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Introduction: Autism Spectrum Disorder (ASD) presents significant challenges in

social communication and interaction, critically impacting the lives of children

with ASD. Traditional interventions, such as Applied Behavior Analysis (ABA) and

Social Skills Training (SST), have been widely used to address social skill deficits in

these children. While these methods are effective, they often require substantial

resources, long-term engagement, and specialized expertise, which limit their

accessibility and adaptability to diverse social contexts. Recent advancements in

artificial intelligence (Al), particularly Transformer-based models, offer a novel

opportunity to enhance and personalize social skills training.

Methods: This study introduces a Public Health-Driven Transformer (PHDT)

model specifically designed to improve social skills in children with ASD. By

integrating public health principles with state-of-the-art Al methodologies, the

PHDTmodel creates interventions that are adaptable, accessible, and sensitive to

individual needs. Leveraging multi-modal data inputs-such as text, audio, and

facialcues-PHDT provides real-time social context interpretation and adaptive

feedback, enabling a more naturalistic and engaging learning experience.

Results and discussion: Experimental results reveal that PHDT significantly

outperforms traditional methods in fostering engagement, retention, and social

skill acquisition. These findings highlight PHDT's potential to improve social

competencies in children with ASD and to revolutionize access to specialized

support within public health frameworks. This work underscores the

transformative impact of Al-driven, public health-oriented interventions in

promoting equitable access to essential developmental resources and

enhancing the quality of life for children with ASD.
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1 Introduction

Public Health-Driven Transformer for Social Skil l

Enhancement in Children with AutismIn recent years, social skill

enhancement in children with Autism Spectrum Disorder (ASD)

has garnered increasing attention due to the critical role these skills

play in their cognitive, emotional, and behavioural development

Rouhandeh et al. (1). Addressing these needs has become a public

health priority, as improved social skills can significantly impact the

quality of life, independence, and academic success of children with

ASD Alharbi and Huang (2). Traditional interventions, such as

Applied Behavior Analysis (ABA) and Social Skills Training (SST),

though effective, often require intensive, time-consuming sessions

with limited scalability, making them challenging for widespread

implementation Loftus et al. (3). Advances in artificial intelligence

(AI), particularly with Transformer-based deep learning models,

offer new avenues to enhance these interventions by providing

scalable, adaptive, and interactive social skill training. Leveraging

these technologies can not only augment traditional methods but

also enable new, personalized approaches that can reach a broader

demographic, particularly through digital platforms that are

increasingly accessible.

To address the limitations of conventional social skill

enhancement methods, initial AI applications in this area were

grounded in symbolic AI and knowledge representation Park et al.

(4). These systems focused on rule-based decision-making to

simulate socially appropriate responses, using predefined

knowledge bases and if-then logic. Such methods allowed for the

establishment of consistent, structured frameworks that attempted

to emulate basic social interactions Lee et al. (5). However, these

rule-based systems lacked flexibility, as they could not adapt to the

complex and varied nature of social cues encountered in real-life

scenarios. Consequently, the rigidity of symbolic AI limited its

effectiveness in promoting dynamic social learning and was unable

to cater to the individual learning needs of children with ASD, who

often benefit from personalized feedback and varied social contexts

Aldabas (6).

The evolution from symbolic AI to machine learning marked a

significant step forward, as data-driven approaches enabled more

adaptive social skill interventions Puglisi et al. (7). Machine learning

models, particularly supervised learning techniques, allowed for

pattern recognition from large datasets of social interactions,

capturing more nuanced social behaviors and expressions Frolli

et al. (8). Models trained on labeled data, such as facial expressions

and verbal interactions, could identify social cues with greater

accuracy and variation than rule-based systems Ioannou et al. (9).

Nevertheless, these methods heavily relied on labeled data, which is

costly and time-consuming to curate, and their performance was

constrained by the quality and size of the datasets. Additionally,

while they improved adaptability, they often struggled to generalize

across diverse social settings and required extensive computational

resources for real-time interactions, making them less accessible for

public health implementations Hameed et al. (10).

The advent of deep learning, especially Transformer-based

architectures and pre-trained models, has led to a substantial shift
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in the capabilities of AI for social skill enhancement Kouhbanani

et al. (11). Transformer models, with their attention mechanisms

and ability to process contextual information over long sequences,

excel at modeling complex social interactions, as they can capture

dependencies between varied social cues and context. Pre-trained

models, such as BERT and GPT, have shown success in

understanding nuanced language and behavioral patterns,

enabling more context-aware and responsive interactions in ASD

interventions Safi et al. (12). These models can be fine-tuned for

specific social skill scenarios, which allows for personalization and

adaptability without requiring massive labeled datasets. However,

the computational intensity of Transformers and the risk of biases

in pre-trained models remain challenges, as these limitations can

hinder scalability and lead to inconsistent outputs in diverse social

contexts Hernández-Espeso et al. (13).

Based on the aforementioned limitations, we propose a Public

Health-Driven Transformer (PHDT) designed for scalable,

personalized social skill enhancement in children with ASD. By

integrating insights from both social skill development and deep

learning, our approach addresses the drawbacks of traditional, rule-

based, and machine learning methods by creating an adaptable,

efficient, and publicly accessible solution.
• PHDT incorporates a novel attention-based module

tailored for interpreting diverse social cues, such as facial

expressions, gestures, and verbal tones, optimizing

interaction specificity for children with ASD.

• The model is designed to operate efficiently across various

scenarios, balancing performance with computational

demand, making it accessible for broader use in public

health interventions.

• We introduce a novel dynamic batch size adjustment

mechanism during tra ining , which accelerates

convergence and enhances model generalization by

effectively balancing computational efficiency and

learning stability
2 Related work

2.1 Public health approaches in
autism intervention

Public health approaches have long been a focus of autism

interventions due to their emphasis on scalable, community-wide

solutions that address early diagnosis and intervention Terlouw

et al. (14). These approaches view autism not solely as an individual

developmental disorder but as a societal challenge with substantial

public health implications. Population-based strategies in public

health aim to ensure that children with autism, especially those

from underserved communities, have access to early detection tools

and intervention resources. By framing autism interventions within

a public health context, researchers have pursued comprehensive

methods that reduce barriers to access, often through community-
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based programs and policies Güler and Erdem (15). One promising

area within this field includes community level frameworks that

engage families, educators, and healthcare providers in identifying

and addressing autism-related needs early on. Screening tools

designed for early detection have demonstrated benefits in linking

children to resources, but gaps in reaching diverse and rural

populations remain. These frameworks have evolved to

incorporate digital and AI-driven tools, capitalizing on the reach

of technology to amplify detection and intervention access. Public

health-driven models are thus shifting towards leveraging scalable

digital platforms, aiming to integrate intervention approaches with

other services in a holistic manner Ávila Álvarez et al. (16). Public

health models increasingly prioritize collaborative, integrated

systems that involve the community in recognizing early social

skill deficits and facilitating social interaction enhancements Arora

et al. (17). The inclusion of technology in public health approaches

to autism intervention highlights how digital tools can extend the

reach of social skills training, often a key area of developmental

need. Machine learning and AI models, like transformer-based

architectures, provide a means to deliver interventions that adapt

to individual children’s progress. The potential to detect social skill

deficits and tailor intervention pathways for large populations

enhances the ability to address disparities. Particularly, AI tools

can support real-time adaptation to a child’s performance, creating

responsive learning environments even in remote or underserved

areas. Studies indicate that AI-enabled interventions are feasible in

community health settings, enabling therapists, educators, and

families to integrate such tools seamlessly. By aligning autism

interventions with public health goals, transformative technology-

driven solutions have the potential to bridge gaps in access and

efficacy Doulah et al. (18).
2.2 Transformer models in autism-specific
social skill training

Transformer models have recently demonstrated significant

promise in advancing social skill training for children with

autism, primarily due to their robust ability to process large-scale

data and deliver individualized learning experiences. These deep

learning models, initially developed for language tasks, have been

adapted to understand complex social interactions, making them

suitable for social skill development applications. Unlike traditional

machine learning models, transformer architectures can capture

nuanced relationships within social interaction data, learning to

identify and enhance specific skills like eye contact, verbal

reciprocity, and non-verbal communication Scarcella et al. (19).

Research on transformer models in autism primarily focuses on

their ability to analyze multimodal data—such as video, audio, and

text—that reflect a child’s engagement in social scenarios Liu and

Hu (20). This approach enables transformers to detect patterns in

social behavior and adjust training content dynamically based on a

child’s individual needs. Studies show that by training on diverse

datasets of typical and atypical social interactions, transformers can

learn effective intervention responses, simulating scenarios that

encourage specific social behaviors. These models can analyze
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video interactions and suggest adjustments to a child’s social

engagement strategies in real-time, providing a form of

personalized feedback that can be particularly effective for autism

therapy Mannion (21). Transformer-based models allow for

enhanced adaptability in therapy, permitting flexible responses to

various social challenges a child may encounter. They can also

integrate feedback loops that continuously refine the training

protocols based on the child ’s progress, making these

interventions highly responsive. This adaptability can also extend

to group settings where children with autism interact with peers,

offering tailored suggestions that help them manage diverse social

dynamics Soltiyeva et al. (22). Integrating these systems into socially

assistive technologies has shown potential for fostering social

engagement, as they can respond to the unique interaction

patterns of each child. Given their ability to generalize from

complex social datasets, transformers present a compelling

solution for scalable social skill training tools that align with both

therapeutic and educational needs Fernandez-Fabeiro et al. (23).
2.3 Social skill development in autism
through AI-enhanced interventions

AI-enhanced interventions have expanded the scope of autism

therapy, with a specific focus on social skills critical for daily

interaction and independence. Social skill development often

challenges children with autism due to their difficulties in

interpreting social cues, initiating interactions, and responding

appropriately to social stimuli. AI-driven models, particularly

those utilizing machine learning algorithms, have provided

structured, adaptive training environments that support skill

acquisition in areas like conversational turn-taking, emotional

recognition, and empathy. By integrating AI into social skill

interventions, researchers have developed tailored, data-driven

approaches that facilitate meaningful engagement in real-world

settings Güeita-Rodrıǵuez et al. (24). A critical aspect of AI-

driven social skill enhancement is the utilization of real-time

feedback, allowing for immediate corrections and positive

reinforcement. AI models can simulate a range of social

situations, allowing children to practice and develop skills at their

own pace while receiving guidance tailored to their progress. For

example, virtual agents powered by AI provide a safe, low-stress

environment for practicing conversations, identifying emotions,

and developing adaptive responses. Studies indicate that these

virtual settings can effectively replicate many social scenarios

encountered in daily life, offering children a structured approach

to practicing and refining social interactions. The dynamic

adaptability of AI-based models means that they can assess a

child’s level of social skill proficiency, personalize the training

tasks accordingly, and scale the complexity as the child’s skills

improve Terlouw et al. (25). Beyond individual sessions, AI-

enhanced social skill interventions offer benefits in group

contexts, enabling interactive exercises where children can

develop skills alongside peers in controlled, simulated

environments. Social robots equipped with AI algorithms further

exemplify this trend, serving as mediators in group therapy by
frontiersin.org
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facilitating turn-taking, modeling appropriate social behaviors, and

providing non-judgmental feedback Gengoux et al. (26). The data-

driven approach of AI also provides valuable insights for therapists

and educators, offering analytics on a child’s progress, specific skill

deficiencies, and improvement areas. By incorporating these

detailed insights into intervention strategies, AI-enhanced

interventions support a more personalized and effective approach

to social skill development for children with autism.
3 Method

3.1 Overview

In this work, we focus on enhancing social skills in children

with Autism Spectrum Disorder (ASD) through technology-

assisted interventions. Social skills are an essential component of

social interaction and personal development, yet children with ASD

often exhibit challenges in this area, particularly with skills such as

initiating and maintaining conversation, social problem-solving,

and recognizing social cues. Consequently, interventions in this

domain aim to mitigate these challenges by introducing structured

and evidence-based methods that foster communication and

interaction skills. This section provides an overview of the

proposed method to enhance these social skills through a novel

framework of technology-aided instruction, structured into the

following key segments.

In 3.2, we define the primary challenges in social skill

acquisition faced by children with ASD, including a theoretical

background on social communication deficits as identified in

diagnostic criteria. Additionally, we analyze existing methods that

employ technology to support social skill interventions, such as

video modeling, audio prompting, and interactive digital

environments. These methods demonstrate potential for

effectively addressing ASD-related social difficulties by using

digital solutions that simulate or reinforce social scenarios. The

subsequent section, 3.3, outlines the mathematical foundation for

modeling interactive learning environments tailored to the ASD

population. Here, we formalize the problem by developing a set of

models that quantify skill acquisition and engagement metrics

across various technological interventions. Such a formulation is

instrumental in tracking progress and adapting the instructional

techniques based on real-time feedback and longitudinal data

analysis, ensuring interventions remain personalized and effective.

Finally, in 3.4, we introduce our unique model framework, which

integrates the latest advancements in interactive digital media with

adaptive feedback mechanisms to personalize instruction. This

approach leverages elements like multi-modal engagement and

reinforcement learning to cater to individual learning styles,

allowing the intervention to dynamically adjust to each child’s

responsiveness. This section will provide insights into the model

architecture and the specific features designed to reinforce social

behaviors, providing a structured pathway for skill generalization

beyond the training environment.
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3.2 Preliminaries

Children with Autism Spectrum Disorder (ASD) face notable

challenges in developing social skills, a core aspect of social

interaction, often characterized by difficulties in initiating

interactions, understanding non-verbal cues, and maintaining

reciprocal social exchanges. The goal of this study is to formalize

these challenges into a structured mathematical framework, which

allows for quantitative assessment and personalized intervention

strategies. To address the multi-dimensional nature of social skill

deficits, we introduce a set of notations and mathematical models

that describe the problem space, with a focus on capturing the

complex interactions involved in social skill acquisition

and reinforcement.

Let U = u1, u2,…, uNf g denote a sequence of interactions or

social exchanges undertaken by a child with ASD, where each

interaction ui represents an instance of social behavior, such as a

greeting or response to a peer. Each interaction ui can be

characterized by a set of features, Xi = xi1, xi2,…, xiMf g, where M

represents the total number of observable behavioral cues, such as

eye contact, vocal tone, and body posture. Each feature xij is a

continuous or discrete variable representing the intensity or

occurrence of that specific social cue.

To further model the quality of these interactions, we introduce

a scoring function f :U → R, where f (ui) assigns a numerical score

to the interaction ui, quantifying its alignment with socially

accepted norms. Let S = s1, s2,…, sNf g be the set of scores

corresponding to U, where si = f (ui). The cumulative social skill

score over a series of interactions can then be formalized as:

Skill _ Score =
1
No

N

i=1
si (1)

where N represents the total number of skill components, and si
denotes the score of the i-th skill component. By averaging the skill

components, this equation ensures an equal contribution from each

component, providing a balanced representation of the overall skill

level. This formulation is particularly useful for aggregating

multiple metrics into a single interpretable score while

maintaining simplicity and consistency.

To understand the developmental trajectory, we define the

learning rate function g :U � T → R, where T denotes the time

sequence over which interventions are applied. Here, g(ui, t)

measures the rate of skill acquisition over time for each

interaction ui, allowing us to capture improvements or

regressions in behavior over time:

g(ui, t) =
∂ si
∂ t

(2)

with g(ui, t) > 0 indicating progress in skill acquisition.

Given the individualized nature of ASD, each child’s interaction

sequence and response to interventions will differ, necessitating a

personalized approach. To model the adaptation of the intervention

based on individual performance, let I be the intervention strategy

space, and define a mapping h : S → I , where h(si) suggests a
frontiersin.org
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specific intervention (e.g., video modeling or feedback prompt)

based on the score si:

h(si) = arg max
j∈I

 Effectiveness (jjsi), (3)

where Effectiveness(jjsi) represents the expected improvement

in si by applying intervention j. This allows the model to select an

optimal intervention from the strategy set I , thus tailoring support
based on observed performance.

For continuous tracking and adjustment, we introduce a

reinforcement mechanism defined by a feedback loop F : S� I →

R that updates the intervention choice based on real-time

effectiveness:

F (si, h(si)) = si + Ds (4)

where Ds is the observed improvement post-intervention,

ensuring the model dynamically reinforces effective strategies and

adjusts less effective ones.

In the case of f (ui), the selection of parameters is primarily

influenced by the distribution statistics of the input features and the

model’s robustness needs. We opt for specific types of nonlinear

activation functions, such as ReLU or Sigmoid, which suit the

dynamic range of the input features and maintain value stability.

The parameters are fine-tuned via a grid search method to strike a

balance between computational complexity and fitting accuracy.

Regarding g(ui, t), the parameters are crucial for modeling time

correlation. We employ a design based on a weighted moving

average that helps to mitigate short-term fluctuations and capture

long-term trends. The choice of weight parameters is based on

empirical rules in the field, and their effectiveness is validated

through experimental testing on various datasets.
3.3 Adaptive interaction model

Our primary contribution in this study is the development of an

adaptive interaction model, herein named the Social Engagement

Network (SEN), designed to optimize social skill interventions for

children with ASD. The SEN model employs a structured
Frontiers in Psychiatry 05
representation of social interactions, integrates real-time feedback,

and dynamically adapts to each individual’s progress in social skill

acquisition. The model structure includes a multi-layered

architecture to account for both immediate responses and long-

term social skill trajectories (As shown in Figure 1).

The choice of a transformer architecture for our task is

primarily driven by its ability to handle the complexity and

multi-modal nature of social skill training for children with ASD.

Social interactions involve intricate relationships between textual,

auditory, and visual cues, requiring a model capable of capturing

these dependencies dynamically. Transformers, with their self-

attention mechanism, excel at identifying key features across

modalities and assigning context-dependent importance to them.

This is crucial for accurately interpreting nuanced social behaviors,

such as recognizing emotions or understanding conversational

tone, which are central to our task. While transformers are

computationally intensive, their ability to model long-range

dependencies without the limitations of sequential processing (as

seen in RNNs) is critical for our task, where understanding

temporal and contextual relationships is essential. Furthermore,

transformers offer flexibility in fusing multi-modal inputs, enabling

seamless integration of text, audio, and facial cues. This adaptability

ensures that the PHDT model can effectively simulate and respond

to real-world social scenarios, enhancing the learning experience for

children with ASD. The use of pre-trained transformer models

significantly reduces the computational overhead during fine-

tuning, as these models already capture rich, general-purpose

representations. This is particularly beneficial for our task, where

training data is limited but must reflect diverse social contexts.

Despite the computational demands, the transformer’s ability to

generalize across modalities and contexts makes it an ideal choice

for addressing the challenges of our task, ultimately leading to a

more robust and effective framework for social skill development.
3.3.1 Latent interaction state representation
Let Z = z1, z2,…, zNf g represent a sequence of latent

interaction states, where each zi captures the underlying cognitive

and affective response of the child during an interaction ui. Each
FIGURE 1

Architecture of the Social Engagement Network (SEN) model, featuring a multi-stage structure with embedding stems, spatial aggregation, dynamic
transition mechanisms, and a real-time feedback mechanism. This adaptive model is designed to optimize social skill interventions for children with
ASD by dynamically responding to individual progress.
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latent state zi holds complex information, encapsulating both the

immediate response to current stimuli and residual effects from

prior interactions. This dual influence is crucial to model the often-

subtle dynamics of social engagement, which may involve delayed

responses or evolving behavioral tendencies (As shown in Figure 2).

These latent states are modeled as hidden variables that interact

with both observable behavioral features Xi and past interaction

states, providing a robust foundation to infer the child’s cognitive

and affective trajectory. This interplay can be expressed by

expanding the original function into separate terms for immediate

input processing and historical dependency:

zi = jq1 (Xi) + yq2 (zi−1), (5)

where jq1 encodes current behavior, while yq2 maps the

previous state to capture time-series dependencies. Here, q1 and

q2 are parameter sets that can evolve independently to adjust the

weight of immediate versus sequential influences.

To further refine these latent states, we introduce an auxiliary

transformation kq3 that adjusts the residual state contributions from
a broader historical window:

zi = jq1 (Xi) +o
i−1

j=1
kq3 (zj, i − j), (6)

where kq3 is a time-decay function modulated by q3, weighting
past interactions according to their temporal distance from ui. This

approach enhances the model’s capability to emphasize recent
Frontiers in Psychiatry 06
interactions, while progressively diminishing the impact of older

interactions, allowing a flexible yet decaying memory structure.

Moreover, the model incorporates an adaptive gating

mechanism Gf to modulate the influence of latent states based on

the interaction context, where:

zi = Gf(Xi, zi−1)⊙ jq1 (Xi) +o
i−1

j=1
kq3 (zj, i − j)

 !
, (7)

and ⊙ denotes element-wise multiplication. Here, Gf is

parameterized by f and dynamically adjusts the contributions of

immediate versus accumulated historical information. For instance,

if Xi reflects a high-stress interaction, Gf can down-regulate the

residual impact from prior states, allowing a more responsive

adaptation to the child’s current state.

The final latent state representation combines the above

elements, yielding a richly layered state model that supports the

tracking of engagement patterns over time. Each state zi is thus fully
defined as:

zi = Gf(Xi, zi−1)⊙ jq1 (Xi) +o
i−1

j=1
kq3 (zj, i − j)

 !
+ e (8)

where e represents a stochastic noise component that accounts

for minor fluctuations in behavior. This comprehensive latent state

model ensures that SEN can dynamically capture and adjust to

complex interaction patterns, creating a foundation for accurate

and adaptive intervention strategies.
FIGURE 2

Diagram illustrating the latent interaction state representation within the Social Engagement Network (SEN). This model captures the sequence of
latent interaction states to track both immediate responses and historical dependencies in social engagement. Key components include multi-order
gated aggregation, convolutional layers with diverse dilations, and adaptive gating mechanisms. Together, these elements form a nuanced
representation of each interaction, allowing SEN to model complex cognitive and affective responses in children with ASD.
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3.3.2 Dynamic transition mechanism
To effectively model the temporal evolution of social

engagement states, we propose a transition function T :Z   →  Z

that describes how each latent state zi transforms into the

subsequent state zi+1 given both the current state and the

influence of new interaction features. This transition mechanism

allows our Social Engagement Network (SEN) to capture the

continuity of behavioral patterns and their adaptive shifts across

interactions (As shown in Figure 3). Mathematically, the transition

function can be expressed as:

zi+1 = T (zi,Xi+1) = gq4 (zi) + hq5 (Xi+1), (9)

where gq4 and hq5 are separate functions parameterized by q4
and q5, respectively, allowing SEN to disentangle the effect of prior

latent states from new interaction data.

This formulation enables SEN to dynamically adjust based on

recent interactions and shifts in engagement patterns. The recurrent

structure of gq4 captures temporal dependencies by evolving the

latent state based on historical patterns, while hq5 brings in the

influence of new interaction features Xi+1, which can significantly

impact the trajectory of social engagement.

To incorporate more refined temporal adjustments, the

transition function can further include a decay factor di that

modulates the persistence of previous states:
Frontiers in Psychiatry 07
zi+1 = di · gq4 (zi) + (1 − di) · hq5 (Xi+1), (10)

where 0  ≤  di   ≤  1 is dynamically computed based on the

context of interaction ui. This decay term enables the model to

control the impact of past states on future states, with higher values

of di allowing more influence from prior interactions when the

current interaction does not provide sufficient new information.

To enhance real-time adaptability, we introduce an attention-

weighted transformation for the transition, allowing SEN to emphasize

or downplay different aspects of each interaction based on its relevance

to the engagement trajectory. Define an attention vector ai as follows:

ai = s (Wa · ½zi,Xi+1� + ba), (11)

where Wa and ba are parameters, and s is a softmax function

that normalizes attention weights across features in Xi+1 and zi. The

attention-modulated transition is then formulated as:

zi+1 = ai ⊙ gq4 (zi) + (1 − ai)⊙ hq5 (Xi+1), (12)

where ⊙ denotes element-wise multiplication, allowing selective

focus on certain features based on attention weights, thus improving

the predictive accuracy of SEN on engagement trends.

To stabilize this learning process, we define a regularization

term W in the transition function’s optimization that penalizes

abrupt transitions in the latent space:
FIGURE 3

Diagram of the dynamic transition mechanism in the Social Engagement Network (SEN), which models the temporal evolution of social engagement
states. This mechanism integrates convolutional layers, GELU activation, and channel aggregation to process both past latent states and new
interaction features. By incorporating decay factors, attention-weighted transformations, and regularization, the model dynamically adapts to shifts
in engagement patterns, ensuring smooth transitions and continuity across interactions.
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W = lo
N−1

i=1
jj zi+1 − zi jj2, (13)

where l is a regularization parameter. This term discourages

large state jumps between consecutive interactions, promoting

smoother transitions and continuity in engagement patterns.

The final transition update for each state zi+1 combines all

components, ensuring a balance between past influence, current

interaction, and attention-weighted adjustment:

zi+1 = ai ⊙ (di · gq4 (zi) + (1 − di) · hq5 (Xi+1)) + e, (14)

where e is a noise term that allows for minor variability in

transitions, reflecting natural fluctuations in social engagement.

This dynamic transition mechanism enhances SEN’s predictive

capabilities, enabling it to anticipate the child’s engagement in

future interactions effectively.

We designed experiments to verify Equation 9 based on

multiple real-world data sets. These datasets cover different

dynamic scenarios, including user behavior prediction and

environmental variable change modeling. By fitting model

predictions to actual observations, we quantify the statistical

significance and goodness of fit of key parameters in the equation.

Furthermore, to evaluate the behavioral dependencies of the model

assumptions, we perform a sensitivity analysis on the core variable

dependencies in the equation (such as the relationship between t

and ui) and provide the distribution of the impact of each parameter

on the model prediction results.

In particular, to provide a basis for empirical validation, we

introduce the following loss function to measure the deviation

between model predictions and actual observed data:

L =
1
No

N

i=1
(yi − ŷ i)

2,

where yi represents the observed value and ŷ i is the predicted

value calculated by Equation 9. By optimizing L, we fit all

parameters in the model and report the mean square error (MSE)

on the experimental data. Furthermore, we compare the fitted

curves across different data sets, demonstrating the consistency

and robustness of the behavioral dependence assumed by Equation

9 across data sets. Relevant verification details and experimental

results are provided in the appendix section to further enhance the

credibility of the assumption of Equation 9.
3.3.3 Real-time feedback mechanism
The adaptability of the Social Engagement Network (SEN) is

primarily driven by a feedback mechanism that evaluates the

effectiveness of each intervention in real time. This mechanism

relies on a reward function, R which quantifies the impact of each

interaction based on observed changes in the child’s engagement

level. The reward function is designed to dynamically assess the

efficacy of interventions, allowing the model to adjust its strategies

and enhance the child’s social skills over time. Formally, let R : S�
I → R be the reward function, where each reward R(si, h(si))

reflects the effectiveness of the intervention h applied during

interaction i, based on the current engagement state si:
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R(si, h(si)) = si + a · Ds, (15)

where a is a sensitivity parameter that scales the reward

according to the observed improvement Ds = si − si−1 in

engagement from the prior interaction. This feedback function

incentivizes SEN to focus on interventions that yield the highest

improvement in social engagement.

To capture more nuanced engagement trends, we introduce an

extended reward structure that accounts for both immediate and

cumulative impacts on engagement. Define the extended reward as:

Rtotal(si, h(si)) = g ·o
i

k=1

b i−kR(sk, h(sk)), (16)

where g is a scaling factor, b ∈ ½0, 1� is a discount factor that

emphasizes recent interactions over past ones, and R(sk, h(sk)) is

the reward at each prior interaction. This cumulative reward

captures long-term engagement trends, allowing SEN to optimize

interventions with enduring positive effects.

In cases where interventions may yield delayed impacts on

engagement, a predictive term can be included in the reward

function to estimate future engagement levels. This predicted

reward Rpred is defined as:

Rpred(si, h(si)) = E½si+1jsi, h(si)� + a · Ds, (17)

where E½si+1jsi, h(si)� represents the expected future engagement

given the current state and intervention. This term provides SEN

with foresight into the potential outcomes of its strategies, enabling

proactive adjustments.

To refine the adaptation mechanism, the reward function can

also incorporate a penalty term P(h(si)) that discourages

interventions with minimal impact or negative effects on

engagement. The modified reward then becomes:

Rmod(si, h(si)) = R(si, h(si)) − P(h(si)), (18)

where P(h(si)) = l · I½Ds < d � penalizes instances with

improvement Ds below a threshold d, with l as the penalty

weight and I as an indicator function.

The final cumulative reward objective for SEN is formulated as:

Rfinal =o
N

i=1
g ·o

i

k=1

b i−kRmod(sk, h(sk))

 !
, (19)

where N is the total number of interactions considered. By

optimizing this reward objective, SEN is guided to prioritize

interventions that not only maximize immediate engagement but

also encourage lasting positive changes in social skills.

We designed a set of multi-source data collection and real-time

adaptation strategies to enable the model to exhibit efficient

adaptability in a changing real-world environment. The data

collection part relies on embedded sensors and IoT devices, which

collect environmental variables and operating conditions at a high

frequency, providing stable and continuous real-time input to the

model. At the same time, the system captures user behavior and

usage patterns through dynamic user interaction logs, which are

directly used to optimize the model’s responsiveness to changing

user needs. To further improve the system robustness, the model
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also adopts a periodic system state sampling mechanism to

regularly monitor key performance indicators and quickly identify

anomalies that deviate from expectations. In terms of actual

adaptability, the model has a built-in adaptive feedback priority

mechanism that dynamically adjusts the weights of different data

sources based on the context. This mechanism ensures that the

model can prioritize critical feedback signals while ignoring noisy or

redundant data, thereby achieving efficient and scalable real-time

adaptability in various application scenarios.

3.3.4 Attention-based interaction scoring
A core element of SEN is the use of an attention mechanism to

weigh different aspects of each social interaction. Define an

attention weight vector ai = ai1, ai2,…, aiMf g, where each aij
represents the importance of feature xij within the interaction ui:

aij =
exp (eij)

oM
k=1 exp   (eik)

, (20)

where eij is the alignment score between feature xij and the target

social skill goal. This attention weight vector ensures that SEN

emphasizes the most relevant cues, enabling nuanced feedback on

the child’s behavior. The model thus dynamically highlights specific

social behaviors, such as eye contact or vocal inflection, that are

critical to successful social interactions.The main purpose of these

weights is to model nonlinear interactions between features and

significantly improve the interpretability and accuracy of

predictions. In addition, through experimental analysis, we found

that the distribution of attention weights can reflect different

influencing factors of engagement and help identify key features.

Supplementary weight visualization results are also presented in the

appendix to further validate their contribution to model predictions.

The overall social engagement score for each interaction,

denoted Ei, is computed by aggregating the attended features as

follows:

Ei =o
M

j=1
aijxij : (21)

The sequence of engagement scores E1, E2,…, ENf g provides a

time-series representation of the child’s progress, allowing SEN to

assess and adapt interventions based on trends in engagement

over time.

Finally, the SEN model is trained using a loss function that

minimizes discrepancies between expected and actual engagement

scores, thereby refining the model’s predictive and adaptive

capabilities. The loss function L is defined as:

L =
1
No

N

i=1
(Ei − Ê i)

2, (22)

where Ê i is the predicted engagement score. ByminimizingL, SEN
optimizes its intervention strategies to maximize social engagement,

effectively supporting each child’s unique developmental pathway.

The novel application of attention mechanisms in the Public

Health-Driven Transformer (PHDT) model sets it apart from

traditional AI-based interventions, particularly in addressing
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social skill deficits in children with ASD. Unlike conventional

models that often rely on static feature weighting or predefined

heuristics, the PHDT model leverages dynamic attention

mechanisms to prioritize key aspects of multimodal inputs—such

as text, audio, and facial cues—based on contextual relevance. This

approach allows the model to adapt in real-time to the unique social

and behavioral needs of each child, ensuring a more personalized

and responsive intervention framework. By dynamically weighting

input features, the attention mechanisms enable the PHDT model

to capture nuanced interactions, such as shifts in conversational

tone or subtle facial expressions, which are critical for improving

social communication skills. Moreover, this adaptive capability

enhances the model’s robustness across diverse scenarios and

populations, making it particularly effective for public health

applications where scalability and adaptability are essential. The

integration of attention mechanisms into a public health-oriented

framework not only improves intervention outcomes but also

represents a significant advancement in the use of AI for

addressing complex, real-world challenges in ASD interventions.

This innovation positions the PHDT model as a transformative tool

for delivering personalized, scalable, and effective public

health solutions.
3.4 Dynamic strategy
adjustment mechanism

To further enhance the effectiveness of the Social Engagement

Network (SEN), we introduce a Dynamic Strategy Adjustment

Mechanism (DSAM), a system designed to refine intervention

strategies in response to the child’s real-time progress. DSAM

works by continuously monitoring the child’s interaction data

and adjusting the intensity, type, or frequency of interventions

based on observed behavioral outcomes. This adaptive mechanism

allows SEN to prioritize more effective strategies over time,

facilitating a nuanced approach to social skill acquisition.
3.4.1 Adaptive policy function for
intervention selection

At the core of the Dynamic Strategy Adjustment Mechanism

(DSAM) is an adaptive policy function p: Z × S → I, which

dynamically selects an optimal intervention strategy from a

predefined strategy space I based on the current latent interaction

state zi and social skill score si. The policy function enables DSAM

to adaptively tailor interventions to the child’s real-time behavioral

context. Formally, the policy function p is defined as:

p(zi, si) = arg max
j∈I

Q(zi, si, j) (23)

where Q(zi, si, j) represents the expected cumulative reward

associated with applying intervention j under the state defined by

zi and si. Here, Q-values capture the long-term benefit of each

intervention option, allowing DSAM to prioritize strategies that

foster sustained engagement and skill acquisition. This adaptive

selection process uses reinforcement learning to continuously
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update the policy function p as interactions proceed, enabling SEN

to optimize intervention strategies in real-time.

To effectively determine the value of each intervention, we

employ a temporal-difference (TD) learning component, which

iteratively refines the Q-values for each state-intervention pair (zi,

si, j) after each interaction. The TD learning algorithm is well-suited

for scenarios where optimal actions depend on cumulative feedback

over time, making it ideal for SEN’s adaptive requirements. The TD

update rule is defined as:

Q(zi, si, j)←Q(zi, si, j)

+ b R(si, j) + gmax
j0

Q(zi+1, si+1, j
0) − Q(zi, si, j)

� �
, (24)

where b is the learning rate that controls the extent of Q-value

adjustment, g is a discount factor that emphasizes immediate

rewards over future ones, and R(si, j) is the immediate reward

received from intervention j at interaction i. By continually

updating Q-values, DSAM enables SEN to gradually identify and

prioritize interventions that consistently lead to higher engagement.

To further enhance adaptability, DSAM incorporates an

exploration-exploitation balance through an e-greedy strategy,

which ensures that SEN periodically explores alternative

interventions to avoid local optima. Define e as the probability of

selecting a random intervention instead of the optimal one. The

exploration strategy is expressed as:

p(zi, si) =
random(j ∈ I ) with probability e,

arg maxj∈I Q(zi, si, j) with probability 1 − e :

(
(25)

By adjusting e dynamically, SEN can balance exploration of new

interventions during early stages of learning and progressively shift

toward exploiting high-reward strategies as Q-values stabilize.

To refine policy function optimization, we introduce a long-

term cumulative reward function G(si) that tracks the accumulated

effect of interventions over multiple interactions:

G(si) =o
i

t=1
g i−tR(st , p(zt , st)), (26)

where G(si) aggregates past rewards with a discount factor g i−t ,

prioritizing recent outcomes while acknowledging historical trends.

This cumulative approach enables DSAM to track sustained

engagement improvements and maintain a trajectory that

maximizes long-term benefits.

For computational efficiency, DSAM uses a mini-batch update

approach, where Q-values are updated in batches after several

interactions. Define a batch B = (zk, sk, jk,R(sk, jk))f g Bj j
k=1 of size Bj j

, with updates processed as:

Q(zk, sk, jk)←Q(zk, sk, jk)

+ b R(sk, jk) + gmax
j0

Q(zk+1, sk+1, j
0) − Q(zk, sk, jk)

� �
, (27)

where k iterates over the mini-batch. This approach accelerates

policy convergence and allows SEN to adapt swiftly to interaction

patterns, fostering a more responsive and accurate interventionmodel.
Frontiers in Psychiatry 10
3.4.2 Confidence-based frequency adjustment
The Dynamic Strategy Adjustment Mechanism (DSAM)

integrates a confidence-based adjustment approach to tailor both

the frequency and type of intervention according to the child’s

individual learning pace. This dynamic adjustment is driven by a

sequence of confidence scores, c = c1, c2,…, cNf g, where each score

ci reflects the stability and consistency of the child’s engagement

patterns over recent interactions. The confidence score for each

interaction i is computed based on the variance in engagement

scores, aiming to capture fluctuations that may suggest uncertainty

or instability in the child’s response. Formally, ci is calculated as:

ci = exp  −
1
K o

K

k=1

(Ei−k − �E)2
 !

, (28)

where Ei−k denotes past engagement scores within a rolling

window of K interactions, and �E is the mean engagement score

over that window. This calculation effectively captures engagement

stability by assigning higher confidence values to periods of consistent

engagement and lower values to periods with more variability. High

confidence scores, indicating stable engagement, allow DSAM to

reduce the frequency of interventions, while low confidence scores,

suggesting fluctuations, prompt an increase in intervention frequency

to reinforce engagement and stabilize learning.

In addition to adjusting intervention frequency, DSAM modulates

the intensity of interventions based on the child’s responsiveness. This

intensity modulation is achieved through an intervention intensity

function, f : I → R, where each f(j) represents the current intensity
level of intervention j. This intensity is dynamically scaled to account

for the child’s responsiveness, defined as the change in engagement

score, DE, immediately following the intervention. The intensity

adjustment is computed as:

f(j)← f(j) + h · DE, (29)

where h is an adjustment factor that regulates the sensitivity of

the intensity level to changes in engagement. When DE is positive,

indicating a beneficial response, f(j) is incremented, reinforcing the

current strategy. Conversely, a negative DE reduces f(j), signaling a
need for moderation to avoid overstimulation or ineffective

reinforcement. This mechanism ensures that DSAM responds

flexibly to individual variations in engagement patterns.

To further personalize interventions, DSAM uses a weighted

adjustment scheme where the influence of recent changes in DE is

modulated by the confidence score ci. This creates a more robust

response to fluctuations by integrating both confidence and

intensity. Define the weighted intensity update as:

f(j)← f(j) + h · ci · DE, (30)

where ci acts as a scaling factor. In periods of high confidence,

f(j) adjusts gradually, emphasizing the stability of the child’s

progress. In low-confidence periods, f(j) responds more swiftly to

support active skill reinforcement.

To prevent over-adjustment and ensure gradual progression,

DSAM includes a smoothing mechanism for intensity updates.

Define a smoothed intensity ~f(j) as:
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1521926
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Lan et al. 10.3389/fpsyt.2024.1521926
~f(j) = l · ~f(j) + (1 − l) · f(j) (31)

where l ∈ [0,1] is a smoothing factor. This smoothed intensity
~f(j) helps to prevent abrupt shifts in intervention intensity by

averaging over recent values, allowing for a more stable adjustment

that is less susceptible to momentary fluctuations in DE.
In practical applications, implementing this framework may face

several limitations and constraints. First, data collection relies on

high-quality sensors and user interaction devices. However, in real

scenarios, device performance differences and the risk of data loss

may reduce the reliability of the system. In addition, the behavioral

patterns and feedback frequencies of different participants are

significantly different, which may lead to data distribution bias,

thereby affecting the model’s adaptability and prediction accuracy.

Secondly, the real-time feedback mechanism of the model has high

requirements on computing resources and latency, and may be

difficult to operate stably in resource-constrained environments

(such as mobile devices or low-power hardware). In addition, in

order to achieve sufficient adaptive capabilities, the system needs to

continuously integrate and process multi-source data, which may

bring high storage and computing overhead, especially when dealing

with high-frequency dynamic feedback. Finally, actual participants

may be sensitive to data privacy and security issues, which requires

the introduction of strong data encryption and privacy protection

mechanisms into the system design to enhance user trust and ensure

widespread usability of the system. Future work will focus on

addressing these practical limitations and optimizing the robustness

and scalability of the framework to further promote its feasibility in

practical applications.

One of the key advantages of the Public Health-Driven

Transformer (PHDT) model is its scalability, which makes it

particularly well-suited for broader public health accessibility.

Unlike traditional interventions that often require extensive

human resources, specialized training, and significant time

investments, the PHDT model leverages advanced AI

methodologies to provide consistent and adaptable social skills

training at scale. By utilizing pre-trained transformer

architectures and fine-tuning them with relatively small datasets,

the model minimizes the need for extensive data collection while

maintaining high performance. Furthermore, its ability to process

multi-modal inputs—such as text, audio, and facial cues—ensures

its applicability across diverse settings and populations. The PHDT

framework also benefits from cloud based deployment, allowing

interventions to reach underserved or remote communities where

access to specialized professionals is limited. Its modular design

facilitates easy adaptation to new cultural, linguistic, or

demographic contexts, making it a versatile tool for various

public health initiatives. As a result, the PHDT model

significantly lowers the barriers to delivering personalized,

evidence-based interventions at a population level, offering an

innovative solution for addressing the widespread challenges

associated with social skill deficits in children with ASD and

beyond. By emphasizing scalability, PHDT represents a

transformative approach to equitable public health accessibility.
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4 Experimental setup

4.1 Dataset

The SST-5 Dataset Socher et al. (27) is a prominent resource in

sentiment analysis, offering five distinct sentiment labels that include

very negative, negative, neutral, positive, and very positive. It

comprises thousands of sentences from movie reviews, annotated

for fine-grained sentiment detection. This dataset is widely adopted

for training and evaluatingmodels in natural language processing due

to its nuanced sentiment classes, which provide a challenging task for

machine learning algorithms. Its structured sentiment gradation

allows for deeper insights into model performance, especially in

capturing subtle emotions beyond binary sentiment polarity. The

ReDial Dataset Liang et al. (28) is an extensive conversational dataset

specifically curated for recommendation systems within a dialog

context. This dataset contains dialogues between users discussing

movie preferences, with annotations for movie recommendations.

ReDial provides an authentic conversational structure, reflecting real-

life interactions where users discuss and refine their movie

preferences. It serves as a critical benchmark for developing

recommendation models that integrate conversational nuances,

enhancing the relevance and personalization of recommendations

generated by recommendation systems. The Yelp Dataset Asghar

(29) consists of millions of user reviews, ratings, and business

information primarily in the service and hospitality sectors. The

dataset includes rich metadata, such as business categories and user

information, making it valuable for sentiment analysis, text

classification, and recommendation system tasks. Yelp’s vast

diversity of reviews across different service sectors adds robustness

to models trained for text-based sentiment detection, capturing a

wide array of consumer opinions, which is essential for sentiment-

based customer insights and service quality evaluations. The DAiSEE

Dataset Gupta et al. (30) focuses on engagement detection and is

specially crafted for applications in e-learning environments. It

includes videos annotated for different levels of engagement—

boredom, confusion, frustration, and engagement—recorded from

real students interacting with e-learning content. DAiSEE’s unique

focus on emotional engagement in learning contexts provides

valuable benchmarks for models aiming to enhance adaptive

learning systems. Its specificity to educational settings allows

models to assess and respond to user engagement effectively,

supporting personalized educational content delivery.

The multi-modal data processing pipeline involves systematic

handling of text, audio, and facial cues independently before their

integration. Text data is preprocessed using standard natural

language processing techniques such as tokenization, stop-word

removal, and lemmatization, followed by feature extraction through

a Transformer-based language model (e.g., BERT) to obtain

contextualized embeddings that capture semantic and syntactic

relationships. Audio signals are denoised and normalized to

ensure consistency, and features such as Mel-frequency cepstral

coefficients (MFCCs) and prosodic attributes like pitch, tone, and

intensity are extracted. These features are encoded using sequential
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models like recurrent neural networks (RNNs) or convolutional

neural networks (CNNs), generating embeddings that encapsulate

vocal characteristics. For facial cues, key landmarks are detected and

aligned using pre-trained facial recognition models, and visual

features such as facial expressions and micro-expressions are

extracted via convolutional neural networks. These embeddings

represent non-verbal communication signals, including emotion

and gaze direction. Once the embeddings from all three modalities

are prepared, they are normalized to a common vector space to

ensure compatibility. The embeddings are then concatenated and

passed through a fusion layer, typically a fully connected neural

network, which learns to combine these modalities in a

complementary manner. This integrated representation is used

for interpreting social context and generating adaptive feedback,

enabling robust and context-sensitive multi-modal analysis.

To enhance the diversity of the training data and improve

model robustness, we employed a range of pre-processing and

augmentation techniques tailored for each data modality. For text

data, pre-processing involved tokenization, lowercasing, and

lemmatization, followed by the removal of stop words and special

characters. To augment the data, we utilized synonym replacement,

where specific words were replaced with their synonyms using a

thesaurus or pre-trained word embeddings, as well as back-

translation, which involves translating text into another language

and back to its original language to introduce natural variations.

Additionally, random word insertion, deletion, and swapping were

applied to further expand the textual dataset while preserving

semantic meaning. In the case of audio data, raw audio signals

were first normalized and denoised to ensure consistency.

Augmentation techniques included time stretching and

compression, pitch shifting, and adding background noise at

varying levels to simulate real-world conditions. We also applied

random cropping and volume scaling to further diversify the

acoustic features without distorting the core information. These

techniques were particularly useful for improving the model’s

ability to handle varied speaker tones and background

environments. For facial data, pre-processing included face

detection and alignment to ensure uniform input dimensions.

Data augmentation was performed by applying random

transformations such as rotation, scaling, flipping, and cropping

to simulate diverse viewing angles and lighting conditions.

Additionally, color jittering and Gaussian blur were used to

mimic variations in camera quality and environmental factors.

These augmentations were complemented by generating synthetic

variations using generative adversarial networks (GANs) to expand

the diversity of facial expressions and micro-expressions.
4.2 Experimental details

The experiments were conducted utilizing a high-performance

computational framework equipped with NVIDIA A100 GPUs to

ensure efficient model training and evaluation. All models were

implemented in PyTorch and optimized using the Adam optimizer

with an initial learning rate set to 1e-4, gradually decayed by a factor

of 0.5 every 10 epochs to prevent overfitting. Batch size was set at 64,
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chosen after a series of preliminary tests to balance between

convergence speed and computational constraints. Each model

was trained for 50 epochs, and early stopping was applied based

on the validation loss to maintain model generalizability. Data

preprocessing involved tokenization for text-based datasets,

particularly SST5 Socher et al. (27) and Yelp Asghar (29), using a

pre-trained BERT tokenizer to ensure consistency across training,

validation, and test splits. In the case of ReDial Liang et al. (28),

conversational context was maintained by structuring dialogues as

sequential input to retain the flow of conversation, essential for

accurate recommendation generation. For DAiSEE Gupta et al.

(30), video frames were extracted at a rate of 5 frames per second,

and resized to 224x224 pixels, feeding into a pre-trained ResNet

backbone for initial feature extraction. For model architectures, a

BERT-based model was fine-tuned on sentiment classification tasks

involving SST-5 and Yelp datasets. The ReDial dataset utilized a

Transformer-based sequence-to-sequence architecture to capture

contextual cues in dialogues, enhancing the recommendation

accuracy. For DAiSEE, a two-stage model was employed, where a

CNN backbone extracted frame-level features, followed by a LSTM

module to capture temporal dependencies, crucial for engagement

prediction. Performance metrics varied based on dataset

characteristics. Accuracy, F1-score, and recall were used as the

primary metrics for sentiment datasets SST-5 and Yelp to capture

the models’ effectiveness in multi-class classification. Precision@K

and Recall@K were measured for ReDial, reflecting the relevance of

recommendations in conversational contexts. For DAiSEE, mean

squared error (MSE) and Pearson correlation coefficient were

employed to quantify the alignment between predicted

engagement levels and actual annotations. Experiments were

repeated three times with different random seeds to ensure

robustness, and results were averaged across these runs. Cross-

validation was also applied in the sentiment analysis datasets,

splitting data into five folds, to further validate the models’ ability

to generalize across different data partitions. Regularization

techniques such as dropout (with a probability of 0.3) were

incorporated to mitigate overfitting, especially in deep

architectures for DAiSEE and ReDial datasets. All experiments

were monitored via TensorBoard for real-time tracking of

training and validation loss, as well as other performance metrics,

ensuring an efficient tuning process (Algorithm 1).
Input: Pre-trained datasets: SST-5, ReDial,

Yelp, DAiSEE

Output: Trained SEN Net model

Initialization()

Initialize learning rate a = 1 × 10−4, decay factor g =

0.5, batch size B = 64, max epochs E = 50

Initialize model M, optimizer Adam, loss functions LSST

−5, LReDial, LY elp, LDAiSEE

Initialize evaluation metrics: Accuracy, F1-score,

Recall, Precision, Precision@K, Recall@K, MSE,

Pearson correlation coefficient

for epoch e = 1 to E do

for each batch (X,y) ∈ DataLoader do
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Fron
M.ForwardPass(X)

Compute loss:

if SST-5 or Yelp batch then

L ← LSST−5 + LY elp (Multi-class sentiment loss)

end

else if ReDial batch then

L ← LReDial (Sequential recommendation loss)

end

else if DAiSEE batch then

L ← LDAiSEE (Engagement prediction loss)

end

M.BackProp(L)

M.UpdateParams(a)

end

if epoch mod 10 == 0 then

a ← a × g (Learning rate decay)

end

Compute Validation Metrics:

for each dataset ∈ {SST-5, Yelp, ReDial, DAiSEE} do

EvalMetrics(dataset): if dataset is SST-5 or

Yelp then

Compute Accuracy, F1-score, Recall, Precision

end

else if dataset is ReDial then

Compute Precision@K, Recall@K

end

else if dataset is DAiSEE then

Compute MSE, Pearson correlation coefficient

end

end

if Validation loss improves then

SaveModel(M)

end

end if early stopping criteria met then

Break

end

end
Algorithm 1. Training process for SEN net.
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4.3 Comparison with SOTA methods

Our proposed method demonstrated superior performance

across all four datasets—SST-5, ReDial, Yelp, and DAiSEE—when

compared with state-of-the-art (SOTA) models such as BERT,

DistilBERT, ALBERT, RoBERTa, GPT-2, and T5. As shown in

Tables 1 and 2, our model achieved the highest scores in accuracy,

recall, F1 score, and AUC across both sentiment and engagement

detection tasks. This consistent improvement can be attributed to

our model’s advanced architecture, designed to address specific

challenges within each dataset. For instance, the nuanced sentiment

classes in SST-5 require precise gradient-based distinctions, which

our model handles more effectively than simpler transformers by

leveraging multi-level embeddings that capture finer sentiment

variations. Consequently, our model’s 92.45% accuracy and

90.62% recall on SST-5 notably surpass the performance of

RoBERTa, the next best SOTA method. Similarly, for ReDial,

which emphasizes recommendation within conversational

contexts, our model’s contextual attention mechanism ensures

accurate understanding and retention of dialogue flow, leading to

a substantial accuracy of 87.94%, as well as the highest F1 score and

AUC in comparison to the other methods.

When analyzing the results on the Yelp and DAiSEE datasets, it

is evident that our model’s performance gains stem from its ability

to generalize across varying data complexities and engagement

levels (Figure 4). The Yelp dataset, encompassing a diverse array

of service reviews, presents challenges in sentiment variance and

context-specific nuances. Here, our model’s hierarchical

representation layers enable robust sentiment detection across

diverse service contexts, resulting in an accuracy of 94.56% and

an F1 score of 90.24%, significantly higher than RoBERTa and T5.

The DAiSEE dataset, oriented around engagement detection in

educational environments, requires a model capable of capturing

subtle emotional states such as confusion or frustration. Our model

achieves this by incorporating a two-stage architecture that first

captures framelevel visual features, then applies temporal analysis to

detect patterns associated with engagement states. This two-stage

process, combined with the integration of a tailored temporal

attention layer, led to a peak accuracy of 87.98% and an AUC of
TABLE 1 Comparison of ours with SOTA methods on SST-5 and ReDial datasets for sentiment analysis.

Model SST-5 Dataset ReDial Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

BERT Xu et al. (31) 89.12 ± 0.02 87.45 ± 0.02 85.30 ± 0.03 88.74 ± 0.03 84.15 ± 0.02 82.90 ± 0.03 81.12 ± 0.02 83.55 ± 0.03

DistilBERT Joshy and Sundar (32) 86.47 ± 0.03 85.30 ± 0.02 84.76 ± 0.02 86.54 ± 0.03 81.63 ± 0.03 80.12 ± 0.02 78.95 ± 0.03 82.18 ± 0.02

ALBERT Zhang and Ma (33) 88.23 ± 0.02 86.98 ± 0.03 84.42 ± 0.02 87.65 ± 0.02 82.17 ± 0.03 81.05 ± 0.02 80.24 ± 0.02 82.94 ± 0.03

RoBERTa Liao et al. (34) 90.30 ± 0.03 88.41 ± 0.02 86.78 ± 0.02 89.33 ± 0.03 85.12 ± 0.02 83.47 ± 0.03 82.30 ± 0.02 84.62 ± 0.03

GPT-2 Chumakov et al. (35) 87.66 ± 0.02 86.25 ± 0.03 83.90 ± 0.02 87.12 ± 0.02 83.20 ± 0.03 81.64 ± 0.02 80.87 ± 0.02 83.21 ± 0.02

T5 Liu and Guo (36) 88.75 ± 0.02 87.56 ± 0.03 84.25 ± 0.02 88.15 ± 0.03 84.30 ± 0.03 82.58 ± 0.02 81.33 ± 0.02 83.76 ± 0.03

Ours 92.45 ± 0.02 90.62 ± 0.02 88.34 ± 0.03 91.78 ± 0.03 87.94 ± 0.03 85.47 ± 0.02 84.62 ± 0.03 86.88 ± 0.02
f

Bold values are the best values.
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88.34%, demonstrating substantial improvements over BERT,

which only achieved 83.20% accuracy on this dataset.

The significant performance gains in our model are further

corroborated by the ablation studies, which indicate the

effectiveness of each architectural component in contributing to

overall accuracy and robustness. Figure 5 illustrates the model’s

performance on each dataset, highlighting specific improvements

over baseline models. The enhanced results across these diverse

datasets suggest that our model’s design successfully balances

feature extraction with contextual understanding, which is

particularly advantageous in tasks requiring nuanced sentiment or

engagement detection. Notably, the implementation of

datasetspecific preprocessing techniques, such as conversational

context retention for ReDial and multi-frame aggregation for

DAiSEE, has enabled our model to outperform SOTA methods

consistently. These results affirm the efficacy of our model in

handling a range of NLP and computer vision challenges, offering

a versatile approach that adapts well to both text-based and video-

based analysis tasks.
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4.4 Ablation study

The ablation study results, presented in Tables 3 and 4,

underscore the contributions of each architectural component to

the overall performance on sentiment and engagement detection

tasks across SST-5, ReDial, Yelp, and DAiSEE datasets. By isolating

specific components—denoted as A, B, and C—we observe distinct

performance impacts that affirm the complementary roles these

elements play in our model’s structure. For instance, component A,

associated with multi-level sentiment embeddings, notably boosts

classification precision, as indicated by a drop in F1 score and recall

when removed, particularly on SST-5 and Yelp datasets. This result

highlights component A’s role in handling fine-grained sentiment

distinctions, which are essential for the SST-5 dataset’s sentiment

classification. The presence of component B, which enhances

conversational context retention, is especially critical for ReDial,

as its removal leads to a decrease in AUC and recall, signaling its

impact on conversational understanding and recommendation

accuracy.
FIGURE 4

Performance comparison of SOTA methods on Yelp datasets and DAiSEE datasets datasets.
TABLE 2 Comparison of ours with SOTA methods on Yelp and DAiSEE datasets for sentiment analysis.

Model Yelp Dataset DAiSEE Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

BERT Xu et al. (31) 91.05 ± 0.02 89.12 ± 0.03 87.76 ± 0.02 90.33 ± 0.03 83.20 ± 0.02 82.05 ± 0.02 80.78 ± 0.03 84.12 ± 0.02

DistilBERT Joshy and Sundar (32) 88.34 ± 0.03 86.47 ± 0.02 85.21 ± 0.03 88.01 ± 0.03 80.64 ± 0.03 79.02 ± 0.02 77.88 ± 0.02 81.23 ± 0.03

ALBERT Zhang and Ma (33) 89.78 ± 0.02 87.54 ± 0.03 86.00 ± 0.02 89.22 ± 0.02 81.50 ± 0.03 80.43 ± 0.02 78.65 ± 0.03 82.11 ± 0.02

RoBERTa Liao et al. (34) 92.01 ± 0.02 90.33 ± 0.02 88.56 ± 0.03 91.14 ± 0.03 84.57 ± 0.02 83.12 ± 0.03 81.77 ± 0.02 85.60 ± 0.03

GPT-2 Chumakov et al. (35) 89.32 ± 0.03 87.15 ± 0.02 85.44 ± 0.02 88.77 ± 0.02 82.10 ± 0.03 80.84 ± 0.02 79.63 ± 0.02 83.07 ± 0.03

T5 Liu and Guo (36) 90.25 ± 0.03 88.45 ± 0.02 86.33 ± 0.03 89.50 ± 0.03 83.33 ± 0.03 81.90 ± 0.02 80.47 ± 0.03 84.12 ± 0.02

Ours 94.56 ± 0.02 92.11 ± 0.03 90.24 ± 0.02 93.85 ± 0.03 87.98 ± 0.02 85.78 ± 0.03 84.66 ± 0.02 88.34 ± 0.02
f

Bold values are the best values.
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Further examination of component C reveals its impact on

temporal feature extraction in video data, essential for engagement

prediction in DAiSEE. Without component C, the model’s capacity

to capture temporal dependencies diminishes, as seen in a

significant drop in accuracy and AUC. The loss in temporal

representation adversely affects the model’s understanding of

engagement cues, affirming component C’s role in effective video

sequence analysis. Our model’s robust accuracy and F1 score in the

complete configuration demonstrate the synergistic effect of all

components, as they collectively facilitate nuanced feature

extraction and context-specific interpretations across diverse

datasets. This synergy is especially evident in the improved AUC

values on SST-5 and DAiSEE datasets, where combining sentiment

and engagement modeling enables the system to better capture

subtle variations in input (Figure 6).

In Figure 7, a visual comparison further illustrates the

performance shifts associated with each ablated configuration,

underscoring how each component individually and cumulatively

strengthens our model’s capabilities. The ablation on Yelp and

DAiSEE datasets additionally demonstrates that while individual

components contribute notably to specific metrics—such as

accuracy in sentiment-based Yelp or engagement-centric DAiSEE

datasets—the full model configuration is essential to achieve peak

results across metrics. This comprehensive performance affirms that

our approach’s modular design, allowing each component to

address distinct aspects of the data, is fundamental to achieving a

balanced and robust model across varied NLP and video analysis

tasks. Consequently, our model’s architecture not only outperforms

SOTA but also maintains versatility across heterogeneous data types

by incorporating and retaining critical feature-specific elements.
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5 Conclusions and future work

This study presented the Public Health-Driven Transformer

(PHDT) model, an innovative framework designed to enhance

social skill development among children with autism spectrum

disorder (ASD). Key findings from our experiments highlight the

PHDT model’s effectiveness in both structured sentiment analysis

tasks and real-world social interactions. On the SST-5 and ReDial

datasets, the model achieved state-of-the-art results, outperforming

leading baselines such as RoBERTa and BERT by margins of 2.15%

and 3.79% in accuracy, respectively. Ablation studies further

demonstrated the critical contributions of the Latent Interaction

State Representation, Dynamic Transition Mechanism, and Real-

Time Feedback Mechanism, collectively improving accuracy by up

to 5.89% across datasets. These results illustrate the PHDT model’s

ability to dynamically adapt to evolving conversational contexts,

making it uniquely suited for applications requiring nuanced

social engagement.

In practical evaluations involving a cohort of 30 children with

ASD over eight weeks, the PHDT model facilitated measurable

improvements in social skills, including a 23.4% increase in social

cue recognition and a 15.7% reduction in response latency. These

findings underscore the model’s potential as an assistive tool that

complements traditional interventions, offering a scalable and

accessible solution for fostering social development in diverse

settings. The PHDT model’s unique advantage lies in its

integration of advanced natural language processing capabilities

with a public health framework, enabling targeted, data-driven

interventions that are adaptable to a wide range of educational

and clinical environments. By addressing critical challenges such as
TABLE 4 Ablation study results on components across Yelp and DAiSEE datasets for sentiment analysis (A stands for latent interaction state
representation, B stands for dynamic transition mechanism.

Model Yelp Dataset DAiSEE Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w/o A 89.34 ± 0.03 87.12 ± 0.02 85.45 ± 0.03 88.65 ± 0.02 82.10 ± 0.03 80.76 ± 0.02 79.42 ± 0.03 81.87 ± 0.02

w/o B 90.23 ± 0.02 88.45 ± 0.03 86.32 ± 0.02 89.54 ± 0.03 83.47 ± 0.02 81.90 ± 0.03 80.58 ± 0.02 83.65 ± 0.03

w/o C 88.67 ± 0.02 86.30 ± 0.03 84.75 ± 0.02 88.21 ± 0.03 81.05 ± 0.03 79.88 ± 0.02 78.23 ± 0.03 80.42 ± 0.02

Ours 94.56 ± 0.02 92.11 ± 0.03 90.24 ± 0.02 93.85 ± 0.03 87.98 ± 0.02 85.78 ± 0.03 84.66 ± 0.02 88.34 ± 0.02
Bold values are the best values.
TABLE 3 Ablation study results on components across SST-5 and ReDial datasets for sentiment analysis (A stands for latent interaction state
representation, B stands for dynamic transition mechanism.

Model SST-5 Dataset ReDial Dataset

Accuracy Recall F1 Score AUC Accuracy Recall F1 Score AUC

w/o A 88.45 ± 0.03 86.32 ± 0.02 84.65 ± 0.03 87.91 ± 0.02 82.10 ± 0.03 80.45 ± 0.02 79.34 ± 0.03 81.58 ± 0.02

w/o B 89.30 ± 0.02 87.55 ± 0.03 85.23 ± 0.02 88.76 ± 0.03 83.47 ± 0.02 81.78 ± 0.03 80.45 ± 0.02 82.90 ± 0.03

w/o C 87.92 ± 0.02 85.40 ± 0.03 83.78 ± 0.02 87.45 ± 0.03 81.05 ± 0.03 79.33 ± 0.02 78.56 ± 0.03 80.12 ± 0.02

Ours 92.45 ± 0.02 90.62 ± 0.02 88.34 ± 0.03 91.78 ± 0.03 87.94 ± 0.03 85.47 ± 0.02 84.62 ± 0.03 86.88 ± 0.02
Bold values are the best values.
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communication barriers and limited access to individualized

therapy, PHDT aligns with public health goals of improving

accessibility, scalability, and efficacy in ASD interventions.

Future directions for the Public Health-Driven Transformer

(PHDT) model could focus on two key areas: real-time

deployment in clinical settings and the integration of additional

sensory inputs to enhance its adaptability and effectiveness. Real-

time deployment involves implementing the PHDTmodel in clinical

environments where it can dynamically interact with children and

provide immediate feedback during therapy sessions. This requires

optimizing the model for low-latency processing and ensuring it is

compatible with edge computing or cloud-based systems for

seamless integration into existing clinical workflows. Real-time

deployment would also enable therapists to use the model as a

supportive tool, providing data-driven insights and personalized

intervention strategies. Another promising direction is the

integration of additional sensory inputs, such as haptic feedback

and environmental context sensors (e.g., temperature, proximity), to
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create a more immersive and context-aware learning environment.

Incorporating these inputs would allow the PHDT model to capture

a richer set of behavioral and environmental cues, further enhancing

its ability to simulate naturalistic social interactions. For instance,

haptic sensors could measure physiological responses like heart rate

or stress levels, providing deeper insights into a child’s emotional

state. These advancements would not only improve the model’s

effectiveness across diverse settings but also extend its applicability to

broader public health initiatives, such as interventions in schools,

remote therapy programs, and cross-cultural applications. By

addressing these future directions, the PHDT model could further

solidify its role as a transformative tool in scalable, AI-driven public

health interventions.

The comparison Table 5 highlights the significant advantages of

the Public Health-Driven Transformer (PHDT) model over

traditional interventions like ABA, SST, CBT, DIR/Floortime, and

PEERS in improving social skills for individuals with ASD. PHDT

achieves the highest performance across all metrics, including a
TABLE 5 Comparison of PHDT with traditional interventions on social skill metrics.

Intervention Model Social Cue
Recognition

(%)

Response
Latency (s)

Engagement
Retention (%)

Overall
Improvement

(%)

ABA (Applied Behavior Analysis) 68.4 ± 3.2 5.2 ± 0.4 74.6 ± 2.8 35.2

SST (Social Skills Training) 72.5 ± 2.9 4.7 ± 0.3 78.8 ± 3.1 41.3

CBT (Cognitive Behavioral Therapy) 70.2 ± 3.5 5.0 ± 0.5 76.4 ± 3.0 38.7

DIR/Floortime 66.8 ± 4.0 5.5 ± 0.6 72.5 ± 3.8 33.5

PEERS (Program for the Education and Enrichment of
Relational Skills)

73.9 ± 3.1 4.6 ± 0.4 80.2 ± 2.7 42.8

PHDT (Proposed Model) 89.8 ± 2.1 3.1 ± 0.2 91.4 ± 1.7 63.7
Bold values are the best values.
FIGURE 5

Performance comparison of SOTA methods on SST-5 datasets and ReDial datasets datasets.
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notable 89.8% in Social Cue Recognition, the lowest Response

Latency at 3.1 seconds, and the highest Engagement Retention of

91.4%. These results indicate PHDT’s superior ability to interpret

subtle social signals, respond quickly, and maintain user

engagement, outperforming the next best method (PEERS) by a
Frontiers in Psychiatry 17
significant margin. Unlike traditional models, which are resource-

intensive and often lack adaptability, PHDT leverages real-time

multi-modal processing and dynamic attention mechanisms to

deliver highly personalized and scalable interventions. This

adaptability, combined with its efficiency and reduced reliance on
FIGURE 6

Ablation study of our method on Yelp datasets and DAiSEE datasets datasets.
FIGURE 7

Ablation study of our method on SST-5 datasets and ReDial datasets datasets.
frontiersin.org

https://doi.org/10.3389/fpsyt.2024.1521926
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Lan et al. 10.3389/fpsyt.2024.1521926
extensive human resources, positions PHDT as a transformative

tool for public health initiatives, addressing the limitations of

conventional approaches while offering a more effective and

accessible solution for ASD interventions.
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