a randomised clinical trial with a large sample size

administering N-AC for 8 weeks reported no impact of N-AC on

overall cocaine use measured by urine analysis (52). Yet, in

individuals who were already abstinent before N-AC treatment,

the time to relapse was significantly prolonged (52). This finding is

consistent with preclinical data showing facilitation of self- but not
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experimenter-imposed abstinence in rodents (36) and extending

time to relapse (45), suggesting that N-AC is primarily effective in

maintaining already achieved abstinence, while it might be

ineffective in individuals who are currently still using cocaine (80).

Accordingly, we acknowledge the following limitations in this

study: a restricted sample size that limits the investigation of

subgroups such as responders vs. nonresponders or gender groups, a

short period of N-AC administration lasting 2 days, and the lack of

assessment of long-term behavioural outcomes. To better understand

the therapeutic potential of N-AC, future trials with larger samples to

cover the population’s inherent heterogeneity, applying long-term

interventions and assessing longitudinal outcomes, are needed. This

will allow for the examination of distinct subgroups and the evaluation

of clinically relevant treatment effects over time. In this context, the

impact of a pharmacological challenge with N-AC on cue reactivity

may have the potential to serve as a biomarker for more

stratified interventions.

Nonetheless, these findings demonstrate that N-AC, a

glutamatergic agent, effectively modulates the neural response to

cocaine cues in the medial PFC of individuals with CUD. Thus, N-

AC can reduce neural cue reactivity, which typically occurs early in

the process of substance use initiation, by affecting the medial PFC,

a brain region involved in cue evaluation and action selection.

Recent meta-analyses indicate that neural cue reactivity and

subsequent subjective experience of craving significantly increase

the likelihood of substance use in individuals with SUD,

highlighting that managing neural cue reactivity can be crucial in

supporting patients’ recovery (56, 68, 81).

Considering the inconsistent findings from the present and

previous research, it may be essential to explore the effectiveness

of integrating N-AC into a personalised therapeutic approach. For

example, transcranial magnetic stimulation of the medial or

dorsolateral PFC and neurofeedback training to reduce

substance cue reactivity or increase sensitivity to natural

rewards have shown promising results in SUD (82, 83).

Therefore, a combined pharmacotherapeutic approach involving

N-AC and neuromodulation could synergistically enhance

adaptive reward processing and experiences, effectively

addressing the reward imbalance in SUD treatment.
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