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Background: Stress is a significant risk factor for psychiatric disorders such as

major depressive disorder (MDD) and panic disorder (PD). This highlights the

need for advanced stress-monitoring technologies to improve treatment. Stress

affects the autonomic nervous system, which can be evaluated via heart rate

variability (HRV). While machine learning has enabled automated stress detection

via HRV in healthy individuals, its application in psychiatric patients remains

underexplored. This study evaluated the feasibility of using machine-learning

algorithms to detect stress automatically in MDD and PD patients, as well as

healthy controls (HCs), based on HRV features.

Methods: The study included 147 participants (MDD: 41, PD: 47, HC: 59) who

visited the laboratory up to five times over 12 weeks. HRV data were collected

during stress and relaxation tasks, with 20 HRV features extracted. Random forest

and multilayer perceptron classifiers were applied to distinguish between the

stress and relaxation tasks. Feature importance was analyzed using SHapley

Additive exPlanations, and differences in HRV between the tasks (DHRV) were

compared across groups. The impact of personalized longitudinal scaling on

classification accuracy was also assessed.

Results: Random forest classification accuracies were 0.67 for MDD, 0.69 for PD,

and 0.73 for HCs, indicating higher accuracy in the HC group. Longitudinal

scaling improved accuracies to 0.94 for MDD, 0.90 for PD, and 0.96 for HCs,

suggesting its potential in monitoring patients’ conditions using HRV. The HC

group demonstrated greater DHRV fluctuation in a larger number of and more

significant features than the patient groups, potentially contributing to higher

accuracy. Multilayer perceptron models provided consistent results with random

forest, confirming the robustness of the findings.
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Conclusion: This study demonstrated that differentiating between stress and

relaxation was more challenging in the PD and MDD groups than in the HC

group, underscoring the potential of HRV metrics as stress biomarkers.

Psychiatric patients exhibited altered autonomic responses, which may

influence their stress reactivity. This indicates the need for a tailored approach

to stress monitoring in these patient groups. Additionally, we emphasized the

significance of longitudinal scaling in enhancing classification accuracy, which

can be utilized to develop personalized monitoring technologies for

psychiatric patients.
KEYWORDS

heart rate variability, major depressive disorder, panic disorder, stress, relaxation,
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1 Introduction

Psychiatric disorders are increasingly common worldwide and

present significant global health challenges (1–3). The most

prevalent psychiatric disorders include major depressive disorder

(MDD) and anxiety disorders, which affect over 250 million and

300 million people worldwide, respectively (4, 5). MDD is

characterized by a persistently depressed mood or loss of interest

in activities, along with symptoms such as weight changes, sleep

disturbances, fatigue, and feelings of worthlessness, making it a

leading cause of global disability (6, 7). Panic disorder (PD) is a

common anxiety disorder that involves recurrent, unexpected panic

attacks with intense fear and symptoms, such as heart palpitations

and sweating, and persistent worry about future attacks or

behavioral changes to avoid them, all of which disrupt functions

of daily life (7, 8). Left untreated, these debilitating mental illnesses

severely impair cognitive function, reduce quality of life, and, in

some cases, lead to suicide, which substantially contributes to their

global burden (1–3).

Previous research has indicated that stress is associated with an

increased risk of developing and exacerbating MDD and PD (9, 10).

Specifically, both chronic and acute stress have significant

associations with the onset of clinical episodes of depression and

PD (10–14). Prolonged exposure to stressors has been linked to a

more refractory course of MDD and PD (15). Additionally, acute

stressful events can trigger the recurrence of depression (16).

Therefore, developing technologies to evaluate the severity and

persistence of stress exposure through individual patient

monitoring is necessary to improve the treatment of these disorders.

Stress affects the autonomic nervous system (ANS), responsible

for regulating physiological responses to external stimuli (17–19).

The ANS typically presents increased sympathetic activity and

withdrawn parasympathetic activity in response to stress (17–19).

Increasing research has explored methods to assess stress by

quantifying these autonomic responses (20). Heart rate variability

(HRV), which reflects the variations in the time intervals between
02
heartbeats, is an extensively studied measure. It is indicative of

cardiac autonomic regulation mediated by both the sympathetic

and parasympathetic nervous systems (17–19). HRV is recognized

as a quantitative biomarker for evaluating ANS function and its

responses to physiological and environmental stimuli (21).

Additionally, mobile technological advancement has led to the

use of wearable devices as non-invasive approaches to monitor

stress based on HRV (22). Previous studies have established that the

autonomic response to stress, manifested as reduced HRV, leads to

detectable changes in physiological signals, which is captured by

wearable devices (22).

Accordingly, recent studies have utilized machine-learning

techniques to automatically detect stress based on HRV (21, 23).

Various machine-learning methods, from classical to deep learning

algorithms, have implemented automated stress detection based on

HRV and demonstrated successful performance in classifying stress

(21, 23). However, these studies have focused on detecting stress in

healthy individuals rather than patients with psychiatric disorders.

Particularly, stress analysis based on HRV in patients with

psychiatric conditions has focused on how patients responded to

stress differently compared with healthy controls (HCs) and relied

on statistical methods.

Psychiatric disorders have been associated with ANS

dysfunction, which can lead to autonomic imbalance toward

sympathetic activation, as reflected in HRV (24–26). MDD

patients in particular often show altered autonomic regulation

that affects cardiovascular control, with decreased cardiac vagal

modulation (27). Consequently, patients with MDD and PD

typically exhibit lower HRV compared with HCs, which indicates

reduced autonomic flexibility (24–26). This altered autonomic

response in patients causes differences in stress reactions between

patients and healthy individuals. Patients with MDD exhibited

lower reactivity to stress than HCs, evidenced by lower

fluctuations in their HRV (28). Research in patients with PD

revealed mixed stress responses and reported higher (29), reduced

(30), and similar reactivity (31) compared with HCs. Although
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previous studies compared stress responses via HRV between

patients and healthy individuals, research on the application of

machine learning to identify stressful states in psychiatric patients

based on HRV data is lacking.

Our study aimed to explore the feasibility of automated stress

detection based on HRV features via machine-learning algorithms

in patients with MDD and PD, as well as HCs. HRV features were

obtained from three distinct participant groups: MDD, PD, and HC,

while they performed various experimental tasks, which included

those designed to induce mental stress and relaxation. We focused

on distinguishing between the states of stress and relaxation via

HRV features and compared the classification results across

different participant groups. We hypothesize that machine-

learning algorithms can effectively classify stress and relaxation

states based on HRV features, with the accuracy potentially differing

among three groups, namely, MDD, PD, and HC, due to varying

ANS responses. Notably, mental disorders, such as MDD and PD,

demonstrated substantial individual variability among patients, a

characteristic that reflected the heterogeneous nature of these

conditions (32, 33). Therefore, we investigated the impact of

individually scaling patient data on the classification outcomes as

a pilot study. We believe that this approach could facilitate the

development of further precise and automated methods for

monitoring stress in patients with psychiatric problems and

ultimately lead to improved management and treatment strategies.
2 Methods

2.1 Participants

Participants included 147 individuals: 41 with MDD, 47 with

PD, and 59 HCs. All patients were recruited at the SamsungMedical

Center in Seoul, Korea, between December 2015 and January 2017

(34). MDD and PD diagnoses were conducted by a senior

psychiatrist in accordance with Diagnostic and Statistical Manual

of Mental Disorder, Fifth Edition (DSM-V) criteria (7). Exclusion

criteria included pregnancy, history of substance or alcohol abuse,

head injury, high suicide risk, personality disorders, severe physical

ailments, and long-acting medication use (e.g., fluoxetine and depot

neuroleptics). All patients received standard psychiatric

pharmacotherapy for MDD or PD throughout the duration of the

12-week experiment, which included standard antidepressant

treatments, such as selective serotonin reuptake inhibitors

(SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs),

norepinephrine dopamine reuptake inhibitors, and tricyclic

antidepressants (TCAs) (34). HCs who lacked a psychiatric

history or family background of mood disorders were recruited

through general study advertisements. The study protocol was

approved by the Ethics Committee of Samsung Medical Center in

Seoul, Korea (No. 2015-07-151), and complied with the applicable

guidelines. All participants provided written informed consent after

they received a thorough explanation of the research procedures.

Additionally, each participant received $50 as compensation.
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2.2 Study design

The study spanned 12 weeks for each participant (Figure 1A),

with five scheduled visits to our clinical laboratory: baseline and

subsequent visits at 2, 4, 8, and 12 weeks. Each participant provided

demographic information (e.g., age and sex) and underwent clinical

evaluations. Clinical evaluations incorporated the Hamilton rating

scale for depression (HAMD), Hamilton rating scale for anxiety

(HAMA), and panic disorder severity scale (PDSS), which were

administered during the initial and 12-week visits (35–37).

Participants’ body mass index (BMI) was also assessed,

considering its recognized influence on ANS responses (38). This

study is part of a larger investigation examining changes in clinical

symptoms and inflammatory biomarkers over 12 weeks to capture

treatment effects (39).
2.3 Experimental protocol

The experimental procedure was developed to examine

autonomic responses to stress and relaxation tasks. The protocol

comprised five phases, each lasting five minutes, totaling to a

duration of 25 minutes. Furthermore, physiological signals, such

as electrocardiograms (ECG), were continuously measured while

the participants performed specific tasks in each phase (Figure 1B).

The first phase, serving as the baseline phase, involved a rest period

during which the participants were instructed to sit comfortably

and minimize movement. In the second phase, the participants

undertook a stress task involving a mental arithmetic test (MAT),

during which they were required to subtract serial 7s starting from

500 and verbally report their answers to the researchers. The

participants were prompted to recalculate in case an error

occurred. If the participants reached the final answer, 10 minus 7

equals 3, before the 5-minute phase ended, they restarted the task

from 500 and continued subtracting. The third phase, also a rest

phase, involved participants discontinuing arithmetic calculations

and resting, which allowed autonomic recovery from the stress task.

In the fourth phase, the participants performed a relaxation task by

observing 10 consecutive images of natural scenery on a computer

screen, each displayed for 30 seconds. The final phase, another rest

phase, involved resting without any image presentation to allow

recovery from the relaxation task. Two trained investigator

specialists conducted the experiments. Only one participant was

examined at a time by a specialist in our clinical laboratory. In our

study, the sequence of stress and relaxation tasks was not

randomized. As randomizing the order could reduce potential

biases in the results, we plan to implement this approach in

future research.

The MAT task used in this study was specifically designed to

induce cognitive and psychological stress by progressively

increasing participants’ mental load through continuous

subtraction tasks (40–43). Research has demonstrated that MAT

effectively induces physiological changes, including alterations in

heart rate, skin conductance response, and neural activity (40–43).
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In our prior studies, we similarly observed a significant decrease in

HRV when using the same stimulus, as compared to baseline

measurements (44). Additionally, research has shown that

exposure to nature scenes, which served as the relaxation task in

this study, positively supports autonomic recovery from stress, as

assessed by HRV and skin conductance measurements (45, 46).
2.4 Physiological measurement

We recorded physiological signals during working hours,

considering the potential influence of the participant ’s

physiological state, which included factors such as time of day,

mood, and rest (47–49). The experiment was conducted in a

controlled environment, specifically a sound-attenuated room

maintained at a temperature of 23°C and humidity levels between

45%–55%. Participants were instructed to sit comfortably in an

armchair with a headrest prior to the experiment and avoid

unnecessary movement or speech while the devices to record

their physiological signals were being set up and calibrated. ECG

signals were collected via the ProComp Infiniti system (SA7500,

Thought Technology, Canada) at a sampling rate of 256 Hz, chosen

to ensure an accurate analysis of the QRS complex and R-peak (50).

ECGs were captured with an ECG-Flex/Pro sensor (T9306M,

Thought Technology), with three electrodes placed on both

forearms: the negative lead on the right forearm and positive and

ground leads on the left forearm. The collected ECG signals were

filtered using a 60 Hz notch filter provided in the BioGraph Infiniti

software (Thought Technology).

R-peak to R-peak interval (RRI) data from the ECG signals were

analyzed via Kubios HRV Premium software (Kubios,
Frontiers in Psychiatry 04
www.kubios.com), which utilized an in-house-developed QRS

detection algorithm based on the Pan-Tompkins method (51, 52).

The RRI data underwent visual inspection, and any artifacts were

rectified via a piecewise cubic spline interpolation method. The

entire analysis was performed by the same operator to ensure

consistency. Subsequently, the HRV features were calculated

separately from the RRI data of the individual phases.
2.5 HRV feature extraction

A standard HRV analysis was conducted according to

international guidelines (50, 53). We derived 20 HRV features from

the RRI data of each phase and covered time, frequency, and

nonlinear domain analyses (Supplementary Table 1). Time and

frequency domains are traditional approaches widely used in

numerous studies, demonstrating well-established connections with

the ANS (50, 53). The nonlinear domain has gained attention more

recently and is increasingly being recognized for its potential as a

biomarker. Nonlinear features are now being utilized not only to

assess autonomic responses to external stimuli, such as stress, but also

in the context of mental health conditions (54, 55). In this study, we

included the most representative features of these three domains.

Time-domain HRV features were directly calculated from the

RRI time series. We extracted six features via this analysis: the mean

of the RRIs, standard deviation of the RRIs (SDNN), root mean

square of successive RRI differences (RMSSD), percentage of

successive RRIs differing by more than 50 ms (pNN50), integral

of the histogram of the RRI divided by its height (TRI), and baseline

width of the RRI histogram (TINN). Seven features were calculated

via the frequency domain analysis. The RRI data were converted to
FIGURE 1

Experimental protocol. (A) The study lasted for 12 weeks, with each participant scheduled for a total of five visits. (B) During each visit, ECG signals
were recorded in five consecutive phases, with each phase lasting for 5 minutes.
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equidistantly sampled data via cubic spline interpolation (4 Hz).

Power spectral density was estimated via Welch’s periodogram-

based fast Fourier transform. Absolute powers were computed in

very low-frequency (VLF, 0–0.04 Hz), low-frequency (LF, 0.04–0.15

Hz), and high-frequency (HF, 0.15–0.4 Hz) bands. Additionally, the

relative powers of the LF and HF bands in normalized units and the

LF/HF power ratio were calculated. Absolute powers were expressed

in natural logarithms to reduce skewness in the distribution.

We extracted five nonlinear measures to assess the nonlinear

dynamics in heart rate signals. Approximate entropy (ApEn)

measured the irregularity in short and noisy time-series data and

did not assume underlying system dynamics (56). The embedding

dimension and tolerance value for ApEn were set to 2 and 0.2,

respectively. Sample entropy (SampEn) was developed to reduce

ApEn bias from self-comparison and was more reliable for shorter

time series, with parameters set identical to those for ApEn (57).

Detrended fluctuation analysis (DFA) was used to assess fractal

scaling properties of short-term RRI signals by integrating and

detrending the time-series data and subsequently measured the

root-mean-square fluctuation at different time scales (58). The

fluctuation was defined by a1 and a2, which represented short-

range and long-range correlations, respectively. In this study, a1
and a2 were evaluated for data lengths of 4–16 and 17–64,

respectively. The correlation dimension (CorDim) estimated the

number of independent variables required to model the signal, and

higher values indicated greater complexity (59, 60). We derived two

features from the Poincaré plot analysis, which graphically

represented the correlation between successive RRIs. SD1 and

SD2 represented the standard deviations perpendicular to and

along the line of identity, respectively.
2.6 Statistical analyses

Statistical analyses were conducted using SPSS version 25 (SPSS

Inc., Chicago, IL, USA). Demographic and clinical characteristics

from the MDD, PD, and HC groups were compared via the one-

way analysis of variance (ANOVA), except for sex, which was

compared via a chi-square test. HRV features among the MDD, PD,

and HC groups measured during the stress and relaxation tasks,

were compared via one-way ANOVA on mean values from all five

visits. We conducted within-subject comparisons of HRV features

between the stress and relaxation tasks during a single visit via

paired samples t-tests. Differences in HRV features between stress

and relaxation tasks, defined as DHRV, were calculated within the

same participants during a single visit. We compared DHRV among

the MDD, PD, and HC groups via one-way ANOVA. For all one-

way ANOVAs reported in this study, we employed either Fisher’s

ANOVA with Bonferroni post-hoc analysis or Welch’s ANOVA

with Games-Howell post-hoc analysis based on the homogeneity of

variance. A P value < 0.05 was considered statistically significant.

We chose a one-way ANOVA to focus specifically on the differences

in HRV across the three groups, rather than on variations

introduced by factors such as visit. This approach allowed us to

emphasize the primary objective of understanding HRV differences
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among diagnostic groups. Future studies may incorporate

additional factors in a more comprehensive model.
2.7 Classification of the stress and
relaxation tasks

To classify the stress and relaxation tasks based on HRV features,

we implemented two machine-learning algorithms: random forest

and multilayer perceptron (MLP). Although 735 samples were

expected if 147 participants (41 MDD patients, 47 PD patients, and

59 HCs) visited five times each, some participants missed visits.

Consequently, 650 samples were obtained each for stress and

relaxation (181 MDD, 191 PD, and 278 HC). Hence, 1300 samples

were used for classification. All classifications were performed with

Python version 3.11.4 (Python Software Foundation).

We utilized 20 HRV features as input data. Training data were

normalized by subtracting the mean and dividing it by the standard

deviation. Subsequently, the same statistical values were used to

normalize the test dataset. However, this normalization was not

applied when we conducted personalized longitudinal scaling. The

stress and relaxation tasks were defined as the positive and negative

class for classification, respectively.

We used a stratified 10-fold cross-validation (CV) repeated 20

times to evaluate performance measures of classification

(Supplementary Figure 1). The task was used as a stratification

option. A subject-wise split was used to ensure that all data from a

given participant was contained entirely within either the training

or the test set, not both, to avoid data leakage. Nine folds were used

for training, and the remaining fold was used for evaluation. We

created 10 models and evaluated for each fold. We averaged the

results from 10 folds to estimate the model’s performance. This

entire process was repeated 20 times. Therefore, performance

metrics were presented as the mean and standard deviation

calculated from 20 repeats. Performance indices included

accuracy, F1, recall, precision, and area under the curve (AUC).

Sample sizes for the MDD, PD, and HC groups were 362, 382,

and 556, respectively. Despite the variations in sample sizes, we

initially conducted the classification without matching the sample

sizes. However, we later repeated the classification via the same

method after matching the sample sizes. We employed random

undersampling to match the sample sizes and aligned them with the

smallest sample size, which belonged to the MDD group.

Moreover, we built models trained and tested exclusively on

data from one group. The entire dataset was divided into three

separate datasets for the MDD, PD, and HC groups. Subsequently,

three separate models were trained and tested, each using the data

from one specific group exclusively, which ensured that data from

different groups did not interact during the training.
2.8 Random forest and MLP classifiers

We selected the random forest algorithm owing to its capacity

to effectively manage non-linear relationships and high-
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dimensional feature spaces and its ability to provide feature

importance evaluations (61, 62). We utilized this algorithm to

compute SHapley Additive exPlanations (SHAP) values and

subsequently conducted an analysis of the model’s classification

results based on these values. We performed hyperparameter

optimization using grid search within the training set with a 5-

fold CV, ensuring optimal model performance while preventing

data leakage into the test set. The number of trees, a key

hyperparameter in the random forest algorithm, was optimized

using the following values: 50, 100, and 200.

We repeated the classification via MLP with the same approach

as that for random forest. This was to ensure that our results were not

algorithm-dependent and demonstrate consistency across different

algorithms. MLP was chosen as it was based on neural networks,

which offered a completely different classification method compared

with the ensemble-based random forest. This approach helped us

verify the robustness and reliability of our findings across diverse

machine-learning techniques. The following hyperparameters were

optimized using the same approach as applied to the random forest:

hidden layer sizes of (4, 8, 16) and (4, 8, 16, 32), as well as initial

learning rates of 0.0001, 0.001, and 0.01. A total of six combinations

were explored using the grid search method. Accordingly, we

evaluated MLP architectures with three- and four-hidden-layer

configurations (Supplementary Figure 2). All hidden layers were

dense layers and used ReLU as the activation function. The output

layer used sigmoid as the activation function to perform binary

classification. Dropout was not used. Adam optimizer was the solver.

We applied an L2 penalty with a coefficient of 0.0001 for

regularization. Furthermore, we had set the MLP model with a

maximum of 1000 iterations and enabled early stopping. The

training was stopped if the validation score did not improve by at

least 10-4 for 10 consecutive iterations.

In this study, we did not conduct feature selection separately. The

random forest algorithm inherently performs a form of feature

selection, since it constructs multiple decision trees, each trained on

a random subset of features (63). In contrast, it should be considered

that the use of an MLP could benefit from feature selection to improve
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model performance (64). However, our study utilized over 1000

samples to train a model with 20 features, leading to a sample-to-

feature ratio that we considered sufficient. Consequently, we concluded

that feature selection was not strictly necessary for this dataset.
2.9 Model interpretation via SHAP

SHAP values were calculated via random forest on test datasets

to interpret classification outcomes (65, 66). SHAP, based on

Shapley values, utilized cooperative game theory developed by

Lloyd Shapley (67). The SHAP value quantified the impact of

each input feature on predicting the output for each individual

(68). Our analysis involved a 10-fold CV repeated 20 times, and the

reported SHAP values represented the averages across the 20

iterations of the 10-fold CV.
2.10 Personalized longitudinal scaling

Our participants attended up to five visits over a 12-week span

and completed five tasks per visit. This approach allowed for data

collection at multiple time points for each individual. To utilize this

advantage, data for each participant were normalized over the time

axis (Figure 2). We utilized all the data from these visits and tasks for

personalized longitudinal scaling, considering extensive data while

subjecting participants to various experimental conditions. Means

and standard deviations were calculated via the data measured from a

single participant. Subsequently, the data from this participant were

normalized by subtracting the mean and dividing by the standard

deviation. We repeated this process individually for each participant.

We performed classification analyses via the scaled HRV data to

evaluate whether personalized longitudinal scaling enhanced the

classification of stress versus relaxation responses and applied the

same methodologies.

Furthermore, we applied t-stochastic neighbor embedding (t-

SNE) to the HRV data both before and after personalized
FIGURE 2

Personalized longitudinal scaling. An example of scaling on logLF measured from a patient with MDD (female, 61-year-old).
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longitudinal scaling to evaluate its impact The t-SNE was a

machine-learning technique designed to visualize high-

dimensional data by projecting it into a low-dimensional space

(69). It aimed to maintain the relative similarity between data points

from the original high-dimensional space in the resulting low-

dimensional representation. Projection was determined by

minimizing the Kullback-Leibler-divergence between the

similarity of data distributions in the high- and low-dimensional

space (70). We conducted t-SNE using 5000 iterations with a

perplexity of 50.
3 Results

3.1 Demographic and
clinical characteristics

Our participants included 41 (30 females) and 47 (30 females)

patients with MDD and PD, respectively, and 59 HCs (36 females).

Table 1 summarizes the participants’ demographic and clinical

characteristics. No significant differences were observed in age,

sex, or BMI among the groups, which indicated balanced

participants and reduced the potential confounding effects of

these variables on HRV outcomes. The MDD and PD groups

showed significantly higher HAMD and HAMA scores than the

control group, which reflected the expected clinical severity of

depressive and anxiety symptoms (Supplementary Table 2). PDSS

score was highest in the PD group, followed by the MDD group, and

lowest in the HC group, which aligned with the diagnostic criteria

and expected symptomatology of these groups.
3.2 Comparison of HRV features among
the patient groups

We statistically compared the HRV features measured during

the stress and relaxation tasks among the MDD, PD, and HC groups
Frontiers in Psychiatry 07
(Supplementary Tables 3, 4). Significant differences were observed

among the three groups in 13 HRV features among the 20

considered. Of these, 10 features—SDNN, RMSSD, pNN50, TRI,

TINN, SD1, SD2, ApEn, SampEn, and CorDim—exhibited a

significant main effect of the group in both tasks and the MDD

and PD groups generally had lower values compared with HCs. RRI

during the relaxation task and LF/HF during the stress task had a

significant main effect of the group; however, no significant result

was observed in the post-hoc analysis. Additionally, a2 during the

relaxation task had higher values in the PD group compared with

the HC group. These results were consistent with the altered ANS

observed in depressive and anxiety disorders, as demonstrated in

previous studies (24–26).
3.3 HRV feature changes between the
stress and relaxation tasks

We examined the differences in HRV features between the

stress and relaxation tasks within each participant to investigate the

autonomic response to these mental tasks. Supplementary Table 5

outlines the changes in HRV features (DHRV) between the stress

and relaxation tasks. Our findings revealed that in the MDD group,

10 HRV features exhibited significant differences between the two

tasks, whereas in the PD and HC groups, 14 features exhibited

significant differences. Seven features—RRI, logLF, LFnu, HFnu,

ApEn, a1, and a2—exhibited significant differences between the

two tasks in all the three groups. These results suggested that the

two mental tasks induced distinct autonomic responses, which were

effectively captured by HRV metrics.

Existing literature established that HRV features generally

decreased with stress, while features associated with LF, such as

logLF, LFnu, and LF/HF, increased with stress owing to the

dominance of sympathetic activity on LF (17–19). Consistent

with these previous results, the HRV features that displayed

significant differences between the two mental tasks in this study

exhibited lower values in the stress condition (negative DHRV
TABLE 1 Demographic and clinical characteristics of the MDD, PD, and HC groups.

MDD (N = 41) PD (N = 47) HC (N = 59) F or c2 (P value) Post-hoc

Demographic data

Age (years) 42.02 ± 16.65 41.64 ± 14.39 38.49 ± 14.22 0.88 (.42)a ns

Sex (M/F) 11/30 17/30 23/36 1.64 (.44) ns

BMI (kg/m2) 22.93 ± 3.41 23.29 ± 3.26 22.76 ± 3.17 0.35 (.71)a ns

Clinical data

HAMD 17.49 ± 7.07 13.87 ± 7.71 1.88 ± 1.75 143.26 (<.001)b MDD, PD > HCb

HAMA 16.56 ± 8.46 15.11 ± 8.44 2.12 ± 2.22 103.53 (<.001)b MDD, PD > HCb

PDSS 3.61 ± 5.74 12.53 ± 6.05 0.02 ± 0.13 107.16 (<.001)b PD > MDD > HCb
Data are presented as means and standard deviations for continuous variables and as counts for categorical variables. See Supplementary Table 2 for post-hoc P values.
ns, No significant main effect; MDD, major depressive disorder; PD, panic disorder; HC, healthy control; BMI, body mass index; HAMD, Hamilton rating scale for depression; HAMA, Hamilton
rating scale for anxiety; PDSS, panic disorder severity scale.
aFisher’s one-way ANOVA.
bWelch’s one-way ANOVA and Games-Howell post-hoc analysis.
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values), whereas features related to LF were higher in the stress

condition (positive DHRV values). However, some features

demonstrated an opposite pattern, such as TRI and TINN in the

MDD and PD groups, ApEn in all the three groups, SampEn in the

MDD and HC groups, a1 in all the three groups, and CorDim in the

PD group, which presented higher values in the stress condition

(positive DHRV values).
3.4 Classification of stress and relaxation
tasks using HRV features and differences in
classification performance among
the groups

A random forest algorithm was employed to classify stress and

relaxation responses using HRV features. We used the 20 HRV

features as input data. A 10-fold CV repeated 20 times was used to

evaluate the performance of the classification, implementing a

subject-wise split to avoid data leakage. Table 2 shows the

performance metrics for classifying the responses. The

performance measures of the overall group were evaluated by

counting all the groups together in the test dataset without

distinguishing among the three groups. The accuracy of the

overall group was 0.7, demonstrating that stress and relaxation

responses could be distinguished using HRV features. In addition,

we calculated the same performance metrics separately for the three

groups in the test set. The HC group had the highest scores in all the

five metrics, followed by the PD and MDD groups, except the recall.

The accuracy was 0.73, 0.69, and 0.67 for the HC, PD, and MDD

groups, respectively. For the recall, the HC group still had the

highest value, followed by the MDD and PD groups. These results
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suggested that the distinction between stress and relaxation

responses was relatively accurate in the HC group compared with

the patient groups. Particularly, there was approximately a 0.05

difference in accuracy between the MDD and HC groups, which

indicated that for patients who are depressed, distinguishing

between stress and relaxation based on HRV was relatively

challenging compared with the healthy population.

Sample sizes for the MDD and PD groups were 362 and 382,

respectively, which were smaller compared with the HC group’s

sample size of 556. We applied undersampling to the dataset and

performed the classification again to investigate whether the

relatively lower accuracy in the patient groups was owing to the

difference in sample sizes during the training process. Using

random undersampling, the sample sizes for the PD and HC

groups were reduced to match the smallest sample size of 362.

Starting with 362 samples for each group, the data was split into

training and test datasets for classification, and performance

was calculated.

We determined that even with undersampling applied to ensure

an equal number of samples for training, the order of performance

metrics remained unchanged among the groups, except for the

precision (Table 2). For the precision, the PD group had the highest

value, followed by HC and MDD groups. Accuracy for the HC and

PD groups increased slightly with undersampling, whereas the

MDD group exhibited a slight decrease. Overall accuracy based

on the entire groups before and after applying undersampling

remained nearly unchanged. This result suggested that the

relatively higher accuracy in the HC group was not due to

differences in sample sizes.

To further analyze the performance differences among the three

groups, we built models exclusively trained and tested on the data
TABLE 2 Performance measures for classifying the stress and relaxation tasks.

Model Group Accuracy F1 Recall Precision AUC

Combined data model

Overall 0.6986 ± 0.0055 0.7002 ± 0.0060 0.7098 ± 0.0105 0.6972 ± 0.0062 0.7708 ± 0.0035

MDD 0.6703 ± 0.0107 0.6770 ± 0.0132 0.6914 ± 0.0237 0.6635 ± 0.0107 0.7452 ± 0.0068

PD 0.6872 ± 0.0144 0.6773 ± 0.0144 0.6565 ± 0.0158 0.6995 ± 0.0167 0.7537 ± 0.0085

HC 0.7255 ± 0.0099 0.7338 ± 0.0090 0.7565 ± 0.0129 0.7126 ± 0.0117 0.7943 ± 0.0056

Combined data model with undersampling

Overall 0.6974 ± 0.0094 0.6931 ± 0.0110 0.6983 ± 0.0140 0.6966 ± 0.0107 0.7662 ± 0.0078

MDD 0.6645 ± 0.0125 0.6686 ± 0.0145 0.6771 ± 0.0212 0.6605 ± 0.0114 0.7366 ± 0.0068

PD 0.6914 ± 0.0131 0.6779 ± 0.0126 0.6459 ± 0.0148 0.7136 ± 0.0180 0.7531 ± 0.0096

HC 0.7352 ± 0.0118 0.7359 ± 0.0128 0.7720 ± 0.0194 0.7032 ± 0.0117 0.7994 ± 0.0074

Separate data models

MDD 0.6440 ± 0.0161 0.6324 ± 0.0242 0.6402 ± 0.0321 0.6555 ± 0.0234 0.7288 ± 0.0158

PD 0.6824 ± 0.0100 0.6819 ± 0.0139 0.6952 ± 0.0224 0.6977 ± 0.0167 0.7547 ± 0.0101

HC 0.7103 ± 0.0097 0.7092 ± 0.0103 0.7229 ± 0.0142 0.7177 ± 0.0116 0.7910 ± 0.0078
For the combined data model, the metrics were calculated separately for each patient group in the test dataset, in addition to the overall evaluation based on the entire test data. Separate data
models were trained and tested, each using the data from one specific patient group exclusively. Results are presented as mean and standard deviation calculated from 20 repeats.
AUC, area under the curve; MDD, major depressive disorder; PD, panic disorder; HC, healthy control.
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from one group. The entire dataset was divided into three separate

datasets for the MDD, PD, and HC groups. Subsequently, three

separate models were trained and tested, each exclusively used the

data from one specific group, which ensured that data from different

groups did not interact during the training (Table 2). The HC group

had the highest scores in all the five metrics, followed by the PD and

MDD groups. The MDD and HC groups’ performance metrics

decreased compared with those evaluated from the combined data

model, whereas the PD group’s performance metrics remained

similar to the combined data model. This could be owing to the

decrease in the number of samples, and referencing data from other

groups could have been helpful in training the model. These

outcomes suggested that the reduced performance in the patient

groups was intrinsic to the characteristics of the data.
3.5 Feature importance based on SHAP

We calculated the SHAP values via test datasets to identify the

features critically responsible for the classification between stress

and relaxation responses (Figure 3). SHAP values were calculated

for four models: a combined data model that used data from all the

three groups and three separate models based on the data from one

specific group exclusively (MDD, PD, and HC). The importance of

all 20 features was listed in descending order from the top for each

model. For the combined data and PD-based models, the three top-

ranked features were a2, ApEn, and RRI. In the MDD-based model,

the top three features were ApEn, RRI, and SampEn, while in the

HC group, the most significant features were RRI, ApEn, and a2.
RRI and ApEn were consistently included in the top three features

for all the models, which indicated their critical role in classification,

although there were slight variations in their order of importance

across the four models. Besides these two features, a2 and SampEn

were included in the top three. Notably, a2 demonstrated dominant

importance in the PD group compared with the other

HRV features.
3.6 Group comparisons of DHRV

The DHRV represented the difference between relaxation and

stress tasks, which was calculated to evaluate the participants’

autonomic reactivity. We hypothesized that the group with higher

accuracy would exhibit greater reactivity, that is, absolute DHRV,

compared with the other groups. This was as larger differences in

feature values between the two tasks would make the classification

process easier. We observed differences in the classification

performance among the groups of MDD, PD, and HC. Therefore,

we statistically compared DHRV values among the groups to

examine whether psychiatric disorders affected the reactivity of

the ANS to mental tasks. Figure 4 illustrates the differences in

DHRV among the groups, where the box plots illustrate the extent

of HRV changes between the two tasks with red dotted lines denote

the mean values.
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A significant main effect of the group was observed in 11

features (Table 3). Specifically, HCs had significantly greater

absolute changes than the MDD and PD groups in RRI, logHF,

logTot, and SD2 and greater changes than the MDD group in

logVLF. Conversely, HC had smaller absolute changes than the

MDD and PD groups in TINN and logLF, while MDD had greater

changes than HCs in TRI. The PD group exhibited significantly

greater changes than the MDD and HC groups in a2 and greater

changes than HCs in CorDim.

The HC group demonstrated greater absolute changes than the

MDD group in five features, while the MDD group exhibited larger

absolute changes than the HC group in three features. Comparison

of the HC and PD groups revealed greater absolute changes than the

other in four features. A significant difference between the MDD

and PD groups was observed only in a2, and the PD group had a

greater absolute change than the MDD group.
3.7 Personalized longitudinal scaling of the
HRV features

Participants were measured multiple times over an extended

period, which provided an opportunity to collect data at various

time points for each individual. We normalized the data for each

individual over the time axis to leverage this benefit (Figure 2). We

performed classification based on the scaled HRV data via the same

methods to determine whether this personalized longitudinal

scaling improved the classification between stress and

relaxation responses.

Initially, we aimed to understand the impact of scaling on the

data using t-SNE for visualization to determine if the separation

between stress and relaxation became more distinct after scaling

(Supplementary Figure 3). The t-SNE visualization of the HRV data

before and after longitudinal scaling illustrated the improved

separation of stress and relaxation classes post-scaling, which

suggested an improvement in classification performance.
3.8 Scaled HRV feature changes between
the stress and relaxation tasks

We examined the differences in the longitudinally scaled HRV

features the between stress and relaxation tasks within each

participant (Supplementary Table 6). We determined that 14, 12,

and 16 HRV features exhibited significant differences between the

two tasks in the MDD, PD, and HC groups, respectively.

Furthermore, seven features—RRI, LFnu, HFnu, LF/HF, ApEn,

a1, and a2—exhibited significant differences between the two

tasks in all the three groups. The MDD and HC groups exhibited

a higher number of significantly different HRV features after

scaling, whereas the PD group exhibited a decreased number of

significantly different HRV features post-scaling.

Furthermore, similar to the unscaled HRV features, the scaled

HRV features that demonstrated significant differences between the
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two mental tasks exhibited lower values in the stress condition

(negative DHRVscaled values), whereas features related to LF were

higher in the stress condition (positive DHRVscaled values).

However, the following features presented higher values in the

stress condition (positive DHRVscaled values): SDNN in the MDD

group, TRI and TINN in the MDD and PD groups, SD2 in the

MDD group, ApEn in all the three groups, SampEn in the MDD

and HC groups, a1 in all the three groups, and CorDim in the MDD

and PD groups.
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3.9 Classification of the stress and
relaxation tasks using scaled HRV features

We performed classification via scaled HRV data and followed

the same methodology as with the unscaled data (Table 4). The

overall accuracy increased significantly from 0.70 with unscaled

data to 0.94 after scaling. When we examined the individual metrics

for MDD, PD, and HC groups, the HC group demonstrated the

highest values across all the metrics, followed by the MDD and PD
FIGURE 3

Average SHAP values evaluated from the four different classifier models. (A) Combined data model, which was trained and tested via data from all
three groups—MDD, PD, and HC. (B) MDD-based model, which was trained and tested via data from the MDD group exclusively. (C) PD-based
model, which was trained and tested via data from the PD group exclusively. (D) HC-based model, which was trained and tested via data from the
HC group exclusively. In each plot, the features are arranged in descending order of importance.
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groups, except for the precision. Accuracy was 0.94, 0.90, and 0.96

for the MDD, PD, and HC groups, respectively. These findings

demonstrated differences in classification performance across the

groups, and the HC group achieved the highest accuracy compared

with the other two disease groups. Notably, with unscaled data, the

accuracy of the PD group was slightly higher than that of the MDD

group. However, after scaling, the MDD group exhibited higher

accuracy than the PD group.
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Furthermore, we compared the three separate models, each utilizing

the data from one specific group exclusively, which was similar to our

approach with unscaled data (Table 4). All the three models

demonstrated a significant improvement in classification performance

after scaling. Best classification results were observed for the HC group,

followed by the MDD and PD groups, respectively. These results

suggested the substantial impact of personalized longitudinal scaling

on our classification models’ performance across different groups.
FIGURE 4

Box plots display the DHRV. Red dotted lines indicate mean values.
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TABLE 4 Performance measures for classifying stress and relaxation tasks based on the longitudinally scaled HRV data.

Model Group Accuracy F1 Recall Precision AUC

Combined data model

Overall 0.9391 ± 0.0021 0.9389 ± 0.0022 0.9399 ± 0.0034 0.9389 ± 0.0030 0.9798 ± 0.0015

MDD 0.9420 ± 0.0036 0.9413 ± 0.0036 0.9301 ± 0.0041 0.9528 ± 0.0056 0.9799 ± 0.0011

PD 0.9048 ± 0.0041 0.9044 ± 0.0043 0.9005 ± 0.0072 0.9084 ± 0.0042 0.9610 ± 0.0027

HC 0.9603 ± 0.0025 0.9608 ± 0.0025 0.9732 ± 0.0041 0.9486 ± 0.0037 0.9916 ± 0.0013

Separate data models

MDD 0.9350 ± 0.0051 0.9336 ± 0.0053 0.9291 ± 0.0079 0.9413 ± 0.0067 0.9801 ± 0.0031

PD 0.9057 ± 0.0086 0.9065 ± 0.0094 0.9238 ± 0.0104 0.8935 ± 0.0103 0.9542 ± 0.0052

HC 0.9545 ± 0.0038 0.9543 ± 0.0039 0.9572 ± 0.0044 0.9529 ± 0.0045 0.9881 ± 0.0015
F
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For the combined data model, the metrics were calculated separately for each patient group in the test dataset, in addition to the overall evaluation based on the entire test data. Separate data
models were trained and tested, each using the data from one specific patient group exclusively. Results are presented as mean and standard deviation calculated from 20 repeats.
AUC, area under the curve; MDD, major depressive disorder; PD, panic disorder; HC, healthy control.
TABLE 3 Comparison of DHRV among the MDD, PD, and HC groups.

Feature
(STR – RLX) F (P value) h2

Post-hoc P value (Cohen’s d) Absolute
changeMDD vs. PD MDD vs. HC PD vs. HC

DRRIa (s) 14.047 (<.001) 0.044 .452 (d = 0.125) <.001 (d = 0.365) <.001 (d = 0.466) HC > MDD, PD

DSDNN (ms) 3.017 (.050) 0.009 1.00 (d = 0.022) .117 (d = 0.184) .124 (d = 0.178)

DRMSSD (ms) 1.762 (.173) 0.005 ns

DpNN50a (%) 2.696 (.069) 0.009 ns

DTRIa 3.301 (.038) 0.011 .970 (d = 0.024) .042 (d = 0.222) .105 (d = 0.188) MDD > HC

DTINNa (ms) 4.185 (.016) 0.014 .982 (d = 0.019) .027 (d = 0.234) .024 (d = 0.239) MDD, PD > HC

DlogVLF (s2) 4.326 (.014) 0.013 .254 (d = 0.169) .010 (d = 0.263) .839 (d = 0.111) HC > MDD

DlogLF (s2) 7.010 (<.001) 0.021 .886 (d = 0.098) .001 (d = 0.314) .041 (d = 0.266) MDD, PD > HC

DLFnu (nu) 0.825 (.439) 0.003 ns

DlogHF (s2) 7.607 (<.001) 0.023 1.00 (d = 0.017) .003 (d = 0.276) .005 (d = 0.396) HC > MDD, PD

DHFnu (nu) 0.838 (.433) 0.003 ns

DLF/HF 0.080 (.924) 0.000 ns

DlogTot (s2) 7.383 (<.001) 0.022 .827 (d = 0.103) <.001 (d = 0.318) .036 (d = 0.276) HC > MDD, PD

DSD1 (ms) 1.762 (.173) 0.005 ns

DSD2 (ms)a 4.499 (.012) 0.017 .994 (d = 0.011) .010 (d = 0.255) .013 (d = 0.247) HC > MDD, PD

DApEn 2.331 (.098) 0.007 ns

DSampEn 1.164 (.313) 0.004 ns

Da1 1.907 (.149) 0.006 ns

Da2 4.239 (.015) 0.013 .035 (d = 0.258) 1.00 (d = 0.020) .031 (d = 0.251) PD > MDD, HC

DCorDima 4.147 (.016) 0.013 .494 (d = 0.118) .240 (d = 0.153) .012 (d = 0.266) PD > HC
Post-hoc P values in italics <.05.
ns, no significant main effect; MDD, major depressive disorder; PD, panic disorder; HC, healthy control.
aWelch’s one-way ANOVA and Games-Howell post-hoc analysis were used. Except for these cases, Fisher’s one-way ANOVA and Bonferroni post-hoc analysis were employed.
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3.10 Feature importance after
longitudinal scaling

We applied the same methodology used for the unscaled data to

calculate SHAP values for the classification based on scaled data

(Figure 5). The key finding was that RRI emerged as the most

important feature across all the models. When the top three features

were considered, only the order changed in the combined data and

PD models. In the MDD group, SampEn was replaced by a1, while
in the HC group, the composition and order of the top three
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features remained unchanged. RRI and ApEn consistently ranked as

essential features across all the groups, which was consistent with

the results from the unscaled data.
3.11 Group comparisons of the
scaled DHRV

Figure 6 illustrates the differences in scaled DHRV among the

groups. We compared scaled DHRV values among the MDD, PD,
FIGURE 5

Average SHAP values evaluated from the four different classifier models via the longitudinally scaled HRV data. (A) Combined data model, which was
trained and tested via data from all three groups, —MDD, PD, and HC. (B) MDD-based model, which was trained and tested via data from the MDD
group exclusively. (C) PD-based model, which was trained and tested via data from the PD group exclusively. (D) HC-based model, which was
trained and tested via data from the HC group exclusively. In each plot, the features are arranged in descending order of importance.
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and HC groups (Table 5) and found a significant main effect of the

group in 11 HRV features. HC participants exhibited greater

absolute changes between the stress and relaxation tasks than the

MDD and PD groups in seven features: SDNN, RMSSD, pNN50,

logHF, logTot, SD1, and SD2. Conversely, the HC group had

smaller changes in TINN and logLF than the MDD and PD

groups. In RRI, the MDD and HC groups had greater changes
Frontiers in Psychiatry 14
than the PD group. The MDD group also demonstrated a greater

change in TRI than the HC group.

The HC group had greater absolute changes than the MDD

group in seven features, whereas the MDD group exhibited larger

absolute changes than the HC group in three features. The HC

group had greater absolute changes than the PD group in eight

features, whereas the PD group exhibited larger absolute changes
FIGURE 6

Box plots display the DHRVscaled. Red dotted lines indicate mean values.
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than the HC group in two features. A significant difference between

the MDD and PD groups was observed only in RRI, and the MDD

group exhibited a greater absolute change than the PD group.
3.12 Classification using an MLP algorithm

To verify whether our findings were influenced by the choice of

the machine-learning algorithm, we utilized the MLP algorithm to

conduct the same classification tasks previously conducted via the

random forest algorithm. Furthermore, we applied the same

classification to the longitudinally scaled HRV data using

MLP classifiers.

Results obtained from the MLP models were consistent with

those generated by the random forest algorithm (Supplementary

Table 7). Before we applied the personalized longitudinal scaling,

the order of accuracy was HC, PD, and MDD in the MLP model.

After its application, the accuracy increased to over 0.9, and the

order of accuracy was HC, MDD, and PD in the MLP model. This
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consistency with the random forest algorithm results indicated that

our findings were not affected by the choice of the machine-learning

algorithm; rather, they stemmed from the inherent characteristics of

the data itself.
4 Discussion

We differentiated stress and relaxation based on HRV features

in groups with MDD, PD, and HCs via a random forest algorithm.

Classification accuracies for the MDD, PD, and HC groups were

0.67, 0.69, and 0.73, respectively, which indicated that the

classification of stress and relaxation was more accurate for

healthy individuals compared with patients with MDD and PD

(Figure 7). A personalized longitudinal scaling of HRV data

improved the accuracies for all the groups, and the MDD, PD,

and HC groups reached accuracies of 0.94, 0.90, and 0.96,

respectively (Figure 7). This suggested the potential of

personalized scaling in monitoring the condition of patients with
TABLE 5 Comparison of DHRVscaled among the MDD, PD, and HC groups.

Feature (a.u.)
(STR – RLX)

F (P value)
h2

Post-hoc P value (Cohen’s d) Absolute
changeMDD vs. PD MDD vs. HC PD vs. HC

DRRIa 6.503 (0.002) 0.027 0.004 (d = 0.331) 1.000 (d = 0.001) 0.002 (d = 0.335) HC, MDD > PD

DSDNNa 10.500 (< 0.001) 0.031 0.594 (d = 0.101) < 0.001 (d = 0.412) 0.006 (d = 0.293) HC > MDD, PD

DRMSSD 14.496 (< 0.001) 0.043 0.986 (d = 0.099) < 0.001 (d = 0.467) < 0.001 (d
= 0.377)

HC > MDD, PD

DpNN50 14.463 (< 0.001) 0.043 1.000 (d = 0.060) < 0.001 (d = 0.391) < 0.001 (d
= 0.453)

HC > MDD, PD

DTRIa 3.834 (0.022) 0.012 0.953 (d = 0.030) 0.032 (d = 0.238) 0.089 (d = 0.198) MDD > HC

DTINN 5.698 (0.004) 0.017 1.000 (d = 0.045) 0.008 (d = 0.291) 0.029 (d = 0.240) MDD, PD > HC

DlogVLF 2.541 (0.080) 0.008 ns

DlogLF 8.594 (< 0.001) 0.026 1.000 (d = 0.045) < 0.001 (d = 0.350) 0.004 (d = 0.303) MDD, PD > HC

DLFnu 0.585 (0.557) 0.002 ns

DlogHFa 9.541 (< 0.001) 0.028 0.924 (d = 0.039) < 0.001 (d = 0.362) 0.002 (d = 0.325) HC > MDD, PD

DHFnu 0.585 (0.557) 0.002 ns

DLF/HF 0.258 (0.773) 0.001 ns

DlogTot 6.038 (0.003) 0.018 1.000 (d = 0.076) 0.004 (d = 0.314) 0.041 (d = 0.228) HC > MDD, PD

DSD1 14.505 (< 0.001) 0.043 0.985 (d = 0.100) < 0.001 (d = 0.467) < 0.001 (d
= 0.377)

HC > MDD, PD

DSD2a 9.693 (< 0.001) 0.028 0.613 (d = 0.098) < 0.001 (d = 0.397) 0.009 (d = 0.280) HC > MDD, PD

DApEn 2.043 (0.130) 0.006 ns

DSampEn 0.932 (0.394) 0.003 ns

Da1 1.214 (0.298) 0.004 ns

Da2a 2.670 (0.070) 0.008 ns

DCorDima 2.800 (0.062) 0.009 ns
Post-hoc P values in italics <.05.
ns, no significant main effect; MDD, major depressive disorder; PD, panic disorder; HC, healthy control.
aWelch’s one-way ANOVA and Games-Howell post-hoc analysis were used. Except for these cases, Fisher’s one-way ANOVA and Bonferroni post-hoc analysis were employed.
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psychiatric disorders. Results obtained from the MLP models were

consistent with those generated by the random forest classifier,

which suggested that our findings were not dependent on the

specific algorithm used.

Patients’ HRV values were significantly lower than those of the

healthy individuals (Supplementary Table 3). We noticed

significant differences among the groups in 13 HRV features. The

MDD and PD groups displayed lower values compared with the HC

group. These findings aligned with previous research, which

indicated that individuals with depression and PD had reduced

HRV. This suggested lower autonomic flexibility and higher

sympathetic dominance (24–26).

Several features demonstrated significant differences between

the stress and relaxation tasks, which indicated that HRV effectively

distinguished between these states (Supplementary Table 5).

Particularly, seven features—RRI, logLF, LFnu, HFnu, ApEn, a1,
and a2—exhibited significant differences between the two tasks in

all three groups. Among these, RRI, ApEn, and a2 were also

identified as highly important features based on SHAP evaluation

(Figure 3), which suggested their potential importance in

classification. Moreover, the PD and HC groups had more

features that depicted significant differences between the tasks

compared with the MDD group. This indicated potential

challenges for the MDD group in distinguishing between stress

and relaxation based on HRV features.

Previous research determined that most HRV features

decreased under stress owing to increased sympathetic and

decreased parasympathetic activity (17–19, 71, 72). In contrast,
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LF-related features, closely linked to sympathetic activity, tended to

increase under stress (17–19, 71, 72). Our results also indicated that

most features with statistically significant differences between the

two tasks displayed lower values during stress, whereas LF-related

features increased during stress. However, exceptions were observed

for geometric features, such as TRI and TINN, and nonlinear

features, such as ApEn, SampEn, a1, and CorDim, which

presented lower HRV values during the relaxation task.

Methodological variations existed across studies, which included

differences in stimulation methods, order of stimuli, and relaxation

techniques (19). For instance, a1 decreased under physical stress

but increase under psychological stress (73, 74). Therefore, HRV

responses to a specific stress stimulus may not consistently exhibit

lower values across all features. These findings emphasized the

complexity of HRV responses and the importance of considering

multiple factors when interpreting HRV data in the context of stress

and relaxation (19). Future studies should conduct additional tests

to investigate lower HRV during the relaxation task compared with

the stress task.

Our most significant finding was that under the same

experimental conditions, distinguishing stress and relaxation in

the PD and MDD groups compared with the HC group was

relatively more challenging. With unscaled HRV, the accuracy for

the HC group was 0.73, whereas it was relatively lower for the PD

and MDD groups at 0.69 and 0.67, respectively (Table 2). We

analyzed the reasons for this difference via various methods. First,

we matched the sample size through random undersampling since

the HC group had the highest number of samples; however, the
FIGURE 7

Summary of classification accuracies based on combined data models (Tables 2, 4).
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order of the performance metrics remained similar among the

groups (Table 2). Second, we built classifier models exclusively for

each group to ensure that data from different groups did not

interact during the training process. However, the accuracy for

the HC group remained higher than that of the other two patient

groups (Table 2). These findings suggested that the diminished

performance was inherent to the traits of the PD and MDD groups.

In addition, we evaluated the important features used in

classifier models with SHAP (Figure 3). Although the overall

ranking of the 20 features varied across the four models. ApEn

and RRI were consistently among the top three features in all four

models. Additionally, SampEn and a2 were included as important

features. This indicated that despite group differences, the key

indicators used for stress-relaxation classification based on the

random forest presented no substantial differences across the

models. Similar results were observed in within-subject

comparison statistics (Supplementary Table 5), where RRI, ApEn,

and a2 exhibited distinct differences between the stress and

relaxation states across all the groups. Combining the results from

SHAP and statistical analysis, we can infer that RRI, ApEn, and a2
are expected to play a crucial role in classification.

To further investigate the difference in classification accuracy

among the groups, we compared their DHRV values (Table 3).

DHRV was calculated to assess participants’ autonomic reactivity.

Our previous works demonstrated that patients with psychiatric

disorders had pathologically altered autonomic responses compared

with healthy individuals, which resulted in different reactions to

mental tasks (44, 75–77). A larger absolute DHRV indicated a more

distinct ANS response to the two tasks, which suggested better

classification performance for groups with greater reactivity. We

hypothesized that the higher-accuracy group would show greater

reactivity, that is, larger absolute DHRV, than the other groups.

Analysis based on unscaled DHRV demonstrated that 11

features had significant differences among groups (Table 3).

Among these, four features—RRI, logHF, logTot, and SD2—had

larger absolute DHRV values in the HC group compared with the

two patient groups. RRI, identified as a highly important indicator

by SHAP, likely significantly contributed to the higher classification

accuracy in the HC group (Figure 3). Furthermore, in the HC-based

classifier model that used only HC data, RRI was the most

important feature, underscoring its importance (Figure 3).

Conversely, for a2, another important feature indicated by SHAP,

the PD group exhibited greater absolute changes than the MDD and

HC groups. TINN and logLF presented greater absolute changes in

the two patient groups compared with the HC group.

In comparing the HC group to the MDD group, more features

with greater absolute changes, including the important feature RRI,

were observed in the HC group. Although the MDD group had

some features with greater absolute changes than the HC group,

these features were less important than RRI. These results suggested

that the HC group likely achieved better classification results

because they exhibited higher reactivity in both a greater number

of features and more important features compared with the MDD

group. We compared HC and PD groups and observed that each

group had greater absolute changes in four features compared with

the other. Interestingly, the PD group displayed greater absolute
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changes in an important feature, a2. This suggested that a

comparison based on the number of highly reactive features and

inclusion of important features may not be sufficient to clearly

explain why the HC group outperformed the PD group regarding

classification. The superiority of HRV features in the HC group over

those in the PD group for classification was demonstrated through

various methods in our study. We plan to further explore this

reason comprehensively. Thus, the HC group exhibited significantly

greater DHRV in a larger number of or more important features

than the patient groups, indicating more pronounced autonomic

reactivity. This enhanced reactivity likely contributes to the higher

classification accuracy observed in the HC group.

Our participants made up to five visits over a period of 12 weeks

and completed five tasks during each visit. Data collected from these

visits and tasks were used for personalized scaling. Our goal was to

gather as much data as possible while exposing the participants to

various experimental conditions. Our study demonstrated that

personalized longitudinal scaling significantly improved

classification performance across all the participant groups. We

utilized t-SNE visualization and observed improved separation of

feature values into stress and relaxation states (Supplementary

Figure 3). Individual HRV responses varied across multiple visits,

which reflected the influence of both stimuli and daily state of each

participant, as depicted in Figure 2 (78, 79). Changes in HRV may

be more strongly influenced by daily states than by specific external

stimuli. If this variability in HRV is not adequately normalized,

classifying tasks based on HRV data can pose significant challenges.

In cases where a substantial amount of individual data is

accumulated in the long term, time-axis scaling (i.e., longitudinal

scaling) can be applied, which can help reduce variability occurring

at each time point (e.g., a visit in this study). Therefore, longitudinal

scaling can lead to a clearer separation between HRV values

measured during different tasks.

We conducted the analysis on the scaled HRV data via the same

method that was applied to the unscaled data to understand

classification performance based on the scaled data. Seven scaled

features—RRI, LFnu, HFnu, LF/HF, ApEn, a1, and a2—exhibited

significant differences between the stress and relaxation tasks in all

the three groups (Supplementary Table 6). Among these, RRI,

ApEn, a1, and a2 were also identified as highly important

features based on the SHAP evaluation (Figure 5), which

suggested their potential importance in classification. The HC

group had four more features that exhibited significant differences

between the two tasks compared with the PD group, which

suggested a relative difficulty for the PD group in classification

between stress and relaxation.

Personalized scaling dramatically improved classification

performance in all the three groups (Table 4). The accuracy

exceeded 0.9, which allowed for precise differentiation between

stress and relaxation states. These outcomes demonstrated the

potential of personalized data scaling to monitor individual

patient conditions with high accuracy. Interestingly, the accuracy

remained highest in the HC group, followed by the MDD and PD

groups. Before the scaling, the order of accuracy was HC, PD, and

MDD; however, after the scaling, the order of accuracy for PD and

MDD reversed.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1500310
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Byun et al. 10.3389/fpsyt.2024.1500310
The SHAP analysis on the scaled HRV data revealed that RRI

was the most important feature across all classification models

(Figure 5). When compared with other features, RRI’s importance

was dominantly higher. Although RRI was already one of the top

three important features in the unscaled HRV data, its importance

increased significantly after scaling, as demonstrated by comparing

the two in Figures 3, 5. This indicated that the role of RRI in the

classification became significantly more crucial post-scaling. In the

scaled HRV data, ApEn and a2 were also included in the top three

important features, similar to the unscaled data.

The RRI is a sensitive indicator of changes in both the

sympathetic and parasympathetic nervous systems, making it

valuable for detecting autonomic variations under conditions of

stress (80–82). Previous studies have identified RRI or its inverse,

average heart rate, as key indicators for stress classification (80–82).

Furthermore, RRI’s high temporal resolution enhances its

effectiveness in stress detection, allowing for accurate

classification even with short measurement periods of 30 seconds

(81, 82). Additionally, entropy-based measures such as ApEn

capture heartbeat irregularity, which typically decreases under

stress, thereby making it an effective feature for stress detection

(54, 83, 84). ApEn has been used to classify stressful events,

underscoring its relevance as a stress indicator (54). The DFA a2
reflects the complexity and fractal characteristics of long-term

HRV, capturing self-similarity across time scales and changes in

adaptability under stress (17, 53, 58). Prior studies have

demonstrated that stress-induced shifts in the ANS toward

sympathetic dominance alter HRV complexity, resulting in

changes to a2 (85, 86). These findings underscore the utility of

a2 for assessing cardiac autonomic regulation across various

conditions. Although stimuli used to induce stress or relaxation

in studies vary, complicating direct comparisons, our findings align

with previous research where RRI and nonlinear HRV measures are

identified as significant features for stress classification.

We compared the scaled DHRV values among the different

groups to investigate differences in classification performance via

the same method as the unscaled data (Table 5). We determined

that the absolute change of RRI, the most important feature, was

greater in the MDD and HC groups compared with the PD group.

This suggested that the MDD and HC groups could have had an

advantage in classification compared with the PD group.

Additionally, we noticed that the HC group exhibited greater

absolute changes in more features than the MDD group, which

suggested a relative advantage in classification for the HC group.

Overall, our findings suggested that a group that displayed a greater

number of features with higher reactivity tended to exhibit better

performance compared with other groups when the scaled HRV

data was used for classification.

Recent studies on monitoring technologies for patients with

psychiatric disorders focused on obtaining longitudinal data, such

as ecological momentary assessment and physiological data, to

observe patient conditions and use the findings to improve

treatment (87, 88). Our results indicated that personalized data

scaling could enhance the accuracy of assessing patient conditions

in studies that monitored patients via physiological signals.

Although personalized scaling requires a substantial amount of
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accumulated data for each individual, it is expected to significantly

improve classification performance.

In the recent times, artificial intelligence techniques are

increasingly being used in research to detect stress based on HRV

(21). Such studies employ diverse methods, from classical rule-

based techniques such as fuzzy logic to classical machine learning

approaches including support vector machine, random forest, and

k-nearest neighbors. Advanced methods, including deep learning

and hybrid approaches combining classical algorithms with neural

networks, further demonstrate the variety of stress detection

techniques that are used in studies (21, 89). Many studies have

investigated beyond just HRV, leveraging multimodal sensor data.

Signals such as ECG, photoplethysmogram (PPG), electrodermal

activity (EDA), electromyogram, or respiration are simultaneously

measured and utilized (21). Whether using HRV or multimodal

sensors, most studies report classification accuracies between 70%

and 99% (21). For example, one study achieved 75% accuracy using

HRV and a random forest algorithm (90), while another reached

90% with an artificial neural network and HRV (91). Our results,

with HRV-based random forest and MLP models achieving 70% to

over 90% accuracy, align with these prior findings.

However, most studies focus on non-clinical populations, and

analysis of stress detection for individuals with psychiatric

conditions is lacking (21). Private datasets used in previous

studies primarily focus on healthy individuals; furthermore,

publicly available datasets such as SWELL-KW and PhysioNet’s

driving database also mainly target healthy individuals (21, 90, 91).

However, studies addressing stress detection in psychiatric

population groups, such as those with MDD or PD, are uncommon.

Our study addresses this gap by conducting comparative

experiments with clinical populations (MDD and PD) and HCs

under controlled stress-relaxation protocols. The observed

differences in stress-relaxation classification highlight the need to

consider disparities between patients and healthy individuals when

developing ANS monitoring technologies. These findings

emphasize the importance of tailored solutions for both clinical

and everyday settings, thereby addressing the unique autonomic

characteristics of psychiatric populations.

Thus, the clinical implications of this study indicate that HRV

has significant potential as a biomarker for stress, particularly in

differentiating between stress and relaxation states across the three

groups. Our findings suggest that effective stress monitoring should

consider the varying autonomic responses of patient groups and

healthy individuals to improve classification accuracy. Furthermore,

the implementation of personalized data scaling significantly

enhanced class ificat ion performance , indicat ing that

individualized HRV-based monitoring could offer a more reliable

and tailored stress assessments for managing psychiatric conditions.
4.1 Limitations

The number of participants measured by the experiment was

small. Although the sample size exceeded 1000 owing to multiple

individual visits, the number of participants per group was

approximately 40–60. Particularly, the number of patients in the
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PD and MDD groups was smaller than that in the HC group.

Recruiting more participants would enable further research into

how this might impact classification accuracy between groups.

Importantly, our patient groups were on medication during the

12-week experiment, and we did not specifically analyze their

potential impact on our results. Ongoing research into the effects

of therapeutic drugs on HRV suggests varying impacts.

Antidepressants have been linked to alterations in HRV; however,

definitive evidence remains inconclusive. One meta-analysis

reported that TCAs substantially reduced HRV, while other

antidepressants showed minimal effects (92). In contrast, a large

study involving more than 2000 participants found no association

between HRV and MDD itself. However, MDD patients on SSRIs,

SNRIs, and TCAs displayed a significantly reduced HRV (93).

These findings imply that the antidepressants, rather than MDD

alone, may explain the reduced HRV observed in the study

participants, as all were undergoing treatment. Therefore, we

cannot entirely eliminate the possibility that the observed

differences in classification performance and HRV reactivity

among the groups could be influenced by medication.

Nevertheless, considering that patients are likely to be on

medication in real-world applications, our findings remain

relevant for practical therapeutic environments. Furthermore, this

study did not distinguish between treatment responders and non-

responders within the patient groups. In future, we intend to

differentiate these response groups, enabling a more detailed

analysis of differences in stress reactivity and stress-relaxation

c l a s s ifica t ion per formance be tween responders and

non-responders.

We utilized SHAP as a representative method to calculate

feature importance and employed statistical analysis methods to

obtain complementary data on HRV reactivity. Alternative

calculation methods for feature importance, such as permutation

feature importance and local interpretable model-agnostic

explanations, exist (94, 95). These methods can be explored in

future studies. The statistical test identifies features that differ

significantly among groups, while SHAP values highlight features

that most contribute to the model’s predictions and considered the

full complexity of the data. Both statistical analysis and SHAP

values play distinct yet complementary roles in indicating

important metrics. Features that are both statistically significant

and have high SHAP values might be considered as candidates for

essential predictors.

We used only a basic MLP model. With recent advancements in

deep learning, various neural network models have shown promising

results in medical sciences, including psychiatry (96). The reason for

applyingMLP was to demonstrate that our results are not confined to

a specific algorithm. We chose MLP to perform the same

classification via an entirely different algorithm from random forest.

For future studies, we aim to experiment with more advanced neural

network architectures to enhance classification performance.

In this study, we focused exclusively on HRV as a measure of

responses to stress and relaxation. Although there are several other

physiological markers that can be employed to monitor stress
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responses, such as EDA, respiratory rate, blood pressure

variability, and electroencephalography, HRV provides several

advantages (97–100). For example, the development of wearable

devices has made it more accessible for continuous monitoring of

HRV. Moreover, HRV measurements are typically less susceptible

to external noise and environmental factors, resulting in more

reliable and stable outcomes. The EDA is one of the physiological

signals measured by wearable devices, commonly used in stress

research, and has demonstrated promising results. However, unlike

HRV, which measures both sympathetic and parasympathetic

activity, EDA can only measure sympathetic activity. Considering

the limited research conducted on automated stress detection in

psychiatric disorders, we prioritized HRV for its ability to provide a

more comprehensive view of autonomic balance. In this study,

HRV features were extracted from ECG signals. Use of commercial

or research-grade wearable devices to measure PPG and derive

HRV can help future research, enabling real-time stress monitoring

for individuals with psychiatric conditions.
5 Conclusion

Our study utilized HRV features to distinguish stress and

relaxation responses among groups with MDD and PD and HCs

via a random forest algorithm. Classification accuracies were 0.67,

0.69, and 0.73 for the MDD, PD, and HC groups, respectively,

which indicated higher accuracy in healthy individuals.

Personalized longitudinal scaling of HRV data improved

classification accuracies, and reached 0.94, 0.90, and 0.96 for the

MDD, PD, and HC groups, respectively, which suggested the

potential of personalized scaling in monitoring a patient’s

conditions based on HRV measurements. Results produced by the

MLP models were in line with those by the random forest classifier,

which indicated that our findings were not reliant on a

particular algorithm.

Our findings revealed that it was more challenging to

differentiate stress and relaxation in the PD and MDD groups

than in HCs, partly owing to the intrinsic characteristics of patient

data that reflected altered autonomic responses. Additionally, the

HC group demonstrated greater autonomic reactivity in a larger

number of and more significant features, which potentially

contributed to higher classification accuracy. These results

underscore the potential of HRV metrics as biomarkers for stress

and emphasize the importance of accounting for differences in

autonomic responses between patients and healthy individuals

when developing stress monitoring technologies in both clinical

and everyday settings.
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43. Lipovac D, Žitnik J, Burnard MD. A pilot study examining the suitability of the
mental arithmetic task and single-item measures of affective states to assess affective,
physiological, and attention restoration at a wooden desk. J Wood Sci. (2022) 68.
doi: 10.1186/s10086-022-02042-5

44. Byun S, Kim AY, Jang EH, Kim S, Choi KW, Yu HY, et al. Entropy analysis of
heart rate variability and its application to recognize major depressive disorder: A pilot
study. Technol Heal Care. (2019) 27:1–18. doi: 10.3233/THC-199037

45. Brown DK, Barton JL, Gladwell VF. Viewing nature scenes positively affects
recovery of autonomic function following acute-mental stress. Environ Sci Technol.
(2013) 47:5562–9. doi: 10.1021/es305019p

46. Ulrich RS, Simons RF, Losito BD, Fiorito E, Miles MA, Zelson M. Stress recovery
during exposure to natural and urban environments. J Environ Psychol. (1991) 11:201–
30. doi: 10.1016/S0272-4944(05)80184-7
Frontiers in Psychiatry 21
47. Sollers JJ, Sanford TA, Nabors-Oberg R, Anderson CA, Thayer JF. Examining
changes in HRV in response to varying ambient temperature. IEEE Eng Med Biol Mag.
(2002) 21:30–4. doi: 10.1109/MEMB.2002.1032636

48. Yamamoto S, Iwamoto M, Inoue M, Harada N. Evaluation of the effect of heat
exposure on the autonomic nervous system by heart rate variability and urinary
catecholamines. J Occup Health. (2007) 49:199–204. doi: 10.1539/joh.49.199
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70. da Silva ST, de Godoy MF, Gregório ML, Viana RL, Batista AM. Analysis of
heartbeat time series via machine learning for detection of illnesses. Chaos Solitons
Fractals. (2023) 171:113388. doi: 10.1016/j.chaos.2023.113388

71. Visnovcova Z, Mestanik M, Javorka M, Mokra D, Gala M, Jurko A, et al.
Complexity and time asymmetry of heart rate variability are altered in acute mental
stress. Physiol Meas. (2014) 35:1319–34. doi: 10.1088/0967-3334/35/7/1319

72. Benichou T, Pereira B, Mermillod M, Tauveron I, Pfabigan D, Maqdasy S, et al.
Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis.
PloS One. (2018) 13:1–19. doi: 10.1371/journal.pone.0195166

73. Gronwald T, Hoos O. Correlation properties of heart rate variability during
endurance exercise: A systematic review. Ann Noninvasive Electrocardiol. (2020) 25:1–
11. doi: 10.1111/anec.12697
frontiersin.org

https://doi.org/10.3390/s21103461
https://doi.org/10.3390/s21103461
https://doi.org/10.1109/ACCESS.2021.3085502
https://doi.org/10.1109/ACCESS.2021.3085502
https://doi.org/10.1067/mhj.2000.109981
https://doi.org/10.1016/j.jad.2020.01.132
https://doi.org/10.1016/j.jad.2020.01.132
https://doi.org/10.1016/j.jad.2023.03.018
https://doi.org/10.1016/j.jad.2023.03.018
https://doi.org/10.1016/j.jad.2012.01.035
https://doi.org/10.1016/j.jad.2012.01.035
https://doi.org/10.1017/S0033291718001988
https://doi.org/10.2147/NDT.S153005
https://doi.org/10.1016/j.janxdis.2021.102426
https://doi.org/10.1007/s10484-016-9346-9
https://doi.org/10.1007/s10484-016-9346-9
https://doi.org/10.1093/hmg/ddaa115
https://doi.org/10.1136/jmg.2010.086876
https://doi.org/10.1136/jmg.2010.086876
https://doi.org/10.1016/j.jad.2018.12.048
https://doi.org/10.1111/j.2044-8260.1967.tb00530.x
https://doi.org/10.1111/j.2044-8341.1959.tb00467.x
https://doi.org/10.1176/ajp.154.11.1571
https://doi.org/10.1016/j.ijcard.2009.09.543
https://doi.org/10.3389/fpsyt.2022.842963
https://doi.org/10.1016/j.biopsycho.2016.10.002
https://doi.org/10.1016/j.compbiomed.2013.08.021
https://doi.org/10.1371/journal.pone.0113618
https://doi.org/10.1186/s10086-022-02042-5
https://doi.org/10.3233/THC-199037
https://doi.org/10.1021/es305019p
https://doi.org/10.1016/S0272-4944(05)80184-7
https://doi.org/10.1109/MEMB.2002.1032636
https://doi.org/10.1539/joh.49.199
https://doi.org/10.7205/MILMED-D-02-0808
https://doi.org/10.1016/j.cmpb.2013.07.024
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.3389/fpubh.2017.00258/full
https://doi.org/10.1186/1475-925X-10-96
https://doi.org/10.1088/0967-3334/31/3/003
https://doi.org/10.1088/0967-3334/31/3/003
https://doi.org/10.1073/pnas.88.6.2297
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1063/1.166141
https://doi.org/10.1103/PhysRevLett.50.346
https://doi.org/10.1109/TBME.2002.1010858
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s41060-024-00509-w
https://doi.org/10.1007/s41060-024-00509-w
https://doi.org/10.1186/s40537-023-00694-8
https://doi.org/10.1371/journal.pone.0284315
https://arxiv.org/abs/2407.12759v1
https://arxiv.org/abs/2407.12759v1
https://doi.org/10.4168/aair.2024.16.1.42
https://doi.org/10.1016/j.chaos.2023.113388
https://doi.org/10.1088/0967-3334/35/7/1319
https://doi.org/10.1371/journal.pone.0195166
https://doi.org/10.1111/anec.12697
https://doi.org/10.3389/fpsyt.2024.1500310
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Byun et al. 10.3389/fpsyt.2024.1500310
74. Gu Z, Zarubin VC, Mickley Steinmetz KR, Martsberger C. Heart rate variability
in healthy subjects during monitored, short-term stress followed by 24-hour cardiac
monitoring. Front Physiol. (2022) 13:1–11. doi: 10.3389/fphys.2022.897284

75. Kim AY, Jang EH, Kim S, Choi KW, Jeon HJ, Yu HY, et al. Automatic detection
of major depressive disorder using electrodermal activity. Sci Rep. (2018) 8:17030.
doi: 10.1038/s41598-018-35147-3

76. Byun S, Kim AY, Jang EH, Kim S, Choi KW, Yu HY, et al. Detection of major
depressive disorder from linear and nonlinear heart rate variability features during
mental task protocol. Comput Biol Med. (2019) 112:103381. doi: 10.1016/
j.compbiomed.2019.103381

77. Jang EH, Choi KW, Kim AY, Yu HY, Jeon HJ, Byun S. Automated detection of
panic disorder based on multimodal physiological signals using machine learning.
ETRI J. (2022) 2022:105–18. doi: 10.4218/etrij.2021-0299

78. Cipryan L, Litschmannova M. Intra-day and inter-day reliability of heart rate
variability measurement. J Sports Sci. (2013) 31:150–8. doi: 10.1080/02640414.2012.721931

79. de Vries H, Kamphuis W, van der Schans C, Sanderman R, Oldenhuis H. Trends in
daily heart rate variability fluctuations are associated with longitudinal changes in stress and
somatisation in police officers. Healthc. (2022) 10. doi: 10.3390/healthcare10010144

80. Dalmeida KM, Masala GL. HRV features as viable physiological markers for stress
detection using wearable devices. Sensors. (2021) 21:2873. doi: 10.3390/s21082873

81. Liu K, Jiao Y, Du C, Zhang X, Chen X, Xu F, et al. Driver stress detection using
ultra-short-term HRV analysis under real world driving conditions. Entropy. (2023) 25.
doi: 10.3390/e25020194

82. Castaldo R, Montesinos L, Melillo P, James C, Pecchia L. Ultra-short term HRV
features as surrogates of short term HRV: A case study on mental stress detection in
real life. BMC Med Inform Decis Mak. (2019) 19:1–13. doi: 10.1186/s12911-019-0742-y
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