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The reproducibility and replicability of experimental findings is an essential

element of the scientific process. The machine-learning community has a

long-established practice of sharing data sets so that researchers can report

the performance of their models on the same data. In the area of speech analysis,

and more specifically speech of individuals with mental health and

neurocognitive conditions, a number of such data sets exist and are the

subject of organized “challenge tasks”. However, as the complexity of the

available relevant software libraries and their parameters increases, we argue

that researchers should not only share their data but also their preprocessing and

machine learning configurations so that their experiments may be fully

reproduced. This is why we have designed and developed a suite of

configurable software pipelines with Python Luigi for speech-data

preprocessing, feature extraction, fold construction for cross-validation,

machine learning training, and label prediction. These components rely on

state-of-the-art software libraries, frequently used by researchers, and

implement many typical tasks in this field, i.e., scikit-learn, openSMILE,

LogMMSE, so that, given the configuration parameters of each task, any

underlying experiments can be readily reproduced. We have evaluated our

platform by replicating three different machine learning studies, with the aim of

detecting depression, mild cognitive impairment, and aphasia from speech data.
KEYWORDS

speech analysis, digital mental health, depression, dementia, aphasia, machine learning
for speech audio, software pipeline for speech signal processing
1 Introduction

The global burden of mental health disorders and cognitive decline is substantial, with

statistics indicating a pressing need for innovative solutions. According to the World

Health Organization (WHO), depression affects over 280 million people worldwide (1),

while Alzheimer’s disease and other forms of dementia impact an estimated 55 million
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individuals (2). Moreover, the prevalence of these conditions is

expected to rise significantly in the coming years, posing challenges

to healthcare systems worldwide (3). Consequently, there is a

growing demand for digital solutions that could enable more

timely and accessible support to those in need. In response to

these challenges, researchers have increasingly turned to speech and

vocal tone-oriented systems, empowered by advances in artificial

intelligence and machine learning, as promising avenues for digital

monitoring and early assessment of mental health conditions and

cognitive impairment when treatment is more effective (4–8).

Experiment reproducibility and replicability are challenges in

machine learning (ML) research. Reproducibility is defined as the

ability to obtain the same precise results of an experiment with

identical conditions (code and configuration) and data.

Replicability refers to getting similar result trends and

conclusions, given that conditions remain identical even if the

data is different. Both concepts are important in ensuring that

findings are verifiable and generalizable. However, analysis shows

that ML research suffers from what is termed the ‘reproducibility

crisis’ (9, 10).

Key challenges identified include the lack of detailed

documentation, restricted access to code and data, and the innate

randomness of machine-learning methods (9–12). This crisis is

acknowledged by the research community at large. An analysis of

INTERSPEECH Conference publications in 2023 (11) found that only

40% of the papers in this venue were published with artifacts (code and

data) and recommended that authors should publish such artifacts and

event organizers should establish reproducibility requirements, similar

to Neural Information Processing Systems (NeurIPS) which

introduced a reproducibility program in 2019. They observed that

the number of works published with artifacts increased and such

artifacts were consulted in reviewing submissions (12).

In addition, data leakage, inadequate model validation, and

exaggerated claims are among the reasons cited for why some

machine learning studies are more difficult to reproduce (13). As of

May 2024, the “Leakage and the Reproducibility Crisis in ML-based

Science” project5 at Princeton’s Center for Information Technology

Policy10 (14) has curated a list of 41 papers from 30 fields where

errors have been found, collectively affecting 648 papers and in some

cases leading to wildly overoptimistic conclusions.

Our work aims to improve the reproducibility and replicability

in speech-analysis experiments through sharing a different type of

artifact. Code repositories are often difficult to reuse due to their

dependencies on third-party libraries. As the field evolves, feature

sets are being standardized, and machine-learning algorithms are

established as benchmarks. Therefore, we have developed a

modular and configurable set of pipelines to perform audio

preprocessing, feature extraction, machine learning training, and

predicting the prevalence and severity of certain mental and

cognitive disorders, where each module encapsulates well-known

algorithms (6, 15–17), explicitly configurable through the algorithm

parameters. Whereas replicating experiments through shared code

is tedious, requiring code and environment adaptations to resolve
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hard-coded data paths and dependencies, replicating an experiment

through our pipeline is simply a matter of selecting the appropriate

algorithms and configuring them with the appropriate parameters.

In this manner, experiments become better documented and easily

studied by writing configuration files and running pipelines with

any valid dataset.

There are two similar works aiming at advancing

reproducibility and replicability in speech analysis. VoiceLab (18)

is a software designed for audio manipulation, analysis, and

visualization. It supports amplitude normalization in addition to a

wide array of preprocessing functionalities currently not included in

our work. However, audio denoising is not currently supported by

VoiceLab, as well as machine learning tasks. TRESTLE (19), on the

other hand, had been designed to extract linguistic and acoustic

features from transcripts and audio recordings, respectively. Its

functionalities include audio format conversion, audio resampling,

Fourier Transformation, and MFCC feature extraction. Again,

TRESTLE does not currently support machine-learning tasks.

Compared to previous work, our pipeline advances the state of

the art in machine learning for speech in two important

dimensions. First, our pipeline supports a broader variety of

features, based on openSMILE (20) and openXBOW (21). Second,

whereas these tools focus on supporting data preprocessing and

feature extraction, our work covers the complete machine-learning

workflow, including data preprocessing, experiment design and

cross-validation, training machine-learning models, and using

them for prediction.
2 Materials

This section describes three datasets used in conducting

experiments to evaluate our software pipeline for training ML

models aimed at predicting three prevalent mental and

neurocognitive disorders: depression, mild cognitive impairment,

and aphasia. Table 1 summarizes some key aspects of the datasets

used in the experiments.

The AVEC 2013 depression dataset (4) consists of recordings

from 84 subjects, between 18 and 63 years old (mean=31.5(± 12.3)).

Every participant was recorded while 1) reading aloud a part of the

fable "The North Wind and the Sun," and 2) while answering one

question, including "what is your favorite dish," "what was your best

gift, and why", and "discuss a sad childhood memory"; both tasks

were in German. The recordings were divided into three partitions:

a training, development, and test set of 150 Northwind-Freeform

pairs. In our work, we used only the training partition. The

recordings were labeled with the Beck Depression Index (BDI) of

the speakers. The scores range from 0 to 63, where 0 indicates

minimal depression and 63 indicates severe depression. The highest

BDI score in this dataset is 45, which may affect the performance of

the proposed system in real-world scenarios.

The INTERSPEECH 2024 TAUKADIAL challenge dataset

consists of Chinese and English speech samples collected while
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the speakers describe a picture, as part of a cognitive assessment

protocol (8). English-speaking participants completed the discourse

protocol and cognitive-linguistic battery, guided by a facilitator. The

discourse protocol tasks include three picture-description tasks: 1)

the "Cookie Theft" picture (22); 2) the "Cat Rescue" picture (23); and

3) the Normal Rockwell print "Coming and Going" (24). Chinese-

speaking participants described a set of three pictures depicting
Frontiers in Psychiatry 03
scenes from Taiwanese culture. For both languages, the participants

with MCI were diagnosed by experts in neuropsychology, according

to the National Institute on Aging-Alzheimer’s Association (NIA-

AA) (25). In this work, we used the 387 training samples to perform

binary classification of MCI (mild cognitive impairment) or NC

(normal control).

In (26), a combination of cognitive tests (Addenbrooke’s

Cognitive Examination III (ACE-III) (27), Mini Linguistic State

Examination (MLSE) (28), and BETA (29)) were used to assess

potential PPA patients. This PPA-Tool collects a larger corpus of

speech recordings across most oral production cognitive areas than

individual cognitive tests like ACE-III and MLSE. The earlier work

analyzed the recordings from the first group of participants, which

included 6 Spanish speakers (4 with PPA and 6 controls). The

dataset used in our current experiments include 12 Spanish

speakers (6 with PPA and 6 controls). This PPA pilot study

focused on the following tasks for the machine learning analysis:

1) Fluency: the verbal fluency tasks from ACE-III; 2) Repetition: the

repetition of words and sentences from the three tests; and 3)

Naming: the picture naming task from MLSE. The verbal fluency

task consists of three subtests: phonological, semantic, and actions.

In these tasks, participants generate as many words as possible

within one minute for each category (words beginning with “p”,

animals, and actions, respectively). The picture naming test involves

naming 20 images presented to the participant. Finally, the

repetition task includes both word and sentence repetition. After

removing silence, the complete study lasted 27 mins, distributed as

follows: Fluency 37%, Repetition 39%, and Naming 24%.
3 Method

In this section, we describe our software pipeline and detail the

experiments carried out to validate it. We demonstrate its

effectiveness by applying it to three datasets described in Section 2.
3.1 The software architecture

Our team took part in the challenges, conducting experiments

on the datasets mentioned above. In this context, we have developed

an extensive code base and substantial experience of the important

algorithmic decisions involved in analyzing speech for determining

mental and cognitive health indicators. To consolidate this code and

experience so that they can benefit new researchers, we have

developed a software system that makes the possible

computational tasks explicit in speech processing for mental

health inference. Figure 1 depicts the overall methodology for

analyzing speech data to construct and evaluate machine learning

models, showcasing the two main pipelines we have implemented,

1) data preprocessing and feature extraction and 2) machine

learning training. Prediction is simply a composition of the data-
TABLE 1 Description of the three datasets used in the experiments.

Property AVEC
2013

TAUKADIAL
2024

PPA pilot study

Mental
Health Condition

Depression Mild Cognitive
Impairment (MCI)

Primary Progressive
Aphasia (PPA)

Machine
Learning Task

Regression Regression
and Classification

Classification

Language German English
and Chinese

Spanish

Speech Task Guided
reading and
freeform
speech

Picture description Verbal fluency test,
work and sentence
repetition, and
picture naming

Cognitive
Assessment
Tool (Range)

Beck
Depression
Index-II
(0-63)

Mini-Mental State
Examination
(0-30)

Expert diagnosis

# Subjects 83 129 12

Average Length
of Samples

< 5 minutes 1 minute 6.69 minutes

# Cross-
Validation
Samples

300 387 246

Sex Distribution no sex
information

237 women;
150 men

0 woman; 246 men

Subject-Wise
Mean Age
(Standard
Deviation)

31.5 (±12.3) 72.7 (±6.4) 71.8 (±4.8)

Sample-Wise
Mean Age
(Standard
Deviation, Range)

31.5 (12.3,
18-63)

MCI: 73.36 (6.14,
61-87)
NC: 71.85 (6.65,
61-87)

71.83 (4.80, 65-79)

Distribution
of Samples

None (0-
13): 154
Mild (14-
19): 44
Moderate
(20-28): 52
Severe (29-
63): 50

MCI: 222
Normal Control
(NC): 165

PPA: 127
NC: 119

Average Score
(Standard
Deviation)

15.1 (12.3) MCI: 25.84 (3.73)
NC: 29.07 (1.07)

–
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preprocessing and feature extraction pipeline and the invocation of

the learned machine-learning model.

3.1.1 Luigi
Our software was implemented with Luigi1 a workflow

management framework in Python, developed by Spotify. Luigi

models workflows as directed acyclic graphs where nodes represent

tasks and edges represent dependencies. Tasks are processes that

have input/s, output/s, and an implementation process. The

dependencies between tasks are modeled by feeding the output of

one task as input for another. This modeling allows the construction

of complex pipelines. When running the pipelines, Luigi

automatically manages various background processes, including

task scheduling, dependency resolution, redundancy avoidance,

and failure recovery. In addition, Luigi provides a dashboard

which tracks the status of tasks.

3.1.2 Data preprocessing and feature extraction
The tasks included in the preprocessing and feature extraction

pipeline and their corresponding parameters are detailed in Table 2.

Running the pipeline requires three inputs: 1) the directory

containing the input data, 2) the directory where the output will

be stored, and 3) the configuration file. The pipeline runs each and

every task specified in the configuration file for all the input files

inside the input directory. It then saves all preprocessing artifacts in

the output directory.

Data preprocessing is composed of four steps: 1) audio format

conversion, 2) audio bit-depth conversion, 3) denoising, and 4)

amplitude normalization. Audio format conversion converts audio

files from one format to another. This task was included in the

pipeline since the succeeding tasks require wav format for the audio

files. This task is performed with pydub’s AudioSegment module2.

It supports all file formats supported by ffmpeg3. Audio bit-depth
1 https://github.com/spotify/luigi

2 https://github.com/jiaaro/pydub

3 https://www.ffmpeg.org/general.html#File-Formats
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conversion converts audio files from one bit-depth type to another.

This task was included as a prerequisite for the denoising task,

which only supports audio files with bit-depth “32-bit floating-

point, 32-bit PCM, 16-bit PCM, and 8-bit PCM”4. Bit-depth

conversion is performed with soundfile5. Denoising is done with

logmmse6. For amplitude normalization, the apply_gain function of

pydub’s AudioSegment module is used. It normalizes the amplitude

of the input audio file with a specified target dBFS.

After the above preprocessing data transformations, feature

extraction is performed with openSMILE (20) and openXBOW

(21). The wide variety of features that can be extracted with

openSMILE is detailed in Table 3. openXBOW computes Bag-of-

Audio-Word (BoAW) features on low-level descriptors (LLDs)

extracted with openSMILE.

3.1.3 Training machine learning models
Typically, k-fold cross-validation is performed to select the

optimal set of hyperparameters for machine learning models. The

parameters for this task are described in Table 4. First, folds are

generated with scikit-learn’s StratifiedGroupKFold module7. This

module ensures that all samples from the same individual belong

only to one partition of a fold, i.e., subject-wise cross-validation. All

segments generated from one sample also belong to one partition in

each fold.

To date, our software supports two machine-learning algorithms

for the classification and regression tasks in the machine-learning

pipeline: Support Vector Machine, a common baseline model (21, 30,

31), and Random Forest, an algorithm that has been shown to perform

competitively in the literature. Expanding the algorithm set would

require additional implementations for these tasks.

The machine-learning pipeline invokes six sub-tasks:
FIGURE 1

Software pipeline for speech processing to infer mental health.
7 https ://sc ik i t- learn .org/stab le/modules/generated/sk learn .

model_selection.StratifiedGroupKFold.html

6 https://github.com/wilsonchingg/logmmse

5 https://python-soundfile.readthedocs.io/en/0.11.0

4 https://github.com/wilsonchingg/logmmse
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Fron
1. Features are standardized with scikit-learn’s StandardScaler
8;

2. Feature selection is performed with scikit-learn’s SelectKBest
9;

3. Hyperparameters are tuned with an internal 5-fold grid

search using scikit-learn’s GridSearchCV
10;

4. Model is retrained with the optimized hyperparameter and

the training folds;

5. The optimized model is validated with metrics specified by

the user; and

6. Optimized models are saved as Python pickle files
11.
This pipeline has three inputs: 1) data, 2) output directory, and

3) configuration. The input data is expected as a csv file containing

the columns id, group, label, and features. Column id pertains to the

unique sample id, while group pertains to the unique subject id.

Similar to the preprocessing and feature extraction pipeline, this

pipeline runs all the tasks specified in the configuration with the

data provided, then saves all artifacts in the output directory.

The artifacts of the k-Fold cross-validation task, for each fold,

are as follows: 1) validation predictions, 2) selected features, 3)

optimal hyperparameters, 4) model, and 5) model performance.

These artifacts could be analyzed to investigate the performance of

the models, for instance, in error analysis.

3.1.4 The pipeline configuration manifest
The two pipelines can be configured with user-defined YAML

configuration manifests; as shown in Tables 5–7. A configuration
ttps://docs.python.org/3/library/pickle.html

https://citp.princeton.edu

ttps:/ /sc ik i t- learn.org/stable/modules/generated/sk learn .

re_selection.SelectKBest.html

t tps: / /sc ik i t- learn.org/stable/modules/generated/sk learn .

rocessing.StandardScaler.htm
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manifest is composed of a name, a description, and a set of tasks.

Each task is defined by a name, a unique id, an input id, and its

parameters. The input id is the unique id of another task, allowing

users to link one task to another. For tasks that require raw inputs,

keyword ‘input’ is reserved as the input id.
4 Experimental evaluation and results

We evaluated our software platform by replicating three studies,

reported in (4, 6, 8, 26). It is important to note that the second study

(6) was led by the second author of this paper, who was the lead

developer of most of the code artifacts used in the software. The

third study was conducted independently by the third and fourth

authors and their code artifacts.
4.1 Experimental setup

The experiments aim to provide baseline model performance with

standard feature sets. The experiments included four feature sets and

two models. The four feature sets are ComParE 2016 functionals,

GeMAPS functionals, eGeMAPS functionals, and Bag-of-Audio-
TABLE 2 Parameters of the preprocessing and feature
extraction pipeline.

Task Task name Parameters

Audio
Format
Conversion

convert format
input format: input file format, e.g., “mp4”,
“mp3” output format: target output file,
e.g., “wav”

Audio Bit-
depth
Conversion

convert
bit depth

bit depth: target bit depth

Denoising denoise
initial noise: (by default, 6)
window size: (by default, 0)
noise threshold: (by default, 0.15)

Amplitude
Normalization

normalize
amplitude

target dbfs: target decibel relative to full
scale (dBFS, by default=-20).

openSMILE
Feature
Extraction

opensmile
feature set: the feature set to be extracted
level: the feature level to be extracted

openXBOW
Feature
Extraction

openxbow

audio book size: number of patterns to
search for
openxbow jar path: path to the openXBOW
jar instance
TABLE 3 Features that can be extracted with openSMILE.

Feature
Set

Level

Low-
Level Descriptors

Functionals LLD
Deltas

ComParE 2016 Yes Yes Yes

GeMAPSv01a Yes Yes No

GeMAPSv01b Yes Yes No

eGeMAPSv01a Yes Yes No

eGeMAPSv01b Yes Yes No

eGeMAPSv02 Yes Yes No
f

TABLE 4 Parameters of the machine learning model training pipeline K-
fold cross validation task.

Sub-tasks Parameters

Fold
Generation

folds: number of folds for K-fold cross-validation
random state: random seed for fold generation
shuffle: shuffle samples or not (boolean)

Model

model task: ‘classification’ or ‘regression’
estimator: ‘svm’ or ‘random forest’
estimator parameters: parameters of the
model estimator

Parameter
Grid

hyperparameters to optimize

Feature
Selection

k percentage: percentage of the number of features to retain

Performance
Evaluation

metrics: ‘accuracy’, ‘precision’, ‘recall’, and ‘f1’ for classification;
‘mae’, ‘mse’, ‘rmse’, and ‘r2’ for regression.
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Words extracted from ComParE 2016 LLDs. These are standard

feature sets reported in the literature (8, 20, 21). The two models are

Support Vector Machine (SVM) and Random Forest (RF). We chose

the algorithms used in the two studies we replicated, i.e., AVEC 2013

baseline (4, 6) and the PPA study (26). In this manner, we demonstrate

the ability of our software pipeline to replicate experimental work.

AVEC 2013 baseline results were reported for SVM and Random

Forest, and the first PPA study reported good performance on tree-

based models, i.e., Random Forest.

We ran the experiments on a MacBook Air with Apple M1 chip (8

CPU cores) at a clock speed of 3.2 GHz, 8 GB memory, and Sequoia

version 15.3.1 operating system. The 8 CPU cores of the system were

utilized during model training by setting GridSearch’s n_job parameter

to -1. The Luigi pipelines support multiprocessing by setting a number

of workers to run multiple tasks in parallel. We however did not utilize

this functionality in the experiments we performed
4.1.1 Data preprocessing and feature extraction
There are 201 WAV files in the TAUKADIAL dataset with bit-

depth PCM-16, while the rest (186 files) were in PCM-24.

Therefore, the preprocessing included bit-depth conversion to

PCM 16 before denoising and amplitude normalization. The

denoising and amplitude normalization tasks were configured

with the parameters detailed in Table 5. The four feature sets

were then extracted from the preprocessed audio files. For BoAW

features, audio_book_size=500 features were extracted.

The AVEC 2013 dataset underwent the same preprocessing,

with an additional MP4-to-WAV conversion step. The same

four feature sets were extracted, including BoAW features

with audio_book_size=500.

The PPA pilot study dataset followed the TAUKADIAL

preprocessing pipeline. Again, four feature sets were extracted,
TABLE 7 Sample regression model training configuration file.

name: Sample Regression Model Training Config
description: 20-fold Cross-Validation
pipeline:
- task: cross_validation
id: random_forest_regression
input_id: input
parameters:
fold_generation:
folds: 20
random_state: 50
shuffle: True
model_training:
model:
task: regression
estimator: random_forest
estimator_parameters:
random_state: 42
parameter_grid:
n_estimators: [50, 100, 150, 200]
max_features: ['log2', 'sqrt']
max_depth: [5, 10, 15]
feature_selection:
k_percentage: 1
model_evaluation:
metrics: ['mae', 'mse', 'rmse', 'r2']
TABLE 5 Sample preprocessing and feature extraction configuration file.

name: Sample Preprocessing and Feature Extraction Config
description: 1) Bit-depth conversion, 2) Denoising, 3) Amplitude
Normalization, 4) openSMILE feature extraction, 5) openXBoW feature
extraction
pipeline:
- task: convert_format
id: wav_files
input_id: input
parameters:
input_format: mp4
output_format: wav
- task: convert_bit_depth
id: 16bit_wav
input_id: wav_files
parameters:
bit_depth: PCM_16
- task: denoise
id: denoised_audio
input_id: 16bit_wav
parameters:
initial_noise: 6
window_size: 0
noise_threshold: 0.15
- task: normalize_amplitude
id: normalized_audio
input_id: denoised_audio
parameters:
target_dbfs: -20
- task: opensmile
id: compare_2016_lld
input_id: normalized_audio
parameters:
feature_set: compare_2016
level: lld
- task: openxbow
id: boaw_size_500_compare_2016_lld
input_id: compare_2016_lld
parameters:
openxbow_jar_path: 'path/to/openxbow.jar'
audio_book_size: 500
TABLE 6 Sample classification model training configuration file.

name: Sample Classification Model Training Config
description: Leave-One-Group-Out Cross-Validation (12 speakers)
pipeline:
- task: cross_validation
id: svm_classification
input_id: input
parameters:
fold_generation:
folds: 12
random_state: 50
shuffle: True
model_training:
model:
task: classification
estimator: svm
estimator_parameters:
kernel: rbf
parameter_grid:
C: [0.1, 1, 10, 100]
gamma: [1, 0.1, 0.01, 0.001, 'scale']
max_iter: [50, 100, 150]
feature_selection:
k_percentage: 1
model_evaluation:
metrics: ['accuracy', 'precision', 'recall', 'f1']
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but for BoAW features, audio_book_size=100 was used due to the

dataset’s shorter samples.

4.1.2 Machine learning
We constructed machine-learning models for a number of

combinations of learning tasks and feature sets. The TAUKADIAL

challenge presents two tasks: 1) binary classification between

individuals with mild-cognitive impairment (MCI) and normal

controls (NC); and 2) regression for their corresponding MMSE

scores. The AVEC 2013 challenge presents a regression task for BDI

scores. The PPA tool presents a binary classification task for PPA vs

healthy individuals. A total of 16 experiments were conducted:
Fron
1. 2 tasks × 4 feature sets = 8 training sets for

TAUKADIAL dataset

2. 1 task × 4 feature sets = 4 training sets for AVEC

2013 dataset

3. 1 task × 4 feature sets = 4 training sets for PPA pilot

study dataset
For each of these experiments, SVM and RF models were

trained. The model parameters were tuned using internal K-Fold

cross-validation, detailed in Tables 6 and 7. For the TAUKADIAL

2024 and AVEC 2013 datasets, a 20-fold CV was implemented. For

the PPA pilot study dataset, a 12-fold CV was conducted, equivalent

to a leave-one-patient (group)-out framework, since there are 12

subjects (6 PPA, 6 healthy) in total. No feature selection was

performed for the experiments.

We assessed the performance of the trained classifiers using the

unweighted average recall (UAR) (Equation 1) and F1 score (F1)

(Equation 2) metrics:

UAR =
s + r
2

(1)

and

F1 =
2pr
p + r

(2)

Here, s is specificity (Equation 3), r is sensitivity (Equation 4),

and p is precision (Equation 5):

s =
TN

TN + FP
(3)

r =
TP

TP + FN
(4)

p =
TP

TP + FP
(5)

where N is the total number of samples, TP is the number of

true positives, TN is the number of true negatives, FP is the number

of false positives, and FN is the number of false negatives.

The regression models were evaluated using root mean squared

error (RMSE) (Equation 6), calculated as:
tiers in Psychiatry 07
RMSE(y, ŷ ) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(ŷ i − yi)
2

N

s
(6)

where y and ŷ represent the ground truth and the predicted

scores on ith sample, and N indicates the total number of samples.

As part of the machine-learning model construction, the

pipeline implements a variety of statistical measures, to evaluate

the performances of the trained models. For this study, we

calculated the mean, standard deviation, and 95% confidence

interval (CI) of the cross-validation results. To determine if there

are statistically significant differences in the performances of the

best performing classification and regression models, we performed

McNemar Test and ANOVA, respectively. For models with

statistically significant difference, we reported Cohen’s d.
4.2 Findings

The best performing TAUKADIAL classification model

(Table 8) is Random Forest trained with ComParE 2016

functional features. This model has a reported UAR of 0.66

(±0.13) [0.60, 0.73] (in brackets is the 95% CI). This performance

is same as the baseline performance reported in (8) with a UAR

score of 0.66 (no standard deviation reported) [0.63, 0.73]. The only

difference is the slightly narrower 95% CI of the latter. Similarly,

close to Random Forest’s performance is SVM trained with

ComParE 2016 functional features. This model yields a UAR

score of 0.65 (±0.17) [0.57, 0.73]. The difference between the two

models is small with effect size of d = 0.10 (p < 0.05). Hence, we

consider the two models to not be very different in terms of

performance. Error analysis of these two best-performing models

reveals that they are biased against the Normal Control (NC) class

(see Figure 2). The model is more likely to misclassify samples from

NC class than the Mild Cognitive Impairment (MCI) class, thus

producing more false positives. The computed median accuracy is
TABLE 8 TAUKADIAL 2024 classification cross-validation results
(k = 20).

Feature Set SVM Random Forest

UAR
(± std)

95% CI UAR
(± std)

95% CI

ComParE
2016 Functionals

0.65 (0.17) [0.57, 0.73] 0.66 (0.13) [0.60, 0.73]

GeMAPS
Functionals

0.55 (0.12) [0.49, 0.60] 0.60 (0.16) [0.53, 0.68]

eGeMAPS
Functionals

0.59 (0.15) [0.52, 0.66] 0.61 (0.14) [0.55, 0.68]

Bag of Audio
Words (n=500)

0.47 (0.14) [0.41, 0.54] 0.51 (0.10) [0.47, 0.56]

Challenge Baseline
(2024) (8)

0.66[0.63, 0.73]
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higher and the distribution is less dispersed on the MCI than the

NC class, suggesting performance stability for the former. This

analysis implies the need for a way to address the performance

deficit of the model on the NC class to improve its overall UAR.

The best performing TAUKADIAL regression model (Table 9)

is SVM trained with eGeMAPS functional features. It yields an

RMSE score of 2.73 (±1.18) [2.16, 3.30]. Close to this performance is

Random Forest trained with GeMAPS features. It yields an RMSE

score of 2.77 (±1.21) [2.19, 3.35]. These models have a small

performance difference with an effect size of d = 0.19 (p < 0.01).

Hence, we also consider the two models to not be very different in

terms of performance. Error analysis of these two best-performing

models shows that they are biased against the MCI class (see
Frontiers in Psychiatry 08
Figure 3). In particular, an outlier above 8 was observed from the

cross-validation RMSE of the SVMmodel, which is quite high given

that the labels only range from 0 to 30. Despite this limitation, the

model is slightly better than the reported baseline model in (8) with

an RMSE score of 2.86 (no standard deviation reported) [2.5, 3.2].

For AVEC dataset (Table 10), the best performing regression

model is Random Forest trained with ComParE 2016 functional

features. It has the lowest cross-validation RMSE score of 11.00 (±

2.25) [9.82,12.17]. This performance is slightly better than the

reported challenge baseline in 2013 (4) with an RMSE score of

11.90 (no standard deviation and 95% CI reported). However, this

performance is worse than the previously reported work (6) of the

second and the last authors of this paper; their best performing

model yields an RMSE score of 9.75 (no standard deviation and 95%

CI reported). This performance difference is expected since no

further improvements were attempted in our current replication

experiment. This work nevertheless provides new information

through error analysis; neither of the two cited works performed

error analysis. In our analysis (see Figure 4), we reported the best

performing model’s cross-validation RMSE scores on the four

depression categories as defined in Beck Depression Index (BDI)

(32): 1) no depression [0,13], 2) mild [14,19], 3) moderate [20,28],

and 4) severe [29,63]. We also reported the overall RMSE score. We

found through this analysis that the Random Forest model has the

highest error in the severe depression group with a maximum

recorded RMSE score above 25 units. This means that the

predictions of the model in this group may be off by as much as

25 units in a 0 to 63 BDI scale. Even the model’s lowest median

error of approximately 5 units in the mild depression group is not

acceptable as an error this size could easily misclassify a sample
FIGURE 2

TAUKADIAL 2024 best classification models accuracy.
TABLE 9 TAUKADIAL 2024 regression cross-validation results (k = 20).

Feature Set SVM Random Forest

RMSE
(± std)

95% CI RMSE
(± std)

95% CI

ComParE
2016 Functionals

2.82 (1.12) [2.28, 3.36] 2.83 (1.21) [2.25, 3.42]

GeMAPS
Functionals

2.78 (1.16) [2.22, 3.33] 2.77 (1.21) [2.19, 3.35]

eGeMAPS
Functionals

2.73 (1.18) [2.16, 3.30] 2.77 (1.24) [2.18, 3.37]

Bag of Audio
Words (n=500)

3.10 (1.32) [2.47, 3.73] 3.02 (1.32) [2.38, 3.65]

Challenge Baseline
(2024) (8)

2.86 [2.5, 3.2]
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from one depression category to another. This model needs

performance improvement for all categories, especially on the

severe depression group, which was an implicit objective of our

2019 study (6).

For the PPA pilot study (Table 11), the best performing

classification model is SVM trained with Bag-of-Audio-Word (n =

100) features. This model yields an F1 score of 0.42 (± 0.43) [0.14, 0.71],

which is comparable to that of the second best performing model, i.e.,

Random Forest which was also trained with Bag-of-Audio-Word

(n=100) features with an F1 score of 0.38 (± 0.38) [0.12, 0.63]. These

two models have a small effect size of d = 0.19 (p < 0.01). Hence, we

consider the two models to not be very different in terms of

performance. However, as the preliminary results published in (26)

were obtained using a subset of the dataset in this study, we could not

make a fair comparison of these models with the baseline. Error
Frontiers in Psychiatry 09
analysis (see Figure 5) instead shows that both models have better

performance in the Primary Progressive Aphasia (PPA) than the NC

class. Moreover, Random Forest appears to be more stable with

narrower accuracy score distributions for both classes. Despite these

strengths, we strongly highlight that the high standard deviation and

wide 95% CI of these models indicate weak and unstable performance.

We believe that this limitation is due to the small sample size of this

dataset with only 12 subjects (6 PPA and 6 NC). This variability

undermines the stability and reliability of the model’s performance and

prevents any immediate clinical applicability. We emphasize that these

results should be considered preliminary and exploratory, representing

a proof of concept. Validation on larger, independent cohorts with

greater demographic and clinical diversity will be essential before

drawing firm conclusions or pursuing clinical translation. As of this

writing, the collection of a larger dataset is already ongoing.
FIGURE 3

TAUKADIAL 2024 best regression models RMSE.
TABLE 10 AVEC 2013 regression cross-validation results (k = 20).

Feature Set
SVM Random Forest

RMSE (± std) 95% CI RMSE (± std) 95% CI

ComParE 2016 Functionals 11.14 (2.51) [9.93, 12.35] 11.00 (2.45) [9.82, 12.17]

GeMAPS Functionals 12.43 (3.25) [10.87, 13.99] 11.35 (2.49) [10.16, 12.55]

eGeMAPS Functionals 12.62 (3.16) [11.10, 14.13] 11.08 (2.62) [9.82, 12.34]

Bag of Audio Words (n=500) 11.49 (2.48) [10.30, 12.68] 11.57 (2.29) [10.47, 12.67]

Challenge Baseline (2013) (4) 11.90

Tasnim & Stroulia (2019) (6) 9.75
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It is important to note here that the implementation of a

comprehensive suite of metrics in the pipeline enables a thorough

and consistent evaluation of all experimental configurations, which is,

more often than not, missing frommost publications in the literature.

Such multi-perspective and consistent evaluation is essential for

deciding future work in a manner that advances the state of the art.
5 Discussion

The work described in this paper is motivated by the realization

that machine learning for speech analysis represents a substantial

opportunity in the area of mental health. The scarcity of mental

health services across the world, especially in developing countries,

is driving the expansion of research and development of digital

technologies for (tele)mental health. Key to delivering high-quality

technology-enabled services is the ability to accurately assess and

monitor an individual’s mental-health status and this is exactly the

promise of speech-enabled machine-learning models.

As we have documented in the introduction section, this area is

quite active and our work aims to systematize the software-
Frontiers in Psychiatry 10
engineering processes of this type of research, in order to increase

its reproducibility and replicability and amplify its potential for use in

the real world. To that end, we have developed a suite of configurable

software pipelines that implement two speech analysis pipelines: 1)

speech data preprocessing and feature extraction and 2) machine

learning model training. We have evaluated our software pipelines by

replicating three different experiments.

The results of these experiments demonstrate that our pipelines

could replicate baseline results reported in the literature. In our

error analysis, we further discussed the limitations of the models.

This presentation of performance highlights the value of

systematically saving experiment artifacts (e.g., validation

predictions, selected features, optimal hyperparameters, models,

and model performances) to perform further analysis. It is a

straightforward practice that improves the traceability and

verifiability of experimental results. Access to such artifacts,

coupled with reusable code and configuration manifests, fosters

transparency, which is essential to establish the reliability of results.

Our work to date has demonstrated the feasibility and usefulness of

the current version of our software pipelines, while also highlighting

several limitations. A limitation that we highlighted in our experiments
FIGURE 4

AVEC 2013 best regression models RMSE.
TABLE 11 PPA classification cross-validation results (k = 12).

Feature Set
SVM Random Forest

F1 (± std) 95% CI F1 (± std) 95% CI

ComParE 2016 Functionals 0.37 (0.42) [0.09, 0.64] 0.38 (0.43) [0.09, 0.66]

GeMAPS Functionals 0.36 (0.43) [0.08, 0.65] 0.36 (0.43) [0.07, 0.64]

eGeMAPS Functionals 0.35 (0.41) [0.08, 0.62] 0.35 (0.43) [0.06, 0.63]

Bag of Audio Words (n=100) 0.43 (0.43) [0.14,0.71] 0.38 (0.38) [0.12, 0.63]
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is model bias. This bias is demonstrated through the error analysis that

we performed, showing the models’ performance on different classes.

For instance, the best performing model found for the TAUKADIAL

dataset is biased against the “normal control” class. Moving forward,

we aim to expand the range of supported tasks in our pipeline to

include potential bias-mitigation strategies such as over- and under-

sampling methods, e.g., SMOTE and random under-sampling. These

methods will augment or reduce the number of training samples,

respectively, to create balanced training sets.

We are also currently incorporating support for tasks such as

deep spectrum feature extraction, deep-learning model training,

and ensemble methods, including early fusion, where multiple

feature types are combined before classification, and late fusion,

where separate models trained on different data modalities or label

sets are combined at the decision level. The deep-learning model

training will be implemented as a separate pipeline as it requires

more computational resources, but artifact preservation will follow

the same approach described here. At the same time, we are further

exploring the VoiceLab and TRESTLE tools to ensure that our

pipeline covers their audio-processing functionalities.

Finally, we plan to deploy the pipelines in a secure cloud-based

service platform. To this end, we are investigating different user

interface designs that will allow users to configure, inspect, and

compare their experimental pipelines more effectively.
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