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Introduction: Internalizing disorders (depression, anxiety, somatic symptom
disorder) are among the most common mental health conditions that can
substantially reduce daily life function. Early adolescence is an important
developmental stage for the increase in prevalence of internalizing disorders
and understanding specific factors that predict their onset may be germane to
intervention and prevention strategies.

Methods: We analyzed ~6,000 candidate predictors from multiple knowledge
domains (cognitive, psychosocial, neural, biological) contributed by children of
late elementary school age (9-10 yrs) and their parents in the ABCD cohort to
construct individual-level models predicting the later (11-12 yrs) onset of
depression, anxiety and somatic symptom disorder using deep learning with
artificial neural networks. Deep learning was guided by an evolutionary algorithm
that jointly performed optimization across hyperparameters and automated
feature selection, allowing more candidate predictors and a wider variety of
predictor types to be analyzed than the largest previous comparable machine
learning studies.

Results: We found that the future onset of internalizing disorders could be
robustly predicted in early adolescence with AUROCs >~0.90 and
>~807% accuracy.

Discussion: Each disorder had a specific set of predictors, though parent
problem behavioral traits and sleep disturbances represented cross-cutting
themes. Additional computational experiments revealed that psychosocial
predictors were more important to predicting early adolescent internalizing
disorders than cognitive, neural or biological factors and generated models
with better performance. Future work, including replication in additional
datasets, will help test the generalizability of our findings and explore their
application to other stages in human development and mental health conditions.
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Introduction

Depression, anxiety and problematic somatic symptoms
(physical symptoms such as headaches and stomachaches) are
common mental health issues in adolescence. Often collectively
referred to as internalizing disorders, they have been associated with
reduced levels of well-being and daily life function, increased risk of
self-harm and suicide and are substantial predictors of adult
psychopathology (1). Depression and anxiety are among the most
common mental illnesses in the population with lifetime prevalence
of ~30% and ~20% respectively (2). The incidence of internalizing
disorders increases exponentially during the peri-adolescent period,
with anxiety having an earlier developmental arc (3). Anxiety
disorders emerge during elementary school, with the median age
of onset being 11 years of age (yrs) and 75% of lifetime illness
occurring by 21 yrs. Major depression cases begin to onset at 11-12
yrs with median onset at 31-32 yrs and 75% of lifetime illness
having onset by 44 yrs (4). Problematic somatic symptoms affect up
to 40% of youth and increase over peri-adolescence: one third to a
half continue to report symptoms as adults with 5-7% in the general
population and ~17% in the primary care population meeting
criteria as adults for Somatic Symptom Disorder (SSD). (5, 6).

Given the considerable personal, societal and economic burdens
associated with internalizing disorders (7-10), there is great interest
in identifying specific factors that predict their onset, since evidence
suggests that early intervention improves outcomes (11, 12) and
reduces resource use (13). Isolating key predictors of internalizing
disorders is challenging since they have been associated with a host
of different factors from varied domains ranging from biological
(neural; genetic; hormonal) and psychological models (fear/threat
response) to interpersonal relationship function, parent
characteristics, the community environment and wider social
determinants of health such as relative poverty. Historically, an
important barrier to disambiguating the relative importance of such
factors to predicting case onset has been the paucity of appropriate
multimodal data in large participant samples. Outside the US,
national registries or school system data have been available
offering large sample sizes (1n>10,000) but these typically lack
physiologic information such as neuroimaging data (14-17). An
alternative strategy is to combine data from multiple studies offering
neuroimaging or genomic data to boost sample size such as the
datasets offered by IMAGEN or ENIGMA, though pooling across
heterogenous studies may inherently limit features (variables)
available for analysis to those that are shared across all studies
(18-20). Consequently, to promote comparative discovery at scale,
federal and other organizations have recently sponsored the
formation of large, longitudinal cohorts collecting a wide variety
of multimodal data types with standardized protocols. In peri-
adolescence, the flagship initiative of this type is the ongoing
population-level ABCD study (n = 11,800) used in the present
study (21-23).

Concomitantly, interest has recently grown in applying
machine learning (ML) methods to these newly-emerging large-
scale population cohorts as ML techniques offer advantages in
approaching such high-dimension data. Firstly, they can generate
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individual-level case predictions from multidimensional data to
bridge extant work focused on group-level statistical effects with
individual-level discoveries of potential clinical relevance by
“providing multivariate signatures that are valid at the single-
subject level” (24, 25). Secondly, ML techniques can
simultaneously analyze hundreds of candidate predictors and
incorporate non-linear relationships among a set of predictors.
These properties are relevant to the construction of individual-
level models since significant group-level effects may not be useful
at the individual level while a feature with low effect size at the
group level may prove germane. While a number of ML predictive
studies have been performed in youth internalizing disorders, these
have to date considered <200 candidate predictors and focused
largely on prevailing cases of depression, rather than new onset
cases in adolescence, especially early adolescence. The latter are of
considerable translational interest since understanding individual-
level drivers of illness onset and obtaining better visibility into
whether future onset can be reliably predicted using ML would
potentially inform risk stratification strategies. Extant work is also
highly heterogenous with respect to which candidate predictors
(input features) are considered. In particular, some studies use only
psychosocial features and some only neuroimaging features, while a
few have incorporated both types. Concomitantly, performance has
been variable, with accuracy ranging over ~50-90% but the
achievement of robust precision (positive predictive value) - an
important metric for translational relevance - typically proving
more elusive. Moreover, since obtaining physiologic measures such
as neuroimaging metrics is complex and uncommon in clinical
practice, it is relevant to understand whether they improve
individual-level case prediction. Finally, few studies have
constructed predictive models of anxiety or somatic problems in
youth using ML classifiers or applied a consistent analytic
architecture across the three major categories of internalizing
disorders simultaneously in the same population and data to
enable direct comparisons and determine the specificity of
predictive models to different internalizing disorders.

Beyond empirical findings, developmental and ecological
frameworks also suggest that a variety of personal and
environmental factors such as family context and self-regulatory
processes are influential in the emergence of internalizing disorders.
Bronfenbrenner’s bioecological model emphasizes the broader
influence of family and environment on child development, while
Cicchetti and Rogosch’s developmental psychopathology
framework highlights how multiple interacting risks can lead to
similar internalizing outcomes (26, 27). Transactional perspectives
likewise point to the reciprocal shaping of child and parent behavior
across developmental stages (28). Also, sleep has been
conceptualized as a particularly important self-regulatory domain,
with sleep disturbances proposed as a transdiagnostic risk factor for
later internalizing symptoms (29-31).

In the present study, we aim to build on prior work by
predicting cases of depression, anxiety and SSD in early
adolescence (9-12 yrs) using deep learning guided by a large-scale
Al optimization process. Specifically, we aimed to a) identify and
rank the most important predictors after analyzing thousands of
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multidomain candidate predictors; b) provide individual-level
predictions of future, new onset cases at 11-12 yrs in comparison
to all prevailing cases at the same age and 9-10 yrs; ¢) determine the
incremental value of using multidomain predictors vs neural-only
modeling; and d) examine the relationship between predictor
importance and accuracy. Applying a common analytic
architecture to data from the ABCD cohort, we first constructed
multimodal predictive models by analyzing 5,810 candidate
predictors spanning demographics; developmental and medical
history; white and gray matter brain structure, neural function
(cortical and subcortical connectivity, 3 tasks); brain volumetrics;
physiologic function (e.g. sleep, hormone levels, pubertal stage,
physical function); cognitive and academic performance; social and
cultural environment (e.g. parents, friends, bullying); activities of
everyday life (e.g. screen use, hobbies); living environment (e.g.
crime, pollution, educational and food availability) and substance
use. Subsequently, we recapitulated all analytic procedures using
multiple types of neural candidate predictors.

To make these case classifications, we used deep learning with
artificial neural networks, which incorporates non-linear
relationships among predictors and is resistant to multicollinearity.
While artificial neural networks offer powerful predictive capability,
their application to translational aims can be limited by the relative
difficulty of tuning these models (setting hyperparameters that
control learning) and their tendency to act as ‘black box’ estimators
where the features used to make predictions are not interpretable and
their relative importance is difficult to determine. We enhanced deep
learning performance with Integrated Evolutionary Learning (IEL),
an Al-based form of computational intelligence, to jointly optimize
across the hyperparameters and learn the most important final
predictors and render explainable predictions. IEL is a genetic
algorithm which instantiates the principles of natural selection in
computer code, typically performing ~40,000 model fits during
training before testing final, optimized models in a holdout, unseen
data partition. All results presented are from testing for generalization
in this holdout, unseen data.

Materials and methods
Terminology and definitions

Terms used in quantitative analysis may be shared among
different fields with variant meanings. Here, we use ML
conventions throughout (32-34). ‘Prediction’ means predicting
the quantitative value of a target variable by analyzing patterns in
input data. We refer to the set of all input data as containing
‘features’ or ‘candidate predictors’ and those identified in final,
optimized models (presented in RESULTS) as ‘final predictors’. The
set of observations used to train and validate models is referred to as
the ‘training set’ and the unseen holdout set of observations is
termed the ‘test set’. We use ‘generalizability’ to refer to the ability of
a trained model to adapt to new, previously unseen data drawn from
the same distribution i.e. model fit in the test set. ‘Precision’ refers to
the fraction of positive predictions that were correct; ‘Recall’ to the
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proportion of true positives that were correctly predicted; and
‘Accuracy’ to the number of correct predictions as a fraction of
total predictions. Receiver Operating Characteristic curves (ROC
Curves) are provided that quantify classification performance at
different classification thresholds plotting true positive versus false
positive rates, where the Area Under the Curve (AUROC) is defined
as the two-dimensional area under the ROC curve from (0,0)
to (1,1).

Data and data collection in the ABCD study

Data used in the present study comes from the ABCD study, an
epidemiologically informed prospective cohort study that is the
largest study of brain development and child health conducted in
the United States to date. ABCD recruited 11,880 children (52%
male; 48% female) at ages 9-10 years (108-120 months) via 21 sites
across the United States and will follow this cohort until age 19-20.
The cohort is oversampled for twin pairs (n = 800) and non-twin
siblings from the same family may also be enrolled. A wide variety
of information is collected about participants. This data has been
made available to qualified researchers at no cost by the NIH since
2018 and is released periodically. Currently, it may be obtained
from the NBDC Data Hub (https://www.nbdc-datahub.org/). This
study uses data from release 4.0, which includes data up to the 42-
month follow-up date. A full explanation of recruitment
procedures, the participant sample and overall design of the
ABCD study may be found in Jernigan et al; Garavan et al; and
Volkow et al. (35-37) This study has been reviewed and deemed not
human subjects research by the University of Utah Institutional
Review Board.

The phenotypic and substance abuse assessment protocol is
covered in detail in Barch et al. and Lisdahl et al, respectively (38,
39). In brief, phenotypic assessments of physical and mental health,
substance use, neurocognition and culture and environment are
performed for youth and their parents and biospecimen collection
for DNA, pubertal hormone levels, substance use metabolites (hair)
and substance and environmental toxin exposure (baby teeth) are
collected from youth at 9-10 yrs. A summary description of
assessments performed and environmental and school-related
variables derived from geocoding at age 9-10 yrs surveyed in the
present study may be inspected in Supplementary Table S1.

Brain imaging is collected at 9-10 yrs and every two years
thereafter and incorporates optimized 3D T1; 3D T2; Diffusion
Tensor Imaging; Resting state functional MRI (rsfMRI); and 3 task
MRI (tfMRI) protocols that are harmonized to be compatible across
acquisition sites. The tfMRI protocol comprises the Monetary
Incentive Delay (MID) and Stop Signal (SST) tasks and an
emotional version of the n-back task which collectively measure
reward processing, motivation, impulsivity, impulse control,
working memory and emotion regulation. The ABCD study
provides fully-processed metrics from each of these imaging
types. Full details of the neuroimaging protocol may be inspected
in Casey et al. and the pre-processing and analytic pipeline used to
generate neural metrics in Hagler et al. (40, 41) The present study
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TABLE 1 Demographic characteristics of participant sampled at age 9—
10 years.

Characteristic Number Percent
Sex ‘
Male 2,663 51.8%
Female 2,473 482
Gender Identity ‘
Male 2,659 51.8%
Female 2,466 48.0
Gender non-conforming 7 0.1
Don’t know/didn’t answer 4 0.1
Race
Black/African American 824 16.0%
Asian 373 7.3
White 4,069 79.2
Native American/Alaska
Native 213 4.1
Other/don’t know/didn’t 390 76
answer
Ethnicity
Hispanic/Latino/Latinx 1,035 20.2%
Non-Hispanic 4,042 78.7
Not indicated 59 1.1

uses all available processed metrics that have passed quality control
from the diffusion fullshell; cortical and subcortical Gordon
correlations (derived from rsfMRI); structural; volumetric; and all
three tasks as well as corresponding head motion statistics for each
modality. For certain modalities such as rsfMRI, multiple scans
were attempted or completed. In such cases we use variables from
the first scan.

Study inclusion criteria and sample
partitioning for machine learning

Inclusion criteria for the present study were a) participants
enrolled in the study at baseline who were still enrolled at 2-year
follow-up (n = 8,084) who had b) complete data passing quality
control available for all neural metric types (n = 6,178) and were ¢)
youth participants unrelated to any other youth participant in the
study (n = 5,136). If a youth had a twin or other sibling(s) present in
the cohort, we selected the older or oldest sibling for inclusion in
our study. We present characteristics of the study sample at 9-10
yrs since these participants correspond to the input data used to
make predictions. Demographic characteristics of this sample at age
9-10 yrs are presented in Table 1.
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TABLE 2 Physiologic and cognitive characteristics of participant sample
at age 9-10 years.

Characteristic Range Mean Median
Age in months 107.0-132.0 120.0 120.0
Pubertal Development Stage 1-5 1.7 1.0
Height (inches) 36.6-74.0 55.4 55.5
Weight (pounds) 11.0-255.0 82.3 77.0
Waist Circumference (cm) 17.0-61.0 264 25.5
Handedness

Writing -100.0-100.0 76.5 100.0
Throwing -100.0-100.0 67.1 100.0
Spoon -100.0-100.0 70.2 100.0
Vocabulary 51.0-208.0 109.2 109.0
Attention and Inhibition 65.0-171.0 96.4 97.0
Working Memory 55.0-194.0 102.1 103.0
Executive Function 68.0-181.0 98.0 94.0
Processing Speed 20.0-185.0 95.2 95.0

Characteristics of the study sample at 9-10 yrs. Pubertal development is measured with the
Pubertal Development Scale (adapted from the Petersen scale) in a sex-specific manner.
Height is measured twice with the average of these values presented. We note a range of 11.0-
255.0 pounds for weight which is the range present in the original ABCD data. Handedness is
assessed with the Edinburgh Handedness Inventory. Cognitive metrics are assessed with the
NIH Toolbox and are all age-corrected scores. Vocabulary is measured with the Picture
Vocabulary Test; Attention and inhibition with the Flanker Inhibitory Control & Attention
Test; Working Memory with the List Sorting Working Memory Test; Executive Function with
the Dimensional Change Card Sort Test; and Processing Speed with the Pattern Comparison
Processing Speed Test.

The resulting group of 5,136 participants was then randomly partitioned into a training set
comprising 70% of the sample (n = 3,595) and a holdout, unseen test set comprising 30% of
the sample (n = 1,541, Figure 1). This partitioning was performed prior to pre-processing
either features or predictive target to minimize bias.

Sex refers to sex assigned at birth on the original birth
certificate. Gender refers to the youth’s gender identification. Race
and ethnicity refer to the parents’ view of youth’s race or ethnicity.
More than one race identification may be selected and therefore
percentages sum to >100%.

Physiologic and cognitive characteristics of the participant
sample at 9-10 yrs may be viewed in Table 2.

Steps in the formation of the study sample used to construct
predictive models of depression, anxiety and somatic symptom
disorder are shown. After exclusion criteria are applied, the sample
was randomly partitioned into training and test sets followed by
separate pre-processing of targets and features. Subsequently,
samples for each experiment were formed as described in
Preparation of predictive targets and Construction of participant
case samples for internalizing disorders and controls.

Preparation of predictive targets

The present study uses predictive targets of depression, anxiety
and somatic problems derived from the Child Behavior Checklist
for youth ages 4-18 years (CBCL) called the ‘ABCD Parent Child
Behavior Checklist Scores Aseba (CBCL) in the ABCD study. The
CBCL is a standardized instrument in widespread clinical and
research use for the assessment of mental and emotional well-
being in youth. It forms part of the Achenbach System of
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Empirically Based Assessment (ASEBA) “designed to facilitate
assessment, intervention planning and outcome evaluation among
school, mental health, medical and social service practitioners who
deal with maladaptive behavior in children, adolescents and young
adults.” (42) During assessment with the CBCL, parents rate their
child on a 0-1-2 scale on 118 specific problem items such as
“Unhappy, sad or depressed” or “Acts too young for age” for the
prior 6 months. The answers to these questions are aggregated into
raw, T and percentile scores for 8 syndrome subscales (Anxiety,
Somatic Problems, Depression, Social Problems, Thought
Problems, Attention Problems, Rule Breaking and Aggressive
Behavior) derived from principal components analysis of data
from 4455 children referred for mental health services. The CBCL
is normed in a sex/gender-specific manner on a U.S. nationally
representative sample of 2368 youth ages 4-18 that takes into
account differences in problem scores for “males versus females”.
It exhibits excellent test-retest reliability of 0.82-0.96 for the
syndrome scales with an average r of 0.89 across all scales.
Content and criterion validity is strong with referred versus non-
referred children scoring higher on 113/188 problem items and
significantly higher on all problem scales, respectively.

To form binary classification targets for prediction, we
thresholded CBCL subscale T scores for Depression, Anxiety and
Somatic problems using cutpoints established by ASEBA for clinical
practice. Specifically, a T score of 65-69 (95™ to 98™ percentile) is
considered in the ‘borderline clinical’ range, and scores of 270 are
considered in the ‘clinical range.” Accordingly, we discretized T
scores for each of the 3 subscales under consideration by deeming
every individual with a T score > 65 as a ‘case’ [1] and every
individual with a score <65 as a ‘not case’ [0]. This process was
performed separately for CBCL scores at baseline and 2-year follow-
up in the training and test sets.

Construction of participant case samples
for internalizing disorders and controls

To test our hypotheses, we formed 3 different participant
samples for each of the internalizing disorders in the training and
test sets, respectively (Figure 1). The first sample contained cases of
depression, anxiety and SSD as defined in Preparation of predictive
targets at baseline assessment, when youth were 9-10 years of age.
The second sample contained cases of depression, anxiety and SSD
at 2-year follow-up, when youth were 11-12 years of age. Finally,
the third sample contained only new onset cases of depression,
anxiety and SSD at 2-year follow-up. A new onset case was defined
as a youth who met criteria for depression, anxiety or SSD following
the ASEBA threshold in the CBCL who did not meet criteria for the
disorder in question at baseline assessment. In all samples, we
constructed a balanced sample of controls matched for age and sex/
gender selected from the eligible study population (see: Study
inclusion criteria and sample partitioning for machine learning
above) from youth with the lowest possible scores on the relevant
syndrome scale. No sample in the training sets was <200
participants, a recommended threshold for robust ML analyses.
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Preparation of candidate predictors (input
features)

The feature set in the present study comprises the majority of
available phenotypic and environmental variables derived from
baseline assessment at 9-10 years of age (including data collection
site) and all available neural metrics (including head motion
statistics) with the exception of temporal variance measures. For
continuous phenotypic features where subscale or total scores for
assessments were available, these were used. For example, subscale
scores for different types of sleep-related disorders from the larger
Munich Chronotype Questionnaire. Any metrics or instruments
that directly quantified mental health symptoms were excluded
since we aimed to predict cases of mental illness without using
symptoms. For example, the Youth 7UP Mania scale. The feature
set was then partitioned into training and test sets that conformed
with the partitions detailed above in Formation of the study
participant sample for internalizing disorders in Figure 1. Pre-
processing of phenotypic and environmental features was
subsequently performed separately in the training and test sets.
First, features with >35% missing values were discarded. This
threshold was used since prior research shows that good results
may be obtained with ML methods with imputation up to 50%
missing data (43). Also, it was selected pragmatically to balance the
retention of potentially informative features against the risk of
excessive imputation. Recent works have also suggested a slightly
more lenient threshold (e.g., 40%) to exclude variables containing
many missing values from analysis (44, 45). Nominal variables were
one-hot encoded to transform them into binary variables.
Continuous variables were then winsorized to [mean +/- 3]
standard deviations to remove outliers, whereas ordinal variables
were winsorized according to the bounds defined in the provided
data dictionary. Then, all features were scaled in the interval [0,1]
with the minimum-maximum normalization. Missing values were
imputed using non-negative matrix factorization (NNMF). NNMF
is a mathematically-proven imputation method that minimizes the
cost function of missing data rather than assuming zero values. It
can effectively reconstruct missing values in high-dimensional
datasets by leveraging latent structure. It is effective at capturing
both global and local structures in the data and has been
demonstrated to perform well regardless of the underlying pattern
of missingness (46-48). Supplementary Table S2 shows the number
and percentage of observations which were trimmed and filled with
NNMEF for the training and test sets, respectively.

Further, a sensitivity analysis was performed to compare the
predictive performance of NNMF with the Multiple Imputation by
Chained Equations (MICE), which is a common alternative
imputation method modeling each variable conditionally on the
others and imputes missing values through iterative regression.
Results of the sensitivity analysis (included in the Supplementary
Table S4) demonstrate that test accuracy (when using our proposed
algorithm described in Integrated Evolutionary Learning for deep
learning optimization below) is generally consistent across the two
imputation methods, with NNMF tending to slightly outperform
MICE for most targets and case definitions (i.e., an average of 2.4%
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Baseline Cohort
n=11,880

L 2

Enrolled at baseline and
2-year follow-up
n=8,084

L 2

21 set of neural metrics
for all neuroimaging types
n=6,178

¥

Singleton or oldest sibling
in twin or family group
n=25136

' 4

Training/Validation Set
n = 3,595

L 2

Preprocessing

Cases at 9-10 yrs and
matched controls

Depression n=478
Anxiety n =530
Somatic n =590

Cases at 11-12 yrs and

matched controls

Depression n =502
Anxiety n =520
Somatic n =562

New onset cases at 11-12
yrs and matched controls

Depression n=316
Anxiety n=298
Somatic n =324

FIGURE 1
Formation of the study participant sample for internalizing disorders.

improvement in accuracy). In light of these findings, NNMF is
selected to be the default data imputation method adopted in this
work, as it provided equal or better performance in most scenarios
while maintaining computational efficiency for high-
dimensional datasets.

After imputation with NNMF, any variables originating from
phenotypic assessments lacking summary scores were reduced to a
summary metric using feature agglomeration to produce a final set
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X

Holdout Test Set
n=1541

L 2

Preprocessing

Cases at 9-10 yrs and
matched controls

Depression n =204
Anxiety n =226
Somatic n =254

Cases at 11-12 yrs and
matched controls

Depression n=216
Anxiety n =222
Somatic n =240

New onset cases at 11-12

yrs and matched controls
Depression n=136
Anxiety n=128
Somatic n=138

of (n=804) phenotypic and environmental features. Neural
metrics (n = 5,006) were processed and underwent quality
control by the ABCD study team and were therefore not pre-
processed with the exception of scaling, again performed
separately in the training and test partitions. There were no
missing neural features. The final combined feature set
including neural, phenotypic, environmental, head motion and
site features comprised 5,810 features.
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Overview of predictive analytic pipeline

We used deep learning with artificial neural networks (AdamW
optimizer) to predict cases of depression, anxiety and somatic
problems in early adolescence in three scenarios: at 9-10 years of
age, at 11-12 years of age and in new onset cases at 11-12 years of
age. Deep learning models were implemented with k-fold cross-
validation and trained by an AI meta-learning algorithm that jointly
performed feature selection and optimized across the
hyperparameters in an automated manner, pursuing ~40,000
model fits for each experiment. Model training was terminated
based on the AUROC. Subsequently, final optimized models were
tested for their ability to generalize in the holdout, unseen test set
and performance statistics of AUROC, accuracy, precision and
recall, and ROC curves are reported for the best-performing
models. We also report the relative importance of final predictors
to making case predictions quantified with two techniques: Shapley
Additive Explanations (SHAP) and permutation using the eli5
algorithm. Detailed explanations of these methods are provided
below. Code for the predictive analytics may be accessed at the de
Lacy Laboratory GitHub: https://github.com/delacylab/
integrated_evolutionary_learning.

Coarse feature selection

Prior to beginning model training, we performed coarse feature
selection for each of the nine experiments i.e. 3 targets of
depression, anxiety and SSD each in 3 participant samples of 9-
10 yrs; 11-12 yrs and new onset cases at 11-12 yrs. The purpose of
this process was to quantify, for each sample, which of the 5,810
features exhibited a non-zero relationship with the target in order to
reduce the number of features entering the deep learning pipeline in
a principled manner. First, a simple filtering process was performed
in which %? (categorical features) and ANOVA (continuous
features) statistics and mutual information metric (all features)
were computed to quantify the relationship between all features and
the target, where the target (depression, anxiety, SSD) was
represented by a categorical vector in [0,1]. Any feature with a
non-zero relationship (either positive or negative) with the target
was retained. While we acknowledge the potential risk that this
univariate filtering cannot fully capture complex interactions across
the features, it is practically advantageous to reduce the
dimensionality of the feature space before the execution of
additional filtering procedures that require high computational
complexity in face of large feature sets.

Subsequently, feature selection was performed on these filtered
feature subsets using the Least Absolute Shrinkage and Selection
Operator (LASSO) algorithm. LASSO is a popular regularization
technique based in linear regression that efficiently selects a reduced
set of features by forcing certain regression coefficients to zero. The
LASSO algorithm has a hyperparameter (commonly called the o) that
instantiates the amount of penalization (shrinkage) that will be
imposed on the features. We implemented the LASSO with our AI
meta-learning algorithm Integrated Evolutionary Learning to tune the
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o hyperparameter in the same manner as described below in Integrated
Evolutionary Learning for deep learning optimization.

Notice that the LASSO algorithm may lead to biased feature
selection results when multicollinearity exists in the pre-selected
feature set or features were related to the target in a non-linear
manner. To alleviate these potential problems, Boruta (49) was
selected as a complementary feature selection method. Boruta is an
ensemble-based method designed to capture all relevant features
using random forest modeling and has been shown to be less
sensitive to multicollinearity (50). A sensitivity analysis
comparing the LASSO only, the Boruta only, and the LASSO
combined with Boruta methods was performed. Since the feature
set selected by Boruta tends to be small but non-overlapping with
that selected by LASSO, we focused on the comparison between
LASSO and the LASSO combined with Boruta methods. Results
from the sensitivity analysis, included in Supplementary Table S5,
demonstrated that the combined method yields 1-10%
improvement in predictive accuracy (when using our proposed
Integrated Evolutionary Learning models explained in the next
subsection) compared to the LASSO only method in all targets
and ages of case determination. In light of this improvement, this
combined method, which selects the union of features retained by
both LASSO and Boruta, is taken as the default feature selection
configuration in this study unless specified otherwise.

The number of features retained for each of the 9 experiments
after each step in the coarse feature selection process may be
examined in Table 3. Specific features selected by the LASSO
combined with Boruta and the resulting feature importance
scores (univariate coefficients in LASSO and Boruta importance
scores) between each of these features and the target vectors
(depression, anxiety, somatic problems) for each participant
sample (9-10 yrs; 11-12 yrs and new onset cases at 11-12 yrs)
may be viewed in Supplementary Table S3a-i. Each feature set
selected by the LASSO combined with Boruta then entered the deep
learning pipeline.

The total baseline set of 5,810 features was reduced via coarse
feature selection in a two-step process of filtering followed by
regularization with the LASSO algorithm combined with the
Boruta algorithm. This table displays the number of remaining
features after each step for each target (depression, anxiety and
somatic problems) and participant sample (at age 9-10 years, at age
11-12 years and for new onset cases at age 11-12 years). Detailed
tables showing the univariate coefficients between each feature
selected by the LASSO and the target vectors for each case sample
and controls may be viewed in Supplementary Table S3a-i.

Deep learning with artificial neural
networks

We used deep learning to predict cases of depression, anxiety
and somatic problems in each participant sample (at ages 9-10, ages
11-12 and for new onset cases only at ages 11-12 years). In order to
determine the relative ability of features to predict future cases of
internalizing disorders, features collected at baseline assessment
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TABLE 3 Feature sets after coarse feature selection.

o Number of
Condition and Number of features after
features : :
age of case selection with LASSO
o after ; :
determination e combined with Boruta
filtering
Depression, age 9-10
5,783 140
years
Anxiety, -
nxiety, age 9-10 5782 152
years
Somatic problems, 5777 9%
age 9-10 years
D ion, -
epression, age 11 5779 58
12 years
Anxiety, -
nxiety, age 11-12 5783 131
years
Somatic problems, 5786 207
age 11-12 years
Depression, new
onset age 11-12 5,773 70
years
Anxiety, new onset
5,767 97
age 11-12 years
Somatic problems,
new onset age 11-12 5,764 128
years

Cases at 9-10 years

L)

All cases at 11-12
years

Feature set at 9-10
years

\ New onset cases only
at 11-12 years

FIGURE 2
Analytic schema.

(ages 9-10 years) were used to predict cases present at ages 11-12
years. We also constructed similar models that restricted the cases at
11-12 years of age to only new onset cases, where the participant
was not exhibiting clinical levels of symptoms at ages 9-10 years.
Finally, to quantify any dropoff in predictive power over the two-
year followup period, comparative models predicting cases at 9-10
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TABLE 4 Hyperparameter settings optimized with Integrated
Evolutionary Learning.

Hyperparameters Range Mutation shift
Learning rate 0.00001-0.01 0.0001
Beta 1 0.9-0.999 0.001
Beta 2 0.9-0.999 0.001

Optimization across the hyperparameters of learning rate, Beta 1 and Beta 2 was conducted
for deep learning with artificial neural networks within the ranges shown.

years of age were also computed. Therefore, the feature set
comprised only variables collected at 9-10 years of age in all
analytic scenarios (Figure 2).

Features assessed at baseline (ages 9-10 years) were used to
predict cases of depression, anxiety and somatic problems present
contemporaneously as well as all cases 2 years in the future (ages
11-12 years) and only new onset cases at ages 11-12 years.

We trained artificial neural networks using the AdamW
algorithm with 3 layers, 300 neurons per layer, early stopping
(patience = 3, metric = validation loss) and the ReLU activation
function. The last output layer contained a conventional softmax
function. Learning parameters (Table 3) were tuned with IEL as
detailed below. Deep learning models were encoded with PyTorch
embedded in custom Python code (51).

Integrated Evolutionary Learning for
optimization across hyperparameters and
fine feature selection

Many ML algorithms have hyperparameters that control
learning. Their settings require ‘tuning’ that can have a dramatic
effect on performance. Typically, tuning is performed via ‘rules of
thumb’ and <50 model fits are explored, introducing the possibility
of bias and potentially limiting the solution space (52-54). To
address this issue, we previously developed and here applied an AI
technique called Integrated Evolutionary Learning (IEL) which can
improve the performance of ML predictive algorithms in
comparable tabular data by up to 20-25% versus the use of
default model hyperparameters and conventional designs (55).
IEL is a form of computational intelligence or metaheuristic
based on an evolutionary algorithm that instantiates the concepts
of biological evolutionary selection in computer code. It optimizes
across the hyperparameters of the deep learning algorithm by
adaptively breeding models over hundreds of learning generations
by selecting for improvements in a fitness function (here, AUROC).

For each experiment, the deep learning algorithm was nested
inside IEL, which initialized the first generation of 100 models with
randomized hyperparameter values or ‘chromosomes’. These
hyperparameter settings (Table 4) were subsequently recombined,
mutated or eliminated over successive generations. In
recombination, ‘parent’ hyperparameters were arithmetically
averaged to form ‘children’. In mutation, hyperparameter settings
were shifted with the range of possible values shown in Table 4.
When these first 100 models were trained, the BIC was computed
for each solution. Of the 80 best models, 40 were recombined by
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averaging the hyperparameter setting after a pivot point at the
midpoint to produce 20 ‘child’ models. 20 were mutated to produce
the same number of child models by shifting the requisite
hyperparameter by the mutation shift value (Table 4). The
remaining 20 were discarded. The next generation of models was
then formed by adding 60 new models with randomized settings
and adding these to the 40 child models retained from the initial
generation. Thereafter, IEL continued to recombine, mutate and
discard 100 models per generation in a similar fashion to minimize
the BIC until the latter fitness function plateaued. With 100 models
fitted per generation, IEL typically fits ~40,000 models per
experiment over ~400 generations.

IEL jointly performs optimization across hyperparameter
settings with automated feature selection and mitigate the risk of
overfitting. For each experiment, IEL has available to it the set of
features selected in the two-step feature selection process performed
with filtering and the LASSO (Coarse feature selection,
Supplementary Table S3). From each of these sets, a random
number of features in the range [2-50] was set for each model in
the initial generation of 100 models and specific features were
randomly sampled from the set of available features. This iterative
subset exploration reduces the risk that predictive performance
hinges on a single subset or on correlated features retained by the
initial selection. After computing the AUROC for each model,
feature sets from the best-performing 60 models were individually
allocated to the recombined and mutated child models. Other
feature sets were discarded. As with hyperparameter tuning, this
process was repeated for succeeding generations until the
AUROC plateaued.

IEL implements recursive learning to facilitate computationally
efficiency. After training until the AUROC plateaued, we determine
the elbow of the fitness function plotted versus number of features
and re-start learning with a warm start. The feature set available
after this warm start is constrained to that subset of features,
thresholded by their importance, corresponding to the fitness
function elbow. Learning then proceeds by thresholding features
available for learning at the original warm start feature importance
+ 2 standard deviations. In addition, the number of models per
generation is reduced to 50 and 20 models are recombined and 10
models are mutated. Otherwise, training after the warm start uses
the same principles as detailed above.

Cross validation

Deep learning models were fit within IEL using stratified k-fold
cross validation i.e. every one of the 100 models in each learning
generation within IEL was individually trained and validated using
cross-validation in the training partition. IEL allows the number of
features used to fit each model to differ within each model in every
generation. Accordingly, k (the number of splits) was set as the
nearest integer above [sample size/number of features]. Cross
validation was implemented with the scikit-learn
StratifiedKFold function.
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Testing for generalization in holdout,
unseen test data and performance
measurement

After training was completed, optimized models generated by
IEL were tested on the holdout, unseen test set for each sample and
mental health condition by applying the requisite hyperparameter
settings and selected features obtained from the 100 best-
performing models in the training phase to the test set. The area
under the receiver operating curve (AUROC), accuracy, precision,
and recall were computed for test set models using standard Sci-Kit
learn libraries and models with the best performance in each
statistic selected for presentation as the final, optimized models.
The threshold for prediction probability was 0.5 and receiver
operating characteristic (ROC) curves are also provided for each
experiment (Supplementary Figures 1, 2).

Feature importance determination

Shapley Additive Explanations (SHAP) values were computed
to determine the relative importance of each feature to predicting
cases of mental illness. SHAP is a game theoretic approach
commonly used in ML to explain the output of any ML model
including ‘black box’ estimators such as artificial neural networks
and is considered resistant to multicollinearity (56). In this work,
GradientSHAP, encoded in PyTorch (51) and Captum (57)
packages in Python as a combined technique of Integrated
Gradients (58) and SmoothGrad (59), is adopted as a fast
approximation of SHAP values for gradient-based models.

To illustrate the model’s decision-making process in clinically
interpretable terms, a case study is provided for each target’s onset
cases at 11-12 years. In each case, the contribution from the key
features to the predicted labels of two selected contrasting
participants were studied in terms of GradientSHAP values. The
visualized GradientSHAP values in Figures 3-5 serve as indicators
of risk versus protective factors of the relevant mental illness.

Fairness subgroup performance analysis

While the ABCD dataset is one of the most demographically
diverse pediatric neuro-developmental cohorts currently available,
it may not fully represent all racial and socioeconomic groups
within the U.S. population. Thus, even if a trained model has a
decent predictive performance in general, it may not perform as
well in each demographic subgroup. To robustly evaluate the model
performance from a fairness perspective, we conducted a subgroup
performance analysis on the held-out test set, stratified by race and
annual family income level, in order to assess whether models
perform consistently across subpopulations.

The stratification of race is conducted in terms of 3 racial
subgroups: White, Black, and other/multiple races (Others). Annual
family income level was stratified into 4 subgroups: below $15,999,
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FIGURE 3

Case study of depression predictors in the multimodal predictive model of new onset at 11-12 years. The summary plot presents the importance of
each final predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting depression with new
onset at 11-12 yrs. The color gradient represents the scaled value of each feature where red = high and blue = low. Circle and cross marks
correspond to the feature values of a pre-selected pair of (true) positive subject and (true) negative subject respectively. MH, mental health; SU,

substance use.

$16,000-$34,999, $35,000-$74,999, and above $75,000). The
fairness subgroup analysis considers only the onset cases of 11-12
years of each studied internalizing disorders, which are the main
focus groups in this work. For each subgroup analysis, we evaluated
the predictive performance in terms of accuracy, precision, recall,
and AUROC to assess whether the predictive model systematically
performs better or worse across subpopulations.

Baseline modeling comparison

To assess the predictive performance of the IEL modeling
technique, we conducted a baseline modeling comparison using
several traditional ML modeling methods, including logistic
regression, random forest, and support vector machines (SVM).
Thees models were trained on the same multimodal feature sets
obtained after the LASSO combined with Boruta feature selection
step (i.e., containing 58-207 features). This aims to compare
whether the IEL modeling pipeline, which embeds an iterative
feature inclusion step in its evolutionary process, can result in
consistent predictive performance compared to the baseline
benchmarking models while involving strictly fewer features. All
baseline models were evaluated using the same train/test splits as
our deep learning approach and encoded using the Python package
sklearn (60) with their default runtime parameters. Student t-tests
were performed to verify whether the predictive accuracy score of
IEL was statistically significantly different from the scores of the
three baseline modeling methods.
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Summary of the preprocessing and
modeling pipelines

To improve the transparency and reproducibility of our study,
the data preprocessing and modeling pipelines are documented on
our code-sharing space (https://github.com/delacylab/
integrated_evolutionary_learning). Below we recap the overall
pipelines for clarity.

* Variables with less than 35% of missing values
were retained.

e The full samples were partitioned into a training set for
model training and a held-out test set for model evaluation.

e For each of the training set and test set, variables were
winsorized, scaled to the unit interval, and imputed.

e Coarse feature selection was performed to retain features
that exhibited a non-zero relationship with the target in the
training set.

* Feature selection combining LASSO and Boruta was
performed to retain relevant features.

* Cross-validated deep learning models were trained within
the IEL algorithm to perform hyperparameter optimization
and fine feature inclusion.

 Identify the elbow of the fitness curve (obtained across the
generations run in the IEL algorithm) to shrink the feature
subset further.

e Re-train the IEL algorithm with a warm-started feature
subset until the fitness score plateau.
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Case study of anxiety predictors in the multimodal predictive model of new onset at 11-12 years. The summary plot presents the importance of
each final predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting depression with new
onset at 11-12 yrs. The color gradient represents the scaled value of each feature where red = high and blue = low. Circle and cross marks
correspond to the feature values of a pre-selected pair of (true) positive subject and (true) negative subject respectively. MH, mental health; SU,
substance use; SST, Standard Stop Signal task; MID, Monetary Incentive Delay task; ROI, region of interest; FA, fractional anisotropy; LD, longitudinal

diffusivity; WM, white matter; GM, gray matter.

Evaluate the test data set using the model retrained with the
hyperparameter settings and selected features of the best-
fitting model identified in the last execution of IEL.

Results
Overview

All results are from testing the final model obtained after
optimization with IEL for generalization in the holdout, unseen
test dataset for each participant sample and experiment. For each
condition (depression, anxiety, SSD) a parallel set of results is
presented for each participant sample of new onset cases at 11-12
yrs; all prevailing cases at 9-10 yrs and all prevailing cases at 11-12
yrs. In all experiments only data collected at 9-10 yrs is input to
deep learning to make predictions. Thus, results obtained for new
onset and prevailing cases at 11-12 yrs represent predictions of
future case status.

For each disorder and age group, results are presented for the
metrics below for a) multimodal models constructed using all types
of input features; and b) neural-only models.

* Performance statistics: accuracy, precision, recall and
AUROC. ROC curves may be viewed in Supplementary
Figures 1, 2.
 Final predictors ranked in order of importance by their
group-level SHAP score (average absolute value across the
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participant sample) and the mean predictor importance for
the requisite experiment.

Individual-level final predictor importance (SHAP scores)
across the participant sample. This summary plot is also
used to determine the directionality of the relationship
between the predictor and case status.

Results summary

Across all prediction scenarios, our models consistently
achieved strong discriminative ability, particularly in multimodal
settings where phenotypic, environmental, and neural predictors
were included. In all cases, multimodal models outperformed
neural-only models (see Tables 5-7), underscoring the central
importance of psychosocial domains in early prediction of
internalizing disorders. Predictive models are essential precursors
of risk stratification tools, and we note that our models here
achieved very strong positive class discrimination, with precision
(positive predictive value) of 77-84%. Parental psychopathology and
child sleep disturbances emerged as important cross-cutting
predictors across outcomes (see Figures 6-8). Our proposed IEL
modeling strategy achieved highly comparable performance with
the traditional ML modeling methods with the primary benefit of
improved model parsimony, another important feature when
creating risk stratification precursor models. We note that results
from our fairness subgroup analyses demonstrate visible disparities
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in predictive performance across different racial groups and family
income levels.

Depression

Deep learning optimized with IEL predicted depression in early
adolescence with >80% accuracy and recall and 290% AUROC
across all experiments (Table 5a), with precision of ~77-84%.
Performance was slightly worse by a few percentage points in
predicting new onset cases in the future (at 11-12 yrs) than either
contemporaneous or all prevailing cases at 11-12 yrs. When each
experiment was recapitulated using only neural candidate
predictors, we found that final optimized predictive models
displayed substantially lower performance (Table 5b) than those
obtained with multimodal predictors with accuracy of ~52-56% and
AUROC of ~56-60%, or some 27-39 percentage points lower than
with multimodal predictors. Similar differentials were seen in
precision and recall. In depression, multimodal models achieved
somewhat better performance when predicting prevailing cases at
9-10yrs and11-12 vs new onset cases at 11-12 yrs. In neural-only
models this was reversed, with a substantially stronger model
obtained for new onset cases.

Performance statistics of accuracy, precision, recall and the
AUROC are shown for the most accurate model obtained with
deep learning optimized with Integrated Evolutionary Learning
using a) multimodal features and b) only neural features. We
used features obtained at 9-10 years of age to predict new onset
cases of depression at 11-12 years of age as well as all prevailing
contemporaneous cases (9-10 yrs) and all prevailing cases at 11-12
years of age. Corresponding ROC curves may be viewed in
Supplementary Figures 1 and 2.

In interpreting multimodal models (Table 8), we found that
parent problem behaviors were the most important predictors of
early adolescent depression in each participant sample. Specific
parental behavioral drivers of youth cases differed by age and case
type. In new onset cases at 11-12 yrs, positive parent-youth
relationships were the top predictor, followed by parent sleep
disturbance, withdrawal traits, and excessive somnolence, while
indicators of overall parental behavioral burden and prior mental
health/substance use (MH/SU) services were also present. In all
cases at 9-10 yrs, parent avoidant and somatic traits were most
important, along with sleep disturbances and prosocial behaviors.
In all cases at 11-12 yrs, parent behavioral problems and sleep
disturances were most predictive, with positive parent-youth
relationships and prosocial behaviors appearing among the top-
ranked features. Group-level importances for multimodal model
predictors (averaged across the participant sample) were in the
range [0.05, 0.07] and the mean importance for each experiment in
the range [0.018, 0.05].

Final predictors of cases of all prevailing cases of depression at
ages 9-10 and 11-12 years as well as new onset cases only at 11-12
years of age are shown for the most accurate models obtained using
deep learning optimized with IEL obtained with a) multimodal
features and b) only neural features. Final predictors are ranked in
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order of importance where the relative importance of each predictor
is computed with the Shapley Additive Explanations technique and
presented here averaged across all participants in the sample.
Features in blue indicate an inverse relationship with depression
verified with the Shapley method. MH = mental health; SU =
substance use; SST = Standard Stop Signal task; MID = Monetary
Incentive Delay task; ROI = region of interest; FA = fractional

anisotropy; LD = longitudinal diffusivity; WM = white matter;
GM = gray matter.

Final predictors of new onset cases at 11-12 yrs obtained in
neural-only models (Table 8b) were dominated by features derived
from the Standard Stop Signal fMRI task, which measures response
inhibition. Here, SST ROIs emphasized the left hemisphere.
Specifically, SST responses in pars opercularis (Broca’s area), left
frontal pole, anterior cingulate and transverse temporal area.
Certain structural metrics also appeared as final predictors of new
onset cases. Specifically, white-gray contrast in the right superior
temporal sulcus, right accumbens T1 intensity and white matter
structural integrity in the left anterior cingulate.

Connectivity metrics in sensorimotor and cingulo-parietal
brain networks were prominent in predicting contemporaneous
prevailing cases of depression at 9-10yrs as were, again, metrics
associated with the Stop Signal task — once again in Broca’s area
(pars triangularis) and frontal regions. The final predictive model
for all prevailing future cases of depression at 11-12 yrs was
parsimonious and included contrast differences in the right
inferior temporal ROI in the Monetary Incentive Delay task,
which measures approach and avoidance during reward
processing, and correlation between the auditory functional
connectivity neural network and the right accumbens. Group-
level importances for neural-only model predictors were in the
range [0.11,0.30] and the mean importance for each experiment in
the range [0.14, 0.18]. As indicated by the color-coding of the
feature values in Figures 6 and 9, feature values of the neural
predictors generally have a smaller variance than the psychosocial
predictors in the multimodal models.

Where Table 8 presents the importance of final predictors as
summarized (mean absolute value) across the requisite
experimental participant sample, we were also interested in
predictor importance at the individual participant level. We
computed and plotted individual-level SHAP values to
understand both the dispersion of predictor importances across
individuals and the directionality of the relationship between final
predictors and clinical case status (Figure 6). In SHAP summary
plots, each data point represents an individual participant and the
colorization reflects the original value of the predictor as an input
feature. Thus, discrete-valued features appear as red or blue,
whereas a continuous feature appears as a color gradient from
low to high. The directionality of the relationship between
predictors and depression case status obtained in these plots was
further compared with coefficients obtained during LASSO
regression for Coarse Feature Selection (Supplementary Table S3)
and found to be in agreement.

Figure 6 reveals that individual-level importance of final
predictors in early adolescent depression are typically widely
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FIGURE 5
Case study of predictors of somatic disorder in the multimodal predictive model of new onset at 11-12 years. The summary plot presents the
importance of each final predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting
depression with new onset at 11-12 yrs. The color gradient represents the scaled value of each feature where red = high and blue = low. Circle and
cross marks correspond to the feature values of a pre-selected pair of (true) positive subject and (true) negative subject respectively. MH, mental
health; SU, substance use.

TABLE 5 Performance of deep learning optimized with integrated evolutionary learning in predicting cases of depression using multimodal and
neural-only feature types.

Age of case

determination Accuracy (%) Precision (%) Recall (%)
New onset at age 11-12 years 83.1 86.9 77.9 93.3
All cases at age 9-10 years 91.7 92.9 90.2 96.1
All cases at age 11-12 years 87.0 89.2 84.3 94.5

d':?;'rzfirfai?gn Accuracy (%) Precision (%) Recall (%)
New onset at age 11-12 years 55.9 54.5 70.6 ‘ 60.4
All cases at age 9-10 years ‘ 52.5 524 53.9 ‘ 56.3
All cases at age 11-12 years ‘ 56.5 57.1 51.9 ‘ 57.3

dispersed. For example, when predicting new onset cases of  (see also Table 8). We also computed individual-level importances
depression at 11-12 yrs, the leading predictor of parent  of final predictors for neural-only experiments (Figure 9). Here, the
externalizing traits has a large range of ~[-0.4,0.6] across  dispersion of individual-level predictor importances across
individual participants. Further, dispersion is typically greater for  participants were consistently smaller in neural-only versus
the more important predictors. Overall, these plots also indicate ~ multimodal prediction of early adolescent depression. In addition,
that all final predictors obtained have a positive relationship with ~ Figure 3 visualized the individual-level predictor importances of
depression case status, with the exception of secondary caregiver  two selected contrasting participants studied at the new onset cases
acceptance and prosocial behaviors in predicting new onset cases  at 11-12 yrs, which further differentiate clearly the protective
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TABLE 6 Performance of deep learning optimized with IEL in predicting cases of anxiety.

détgeerrzfirfai?gn Accuracy (%) Precision (%) Recall (%)
New onset at age 11-12 years 78.9 76.1 84.4 85.6
All cases at age 9-10 years 94.2 97.2 91.2 98.5
All cases at age 11-12 years 83.8 83.8 83.8 91.9

Precision (%) Recall (%)

Neural data type

Accuracy (%)

New onset at age 11-12 years 51.6 51.9 43.8 56.6
All cases at age 9-10 years 53.5 54.1 46.9 55.3
All cases at age 11-12 years 50.0 50.0 53.2 53.1

TABLE 7 Performance of deep learning optimized with integrated evolutionary learning in predicting cases of somatic symptom disorder.

d':?eerrzfirfai?gn Accuracy (%) Precision (%) Recall (%)
New onset at age 11-12 years 82.6 83.6 81.2 90.4
All cases at age 9-10 years 90.9 91.9 89.8 95.2
All cases at age 11-12 years 82.5 86.1 77.5 914

Neural data type Precision (%) Recall (%)

Accuracy (%)

New onset at age 11-12 years 54.3 54.8 49.3 52.2
All cases at age 9-10 years 46.1 46.2 48.0 44.7
All cases at age 11-12 years 53.8 53.1 63.3 56.2

factors (e.g., parents and youth getting along very well) from the risk
factors (e.g., parents’ syndrome scores of multiple mental illnesses).

Anxiety

Deep learning optimized with IEL performed very well in
predicting both new onset and prevailing cases of anxiety in early
adolescence. In anxiety, ~79% accuracy and ~86% AUROC was
achieved in predicting new onset cases versus ~84% accuracy and
~92% AUROC in predicting prevailing cases using data obtained at
9-10 yrs to predict cases at the future time point of 11-12 yrs. The
best overall performance was observed using data at 9-10 yrs to
predict contemporaneous prevailing cases, with ~94% accuracy and
nearly 100% AUROC achieved (Table 6a). Similar to depression,
neural-only models did not perform as well as multimodal models
in predicting anxiety cases, being ~24-40% less accurate. Best
performance was obtained when predicting all cases of anxiety at
11-12 yrs, where the final, optimized neural-only model achieved
54% accuracy and ~55% AUROC. Neural-only predictive models of
all prevailing cases at 9-10 yrs and 11-12 yrs also showed inferior

Frontiers in Psychiatry

performance with accuracy of ~52 and ~50% and AUROC of 57
and 53% respectively (Table 6b).

Performance statistics of accuracy, precision, recall and the
AUROC are shown for the most accurate model obtained with
deep learning optimized with Integrated Evolutionary Learning
using a) multimodal features and b) only neural features. We
used features obtained at 9-10 years of age to predict new onset
cases of anxiety at 11-12 years of age as well as all prevailing
contemporaneous cases (9-10 yrs) and all prevailing cases at 11-12
years of age. Corresponding ROC curves may be viewed in
Supplementary Figures 1 and 2.

In anxiety, new onset cases were predicted with a relatively
complex final model comprising 5 predictors (Table 9a). Here, the
most important predictor was the parent’s total burden of
behavioral problems, followed by parent anxiety traits, whether
the youth had ever received mental health or substance use (MH/
SU) services, the youth’s race (White), and the family’s referent
scale score. Total sleep disturbance also appeared but with
lower importance.

We detected overlap between the final predictors of new onset
cases of anxiety at 11-12 yrs and those which predicted prevailing
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cases at 9-10 and 11-12 yrs. At 9-10 yrs, parent depressive and total
behavioral problem scores were the top predictors, with sleep
disturbances and parent-youth relationship quality also
appearing. For all prevailing cases at 11-12 yrs, sleep
disturbances, parent anxiety and aggressive traits, and the
mother’s history of clinical treatment were prominent, along with
overall parent behavioral burden. Group-level importances for
multimodal model predictors were in the range [0.03, 0.18] and
the mean importance for each experiment in the range [0.05, 0.09].

Final predictors of cases of all prevailing cases of anxiety at ages 9-
10 and 11-12 years as well as new onset cases only at 11-12 years of age
are shown for the most accurate models obtained using deep learning
optimized with IEL obtained with a) multimodal features and b) only
neural features. Final predictors are ranked in order of importance
where the relative importance of each predictor is computed with the
Shapley Additive Explanations technique and presented here averaged
across all participants in the sample. Features in blue indicate an inverse
relationship with depression verified with the Shapley method. MH =
mental health; SU = substance use; SST = Standard Stop Signal task;
MID = Monetary Incentive Delay task; ROI = region of interest; FA =
fractional anisotropy; LD = longitudinal diffusivity; WM = white
matter; GM = gray matter.

In neural-only models predicting new onset anxiety cases,
features from the MID fMRI task and structural metrics
predominated (Table 9b). Important final predictors were cortical
depth in the left hemisphere and right pars triangularis (Broca’s
area) as well as MID anticipation in the latter. Final, optimized
models predicting prevailing cases at 9-10 years emphasized
measures of brain function including SST and nBack task metrics
in the right postcentral and left temporal, as well as multiple
connectivity measures including the ventral attention, default
mode, sensorimotor and cingulo-opercular networks. At 11-12
yrs, results again emphasized connectivity metrics among control
and sensorimotor networks as well as structural measures. Group-
level importances for neural-only model predictors were in the
range [0.09, 0.16] and the mean importance for each experiment in
the range [0.12, 0.13]. Similar to the case of depression, the feature
values (as visualized in Figures 7, 10) of the neural predictors had a
relatively smaller variance than the psychosocial predictors in the
multimodal models.

To probe the dispersion of predictor importances at the
individual level, we again developed summary plots of individual-
level importances (Figures 7, 10). Similarly to depression, we
observed relatively more widely dispersed individual-level
importances over the participant sample in multimodal vs neural-
only models, and the trend for wider dispersion of predictor
importance in the more important final predictors. The
directionality of the relationship between predictors and
depression case status obtained in these plots was further
compared with coefficients obtained during LASSO regression for
Coarse Feature Selection (Supplementary Table S3) and found to be
in agreement.

Individual-level predictor importances for the best-performing
mixed-type neural models of anxiety again showed reduced
dispersion across the participant group (Figure 10) when
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compared with multimodal models (Figure 7). The widest
dispersion was observed when predicting new onset cases of
anxiety. Figure 4 presents the individual-level predictor
importances of two selected contrasting participants studied at
the new onset cases at 11-12 yrs. Unlike the case study for
depression, the current case study provides a less obvious
disparity, which can potentially be explained by the relatively
weaker predictive performance of the model predicting anxiety
onset at 11-12 yrs.

Somatic symptom disorder

Deep learning optimized with IEL performed well using
multimodal data in predicting both new onset and prevailing
cases of SSD in early adolescence. Here, ~83% accuracy and
~90% AUROC was achieved in predicting future, new onset cases
at 11-12 yrs with data obtained at 9-10 yrs. The best overall
performance was observed using data at 9-10 yrs to predict
contemporaneous prevailing cases, with ~91% accuracy and ~95%
AUROC. Predictive performance of all prevailing cases at 11-12 yrs
using data from 9-10yrs was comparable to new onset predictions,
with accuracy of ~83% and AUROC of ~91% (Table 7a). As with
depression and anxiety, neural-only models did not perform as well
as multimodal models (Table 7b), being ~29-45% less accurate. The
best performance was seen in predicting new onset cases at 11-12
yrs with accuracy of ~54% and AUROC of ~52% and all prevailing
cases at 11-12 yrs with accuracy of ~54% and AUROC of ~56%.
Accuracy in the model predicting prevailing cases at 9-10 yrs
dropped to ~46% with a low AUROC value of ~45%.

Performance statistics of accuracy, precision, recall and the
AUC are shown for the most accurate model obtained with deep
learning optimized with Integrated Evolutionary Learning using a)
multimodal features and b) only neural features. We used features
obtained at 9-10 years of age to predict new onset cases of somatic
symptom disorder at 11-12 years of age as well as all prevailing
contemporaneous cases (9-10 yrs) and all prevailing cases at 11-12
years of age. Corresponding ROC curves may be viewed in
Supplementary Figures 1 and 2.

In interpreting optimized multimodal predictive models for
early adolescent SSD, we observed that new onset cases were
predicted by whether the youth had ever received mental health
or substance use (MH/SU) services, the parent’s total burden of
behavioral problems, total sleep disturbances, and whether the child
had seen a clinician for a medical issue other than a regular checkup
(Table 10a). While sets of specific predictors were not the same,
overlap was observed among age groups. At 9-10 yrs, prevailing
cases were predicted by parent withdrawal, inattention, somatic,
and total behavioral problem scores, along with sleep disturbance,
visits to a clinician for non-routine medical issues, and parent
general behavior. For prevailing cases at 11-12 yrs, predictors
included a relative’s history of MH/SU services, parent aggressive
and anxiety traits, sleep-wake transition disturbances, and total
behavioral problems, as well as non-routine clinical visits and
excessive somnolence disorders. Group-level importances for
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FIGURE 6

Feature values (min-max normalized)

Individual-level importances of depression predictors in multimodal predictive models. Summary plots are presented of the importance of each final
predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting depression (A) with new onset at
11-12 yrs; (B) in all cases at 9-10 yrs; and (C) in all cases at 11-12 yrs. The color gradient represents the original value of each feature (metric) where
red = high and blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient from low to high.

MH, mental health; SU, substance use.

multimodal model predictors were in the range [0.05, 0.15] and the
mean importance for each experiment in the range [0.07, 0.11].
Final predictors of cases of all prevailing cases of SSD at ages 9-
10 and 11-12 years as well as new onset cases only at 11-12 years of
age are shown for the most accurate models obtained using deep
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learning optimized with IEL obtained with a) multimodal features
and b) only neural features. Final predictors are ranked in order of
importance where the relative importance of each predictor is
computed with the Shapley Additive Explanations technique and
presented here averaged across all participants in the sample.
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FIGURE 7
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Individual-level importances of final predictors of anxiety in early adolescence. Summary plots are presented of the importance of each final
predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting anxiety (A) with new onset at 11—
12 yrs; (B) in all cases at 9-10 yrs; and (C) in all cases at 11-12 yrs. The color gradient represents the original value of each feature (metric) where
red = high and blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient. MH, mental health;
SU, substance use; SST, Standard Stop Signal task; MID, Monetary Incentive Delay task; ROI, region of interest; FA, fractional anisotropy; LD,
longitudinal diffusivity; WM, white matter; GM, gray matter.

Features in blue indicate an inverse relationship with depression
verified with the Shapley method. MH = mental health; SU =
substance use; SST = Standard Stop Signal task; MID = Monetary
Incentive Delay task; ROI = region of interest; FA = fractional
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anisotropy; LD = longitudinal diffusivity; WM = white matter;

GM = gray matter.
In neural-only models, we found that MID and nBack fMRI
task features were emphasized in predicting new onset cases,
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FIGURE 8
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Individual-level importances of final predictors of somatic disorder in early adolescence. Summary plots are presented of the importance of each
final predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting SSD (A) with new onset at
11-12 yrs; (B) in all cases at 9-10 yrs; and (C) in all cases at 11-12 yrs. The color gradient represents the original value of each feature (metric) where
red = high and blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient. MH, mental health;
SU, substance use.

here emphasizing the frontal pole, left amygdala, cuneus and

caudate. Important structural predictors of new onset cases were

cortical volume in the right pars triangularis and contrast in the

right lingual. As with new onset cases, final predictors of

Frontiers in Psychiatry

prevailing cases of SSD at 11-12 yrs centered on task fMRI
metrics, again the MID with the addition of SST measures.

Specific neural predictors of all prevailing cases at 11-12 yrs

centered on the cuneus, insula and fusiform along with
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TABLE 8 Final predictors of cases of depression in early adolescence.

a

Age of case
determination

Ranked final predictors

Parent and youth get along very well
Total sleep disturbance syndrome
score

Importance

0.028
Parent withdrawal syndrome score
. . 0.027
Total disorder of excessive 0,021
somnolence syndrome score '
0.019
Parent total problems syndrome 0.017
New onset at age score ’
. R 0.017
11-12 years Total disorder of initiating and 0.017
maintaining sleep score '
. 0.015
Parent general behavior score 0.014
Parent ADHD probl d '
aren problem syndrome 0.008
score
. 0.018
Parent anxiety syndrome score
Ever received MH/SU services
Mean
Parent avoidant personality problem
syndrome score
Parent somatic syndrome score
. 0.13
Total sleep disturbance syndrome 011
score '
0.10
Parent total problems syndrome 0.08
score '
. 0.06
All cases at age Parent anxiety syndrome score 0.06
9-10 years Total prosocial behaviors score 0' 05
Total disorder of excessive '
0.04
somnolence syndrome score 0,04
Parent general behavior score 0' 04
Parent aggressive behavior syndrome 0'07
score '
Parent withdrawal syndrome score
Mean
Parent total problems syndrome
score
Total sleep disturbance syndrome 0.08
score ’
0.06
Parent and youth get along very well 0,05
Parent general behavior score '
X R 0.05
Total disorder of initiating and 0.05
All cases at age maintaining sleep score 0'05
11-12 years Total prosocial behaviors score 0'05
Parent avoidant personality problem 0' 04
syndrome score 0'04
Parent inattention syndrome score '
. . 0.02
Total disorder of excessive 0.05

somnolence syndrome score
Ever received MH/SU services

Mean
o}
Neural data . .
type Ranked final predictors  Importance
SST incorrect stop vs correct go 0.30
contrast in left frontal pole ROI 0.22
SST incorrect stop vs correct go 0.21
contrast in left transverse temporal 0.16
New onset at age
11-12 years ROI 016
v T1 intensity in right ventricle ROI 0.13
T1 white-gray contrast in right 0.12
banks of the superior temporal 0.11
sulcus ROI 0.18
(Continued)
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TABLE 8 Continued

b

Neural data
type

Ranked final predictors

Importance

SST correct stop vs incorrect stop
contrast in left frontal pole ROI

SST any stop versus correct go
contrast in left pars opercularis ROI
FA in WM associated with cortical
left anterior cingulate ROI

T1 intensity in right accumbens ROI
Mean

Correlation between sensorimotor
mouth network and sensorimotor
mouth network

Correlation between cingulo-parietal
network and sensorimotor hand
network

SST correct stop vs incorrect stop gig

contrast in right pars triangularis 016
All cases at age RO 0.14

LD in GM associated with left banks
9-10 years . 0.13

of superior temporal sulcus ROI 012

SST incorrect stop vs correct go

Lo . 0.11

contrast in right caudal middle 014

frontal ROI

LD in WM associated with right

pericalcarine ROI

LD in GM-WM contrast associated

with right inferior temporal ROI

Mean

FA in right lateral ventricle ROI

MID anticipation of small loss vs

neutral contrast in right inferior 0.18
All cases at age temporal ROI 0.16
11-12 years Correlation between auditory 0.12

network and right accumbens area 0.15

ROI

Mean

structural measures in parietal, putamen and orbitfrontal
regions. In contrast, the final, optimized model predicting all
prevailing cases at 9-10 yrs was dominated by connectivity
metrics derived from rsfMRI, again emphasizing sensorimotor-
control network connections (Figure 8).

When examined at the individual level, final predictors of SSD
in each participant sample showed the same patterns as we observed
in depression and anxiety. Individual-level predictor importances
were widely dispersed, where typically the more important
predictors exhibited wider dispersions (Figures 8, 11). Further, the
dispersion of individual-level importances was greater in the more
accurate multimodal models.

Similarly to depression and anxiety, individual-level
importances of final neural predictors of somatic symptom
disorder had a generally smaller variance in terms of feature
values compared to the psychosocial predictors in the multimodal
models, as indicated in Figures 8, 11. Their group-level importances
were in the range [0.07, 0.20] where the disparity across important
predictors were similar (Figure 8), suggesting no essential
differences of explanatory power between them. The directionality
of the relationship between predictors and SSD case status obtained
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FIGURE 9
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Individual-level importances of depression predictors in neural-only predictive models. Summary plots are presented of the importance of each final
predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting depression (A) with new onset at

11-12 yrs; (B) in all cases at 9-10 yrs; and (C) in all cases at 11-12 yrs. The color gradient represents the original value of each feature (metric) where
red = high and blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient. MH, mental health;
SU, substance use.

in these plots was further compared with coefficients obtained

during LASSO regression for Coarse Feature Selection
(Supplementary Table S3) and found to be in agreement. Further,

Figure 5 visualizes the case study with two contrasting participants
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at the onset cases of 11-12 yrs, where parents’ total problems
syndrome score and their history of receiving mental health or
substance use services are a strong risk factors for the
children’s SSD.
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TABLE 9 Final predictors of cases of anxiety in early adolescence.

a
Age of Cas€  panked final predictors  Import
determination anke nal predictors mportance
Parent total problems syndrome
score 0.18
Parent anxiety syndrome score 0.10
New onset at age Ever received MH/SU services 0.07
11-12 years Youth’s race: White 0.07
Family as referent scale score 0.05
Total sleep disturbance syndrome 0.04
score 0.09
Mean
Parent depressive problem syndrome
score
Parent total problems syndrome 015
score 0.09
Parent and youth get along very well
. 0.05
Total sleep disturbance syndrome 0.05
All cases at age score 0'04
9-10 years Parent general behavior score 0‘04
Total disorder of initiating and 0'04
maintaining sleep score 0' 03
Total disorder of excessive ’
0.06
somnolence syndrome score
Ever received MH/SU services
Mean
Total disorder of excessive
somnolence syndrome score
Parent anxiety syndrome score
Parent aggressive behavior syndrome 0.09
score 0.07
Parent ADHD problem syndrome 0.06
score 0.06
All cases at age Parent total problems syndrome 0.04
11-12 years score 0.04
Total sleep disturbance syndrome 0.04
score 0.04
Ever received MH/SU services 0.04
Total disorder of initiating and 0.05
maintaining sleep score
Parent general behavior score
Mean

b

Neural data
type

Ranked final predictors

Importance

Mean cortical sulcal depth in mm
for left hemisphere
Cortical thickness in mm of right 013
pars triangularis ROI 0: b
T1 intensity in brain stem ROI
New onset at age ) . 0.12
11-12 years T1 white-gray contrast in left 011
precuneus ROI 011
MID anticipation of large vs small 012
loss contrast in right parstriangularis '
ROI
Mean
nBack negative face vs neutral face 0.16
contrast in right postcentral 0.14
SST correct stop vs incorrect stop 0.13
g_lll(c)a}s]::rzt age contrast in 4th-ventricle ROI 0.13
Correlation between cingulo- 0.12
opercular network and left putamen 0.11
ROI 0.10
(Continued)
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TABLE 9 Continued

b

Neural data
type

Ranked final predictors

Importance

0.09
0.12

LD within right corticospinal
Correlation between ventral
attention network and left pallidum
ROI

SST correct stop vs correct go
contrast in left inferior temporal
Correlation between default network
and sensorimotor hand network
Correlation between cingulo-
opercular network and ventral
attention network

Mean

Cortical thickness in mm of left
transverse temporal ROI

LD in WM associated with left
cuneus ROI

Correlation between none network
and sensorimotor hand network
Cortical thickness in mm of right
pericalcarine ROI

Correlation between cingulo-
opercular network and dorsal

0.15
0.14
0.14
0.13
0.13
0.12
0.12
0.11
0.10
0.13

All cases at age

attention network
11-12 years

FA in WM associated with right
entorhinal ROI

LD in WM associated with left
pericalcarine

Correlation between fronto-parietal
network and sensorimotor mouth
network

Cortical depth in left superior
parietal

Mean

Fairness subgroup performance analysis

To robustly evaluate the model performance from a fairness
perspective, we conducted a subgroup performance analysis on the
held-out test set, stratified by race and annual family income level.
Performance statistics are reported in Supplementary Table Sé.

For the stratification of race, 58.8-68.0% of the individuals in the
held-out test set identified as White, 12.5-19.9% as Black, and 19.5-
21.0% as other races. Accuracy scores for anxiety (79.3-84.0%) and
somatic problems (83.3-86.2%) were largely consistent across
different racial groups. However, in the case of depression, a
larger disparity was observed: predictive accuracy was 92.6% for
Black participants but 79.3% for participants categorized as other
races, despite their similar sample sizes.

For the annual family income level stratification, 8.1-11.9% of
the individuals in the held-out test set reported an annual income
below $15,999, 9.0-17.1% earned $16,000-$34,999, 17.1-22.5%
earned $35,000-$74,999, and 57.7-58.6% earned $75,000 or above.
This stratification revealed larger performance disparities across
income groups. The most extreme case was observed when
predicting somatic problems, where the accuracy was 60.0% for
the lowest income group compared to 91.3% for the $35,000-
$74,999 group — a difference exceeding 30 percentage points.
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FIGURE 10

Individual-level importances of neural final predictors of anxiety in early adolescence. Summary plots are presented of the importance of each final
predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting anxiety (A) with new onset at 11—
12 yrs; (B) in all cases at 9-10 yrs; and (C) in all cases at 11-12 yrs. The color gradient represents the original value of each feature (metric) where
red = high and blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient. MH, mental health;
SU, substance use; SST, Standard Stop Signal task; MID, Monetary Incentive Delay task; ROI, region of interest; FA, fractional anisotropy; LD,
longitudinal diffusivity; WM, white matter; GM, gray matter.
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TABLE 10 Final predictors of cases of somatic symptom disorder in early

adolescence.

a

Age of case
determination

Ranked final predictors

Parent ever received MH/SU services
Parent total problems syndrome

Importance

0.15
score 0.15
New onset at age Total sleep disturbance syndrome 0'07
11-12 years score 0.06
Child has seen clinician for medical ’
. 0.11
issue other than regular checkup
Mean
Parent withdrawal syndrome score
Parent inattention syndrome score 014
Parent somatic syndrome score 0'14
Parent total problems syndrome 0'13
score ’
All t 0.11
cases at age Child has seen clinician for medical
9-10 years . 0.09
issue other than regular checkup
X 0.07
Total sleep disturbance syndrome 0,06
score . 0.10
Parent general behavior score
Mean
Blood relative ever received MH/SU
services
Parent aggressive behavior syndrome
score 0.09
Total sleep-wake transition disorder 0.09
syndrome score 0.08
All cases at age Parent anxiety syndrome score 0.08
11-12 years Parent total problems syndrome 0.07
score 0.05
Child has seen clinician for medical 0.05
issue other than regular checkup 0.07

b

Neural data
type

Total disorder of excessive
somnolence syndrome score
Mean

Ranked final predictors

Cortical volume in mm? of right
pars triangularis ROI

MID all anticipation of small reward
vs neutral contrast in 4th-ventricle
ROI

Importance

nBack positive face vs neutral face 0.20

contrast in right cuneus ROI 0.17

T1 white-gray contrast in right 0.17
New onset at age lingual ROI 0.14
11-12 years MID all anticipation of small reward 0.14

vs neutral contrast in right 0.14

frontalpole ROT 0.14

MID all loss positive vs negative 0.16

feedback contrast in left amygdala

ROI

nBack negative face vs neutral face

contrast in right caudate ROI

Mean

Correlation between sensorimotor 0.16
All cases at age mouth network and sensorimotor 0.15
9-10 years mouth network 0.15

Correlation between dorsal attention 0.14

(Continued)
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TABLE 10 Continued

b
NN G Ranked final predictors  Importance
type
network and sensorimotor hand 0.12
network 0.12
Cortical sulcal depth in mm of right 0.11
postcentral ROI 0.11
Average correlation between 0.11
auditory network and cingulo- 0.09
opercular network 0.13

FA in GM associated with left
inferior temporal ROI

T1 within corpus callosum mid-
anterior

Correlation between default network
and retrosplenial temporal network
T1 in WM in left transverse
temporal

Correlation between retrosplenial
temporal network and sensorimotor
mouth network

TD in GM associated with left
entorhinal ROI

Mean

SST incorrect go vs correct go
contrast in left lateral-ventricle ROI
Cortical area in mm? of left inferior
parietal ROI

Diffusivity within left putamen ROI
MID all anticipation of large vs
small loss contrast in left cuneus

.12
ROI 0
. . 0.12
SST incorrect go versus incorrect
. 0.12
stop contrast in left cerebellum 011
cortex ROI 0'11
All cases at age MID all anticipation of small reward 0'10
11-12 years vs neutral contrast in right insula 0'09
ROI OA08
MID all reward positive vs negative ’
A 0.07
feedback contrast in right lateral 0.07
icle ROI ’
ventricle RO 0.10

MID all loss positive vs negative
feedback contrast in right fusiform
ROI

Depth of right orbitofrontal
Cortical thickness in mm of right
lingual

Mean

Baseline comparison

We compared our IEL approach with three traditional ML
modeling methods: logistic regression, random forest, and SVM.
The performance statistics, defined in terms of accuracy, precision,
recall, and AUROC, of these models, trained with the multimodal
feature sets, are reported in Supplementary Table S7. The results
demonstrate that the baseline models achieved highly comparable
performance with IEL consistently. The average accuracy (across
targets and cases of determination) of IEL is 86.1% whereas the
baseline models, which include roughly 10 times more features,
have an average accuracy of 87.5-88.7%. Student t-tests verified that
IEL does not have a statistically significantly different accuracy
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FIGURE 11

Individual-level importances of neural final predictors of somatic symptom disorder in early adolescence. Summary plots are presented of the importance of
each final predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting SSD (A) with new onset at 11-12
yrs; (B) in all cases at 9-10 yrs; and (C) in all cases at 11-12 yrs. The color gradient represents the original value of each feature (metric) where red = high
and blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient. MH, mental health; SU, substance use.
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performance compared to logistic regression (p-value = 0.36),
random forest (p-value = 0.54), or SVM (p-value = 0.23).

Discussion

Common and specific themes across
internalizing disorders

We analyzed ~6,000 candidate predictors from multiple
knowledge domains (cognitive, psychosocial, neural, biological)
contributed by children of late elementary school age (9-10 yrs)
and their parents and constructed robust, individual-level models
predicting the later (11-12 yrs) onset of depression, anxiety and SSD.
Leveraging an optimization pipeline that included Al-guided
automated feature selection allowed us to extend prior work by
analyzing a wider variety of predictor types and ~40x more candidate
predictors than previous comparable ML studies. A common pre-
processing and analytic design across all three internalizing disorders
in the same youth cohort allows the direct comparison of results to
elicit their diagnostic specificity and identify common themes. In
addition, we wanted to quantify the relative predictive performance of
multimodal vs neural features and examine the relationship between
predictor importance and model accuracy. To our knowledge, this is
the first ML study in adolescent internalizing disorders to include
multiple types of neural predictors (rsfMRI connectivity; task fMRI
effects; diffusion and structural metrics), analyze >200 multimodal
features and quantify the relationship between predictor importance
and accuracy. The iterative feature sampling approach adopted in our
genetic algorithm offers additional robustness to this quantification
by reducing the risk that predictive accuracy hinges on a single subset
or on correlated predictors retained in the pre-processing phase.

Comparing across results, we found that the relative predictive
performance of our models varied according to the specific disorder
and type of predictor (psychosocial vs neural). Deep learning
optimized with IEL rendered robust individual-level predictions
of all three internalizing disorders with AUROCsS of 86-99% and 79-
94% accuracy. Precision and recall were also consistently >~80%
with scattered exceptions in precision (new onset anxiety: 76%) and
recall (new onset depression: 78%; prevailing SSD at 11-12 yrs:
78%). Our primary focus was in predicting future, new onset cases
of each internalizing disorder in early adolescence. We found that
new onset cases of depression could be most reliably predicted
(AUROC ~93%), followed by SSD (AUROC ~90%) and anxiety
(AUROC 86%).

An important result is that we found that predicting early
adolescent internalizing disorders with multimodal features
resulted in substantially better performance than exclusively
neural-based models, and that psychosocial predictors were
preferentially selected in multimodal modeling. Our pipeline
includes automated feature selection with a genetic algorithm
(IEL) that progressively selects among features as it learns how to
optimize predictive models over a principled training process
(typically ~40,000 models). Cognitive, neural and biological
features failed to outcompete psychosocial features in training
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with multimodal. Further targeted experiments specifically
assessed the standalone predictive ability of multiple neural
feature types derived from MRI. These experiments demonstrated
that neural-only models achieved a close to 50% performance,
sacrificing 24-45% performance compared to the multimodal
models, across statistics (accuracy, AUROC, precision, recall).
While little extant research has directly compared psychosocial to
neural features in youth internalizing disorders, our results are
congruent with studies that have used multimodal feature types
including MRI metrics (18, 19). Our design extended prior work by
allowing us to examine more and wider feature types and disorders
and the prediction of new onset vs prevailing cases. Neural-only
models of new onset cases achieved superior performance to other
participant samples and selectively comprised task fMRI and
structural metrics, though more neural feature types (rsfMRI
connectivity, diffusion-based) were available for selection,
suggesting structural and task fMRI neural features may have
particular promise in predicting adolescent onset of
internalizing disorders.

Specific sets of final predictors for each disorder and participant
sample were unique and differentiated both a) depression, anxiety
and SSD from each other and b) future new onset from all prevailing
cases. However, parental levels of various types of problem behaviors
and youth sleep disturbances appeared as cross-cutting, higher-level
themes. All three internalizing disorders showed commonality in
parent-related psychopathology measures, with anxiety- and
attentional-related difficulties assorting as predictors across different
participant samples. Notable disorder-specific predictors included
parent level of somaticizing to their child’s SSD. Taken together, our
results demonstrate that parent problem behavioral traits are
important drivers of internalizing disorders in early adolescence
and that the specific parental traits observed when their child is 9-
10 yrs may be useful in discriminating whether their child will go on
to develop depression, anxiety or SSD. This phenomenon suggests
intergenerational transmission, though our design cannot determine
whether this is underpinned by inheritance, parent-youth styles of
relating or other factors, though the presence of externalizing parental
behaviors in predicting the later onset of an internalizing disorder in
the child suggests that more than inheritance is at work. Here, our
results congruent with the small number of comparable ML studies
that have included parental traits as candidate predictors, where
parent total behavioral problems and poor maternal relationships
were leading predictors of depression (15, 61). These findings are also
consistent with developmental frameworks, such as Bronfenbrenner’s
bioecological model, which emphasizes the role of proximal family
factors in shaping child outcomes (26), and Ciccheti and Rogosch’s
developmental psychopathology framework, which underscores how
multiple risk pathways can converge on internalizing outcomes (27).
Similarly, Sameroff's transactional model highlights the reciprocal
inference of parents and children over time, further supporting the
central role of parental psychopathology in developmental
trajectories (28).

Next, sleep disturbances may affect up to ~40% of elementary
school age children and youth with both internalizing and
externalizing disorders are at elevated risk (62, 63). We found
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that sleep disturbances in the late elementary school age group (9-
10yrs) predicted the later (11-12 yrs) onset (anxiety, SSD) and
prevalence (depression) of internalizing disorders, congruent with
recent research showing that disturbed or short duration sleep
predicts later internalizing symptoms (64-67). Here, our findings
add to a growing body of work suggesting sleep disturbances may be
important intervention targets in elementary school age youth to
reduce the later burden of internalizing symptoms (67). Beyond
empirical associations, sleep disturbance has also been
conceptualized as a transdiagnostic vulnerability process in
developmental psychopathology frameworks. Disruptions in sleep
and arousal regulation may impair affect regulation, cognitive
control, and stress reactivity, thereby increasing susceptibility to
internalizing disorders (29-31).

Recent research in association-based studies has suggested that
effect sizes in neuroimaging studies of psychopathology and
cognitive traits are often inflated, particularly in smaller
participant samples, resulting in generalization failure (68). Our
prior work in predicting externalizing disorders has similarly shown
that neural predictors tend to underperform (69). Accordingly, we
investigated predictor importance at both the group and individual
level and its relationship with model performance in generalization
testing, observing a strong relationship between predictor
importance and accuracy across experiments. In individual
experiments, psychosocial predictors in multimodal models
exhibited generally greater variances in feature values than those
in neural-only experiments, even after extensive optimization and
principled feature selection. Collectively, these results suggest that
the more restricted variability of neural predictors among
individuals were at least related to their weaker performance in
predicting cases using artificial neural networks. Future work will be
required to determine whether these phenomena are seen in other
disorders and participant samples (particularly other
developmental periods) and if other types of neural features (for
example, connectivity features obtained from data-driven rather
than ROI methods) could fare better in predicting cases of
internalizing disorders.

Depression

Depression is a common and growing problem in adolescence
which elevates later risk for suicide, poor educational outcomes and
substance use (70). In the present study, we focus on early onset
cases of depression i.e. those which onset or are present at 11-12
yrs. Most prior work in early onset depression has examined
psychosocial predictors at the group level, linking it to sleep
disturbances, childhood adverse events (neglect, abuse, loss of
parent), familial depression and pubertal changes (71-77)
Longitudinal neuroimaging studies of the onset or course of
depression in adolescence are relatively plentiful and have ranged
across a variety of MRI modalities (78). Similarly, these have
typically been group-level studies employing traditional
multivariate predictive methods in a single neuroimaging
modality and small number of ROIs, sometimes in small samples.
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Results have been inconsistent. In structural MRI, subcortical
regions (especially hippocampal) have been most intensively
studied with mostly negative results, though there is some
evidence for smaller accumbens and insula volume and equivocal
results for OFC regions (79-84). In fMRI, reward and emotion
processing have been most intensively studied. A number of studies
have demonstrated differential reward-related activity in the ventral
striatum (85-89), though these studies are nearly all from later
adolescence. In early adolescence, Morgan et al. found the inverse
was the case (90). In emotion processing, increases or decreases in
ACC activity have predicted adolescent depression onset (91-93).

More recently, a number of ML studies have performed
prospective prediction of adolescent depression incorporating
larger numbers of candidate predictors, either psychosocial and/
or neuroimaging. To our knowledge, our study represents only the
second time multimodal (including neuroimaging) candidate
predictors have been analyzed at the individual level using ML to
prospectively predict depression onset in adolescents, and the first
time in early adolescence. With an AUC of ~0.90, we achieved
performance comparable with a single prior deep learning study
and superior to that obtained using logistic regression or support
vector machines (SVM) (18, 61, 84-86). We are not aware of other
prior ML studies that have directly compared the ability of
multimodal vs neuroimaging predictors in adolescent depression
or incorporated more than one type of neuroimaging metric.

Our Al-guided optimization pipeline preferentially selected
psychosocial features to predict early onset adolescent depression
after analyzing thousands of multimodal candidate predictors.
Multimodal models achieved 27-39% better performance over all
metrics than neural-only models. However, at ~0.57 AUROC, our
neural-only deep learning model achieved performance inferior to
multimodal models in other studies using different ML methods
(logistic regression, SVM). Several recent large-scale ML
prospective predictive studies of youth depression have examined
the predictive performance of nonlinear combinations of candidate
predictors at the individual level. In youth aged 15 yrs, Rocha et al.
trained penalized logistic regression models with 11 psychosocial
metrics finding that school failure, social isolation, involvement in
physical fights, drug use, running away from home, and
maltreatment predicted depression onset at 18 yrs, achieving
AUROC 0.79 in the baseline dataset and 0.59 and 0.63 in external
validation datasets (94). Foland-Ross et al. used cortical thickness
metrics to predict new onset adolescent depression with 70%
accuracy, with thickness of the right precentral and medial OFC
and left ACC and insula representing the most important features
(84). Most recently, two important large scale ML studies utilized
multimodal candidate predictor sets. Toenders et al. applied
penalized logistic regression to 69 phenotypic and 76 structural
MRI metrics in youth aged 14 yrs from the IMAGEN dataset,
testing for generalization in a held-out set to achieve 0.72 AUROC
and 66% accuracy (78). Depressive symptoms at baseline,
neuroticism, cognition, supramarginal gyrus surface area, and
stressful life events were most predictive of later new onset
depression. Xiang et al. surveyed 188 psychosocial and rsfMRI
connectivity candidate predictors collected at 9-10 yrs and
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empirically selected based on prior literature to predict depression
trajectories (computed with latent class analysis) through 11-12 yrs
in the ABCD cohort, with deep learning achieving best performance
(61). This study is perhaps the most comparable to our own
methodologically and achieved similar AUROC (~0.90) and
accuracy (87% vs ~82, ~86%), though precision (0.45) and recall
(0.44) were lower. Total sleep disturbance, parent total behavioral
problems, financial adversity, ventral attention-left caudate and
dorsal attention-left putamen connectivity and school
disengagement were the most important predictors of depression
trajectories. Thus, we obtained thematically concordant results with
prior research in identifying parental problem behaviors of various
types and sleep disturbances being important predictors of early
adolescent depression. However, our work differs in not identifying
other types of childhood adverse experiences, cognitive traits and
pubertal status as being as important to final, optimized models. In
new onset depression, we found that the most important predictors
were the tenor of the parent-child relationship, parent withdrawn
and inattentive traits and sleep disturbances. In contrast, parent
avoidant and more general metrics of behavioral issues specifically
drove the prediction of all prevailing cases at 11-12 yrs.

We believe that this is the first time that multiple neuroimaging
feature types have been used to predict new onset depression in
adolescence in a neural-only model. Thus, it is particularly
intriguing to note that the onset of early adolescent depression
was predicted by multiple task fMRI effects — but that these centered
on the SST (which measures response inhibition) rather than the
MID (reward processing). We found rather that MID effects were
emphasized in predicting anxiety and in particular SSD - and it has
been previously noted that almost no longitudinal fMRI studies in
adolescent depression directly compare anxiety and depression in
the same sample (78). In our neural-only models, results are
concordant with existing literature in highlighting fronto-
temporal ROIs but our algorithms preferentially selected effects
from the SST over the MID. The SST is a test of inhibition of
prepotent responses and has been extensively studied in
externalizing disorders (where there is a positive relationship) but
less in the internalizing disorders. However, ex-scanner studies in
children with internalizing behaviors and adults with depression
using the SST show longer reaction time in patients with recent
work associating response inhibition deficits in children with
rumination traits (95-97). Future work may consider exploring
SST task-related effects in response inhibition further in
adolescent depression.

Anxiety

Anxiety is among the most common mental health disorders
affecting adolescents and adults. Among the internalizing disorders,
it is the condition most clearly centered on early adolescence, with a
median age of onset of 11 yrs. Many psychosocial, demographic and
cognitive risk factors have been associated with the development of
clinical anxiety including early life temperamental traits such as
anxiety sensitivity, neuroticism and anxious temperament. Thus,
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the formulation of prospective predictive models that can
discriminate among these factors and provide reliable, individual-
level predictions of anxiety onset in early adolescence is of particular
relevance. However, few ML studies have predicted future anxiety
in adolescence. To our knowledge, this is the first ML study to
predict future anxiety in early adolescence and the first to use
multiple neural features types. In important prior multimodal work,
Chavanne et al. compared the ability of psychosocial vs neural
features to predicting anxiety cases at 18-23 yrs in the IMAGEN
cohort with 14 gray matter volumetric measures and 13 clinical
metrics measured at 14 yrs using a majority voting algorithm
comprising Logistic Regression, SVM and Random Forest
classifiers. In the multimodal model, an AUROC of 0.68 was
obtained with neuroticism, hopelessness, emotional symptoms
and family factors contributing most to the prediction and
volumetric differences in the periaqueductal gray, amygdala, ACC
and subcortical regions making lesser contributions. With neural
features alone, AUROC dropped to 0.52 whereas with psychosocial
features alone it improved to 0.69.

Here, we demonstrate that new cases of anxiety at 11-12 yrs can
be reliably (AUROC ~86%; accuracy ~79% and precision ~84%)
predicted with deep learning optimized with IEL and that these
predictive models differ from depression and SSD. As in the
developmentally older IMAGEN cohort, our analysis in the
younger ABCD cohort found that multimodal features predict the
onset of anxiety better than neural-only features with a substantial
differential of 24-40% across performance statistics. We found that
new onset cases of anxiety in early adolescence were predicted by
elevated parental mental health issues, sleep disturbances and the
child having come to prior clinical attention. It is noteworthy that
elevated parental anxiety trait scores was a specific predictor of their
child’s anxiety. While the child having White race appeared as an
important predictor, we emphasize that predictive models are not
mechanistic and this factor could easily represent diagnostic
frequency. Our results are congruent with the literature and
suggest that elevated parental anxiety and the total burden of
parental behavioral issues and child sleep disturbances interact in
a nonlinear manner to predict the onset of later clinical anxiety in
early adolescence. While there was thematic overlap among our
different anxiety models (parent problem behaviors, sleep
disturbances) this particular set of factors was specific to new
onset cases. While parent depressive behaviors were a final
predictor of contemporaneous cases at 9-10 yrs, they did not
predict new onset cases at 11-12 yrs.

Somatic symptom disorder

Somatic behavioral problems refer to the presence of one or
more physical symptoms accompanied by excessive investment
(time, emotion, behaviors) in the symptom(s) that results in
significant distress or dysfunction. The diagnosis of SSD
emphasizes symptom-based impairment in daily life. Peri-
adolescence is an important period when SSD onsets and rises
towards higher adult rates. Prior research, including prospective

frontiersin.org


https://doi.org/10.3389/fpsyt.2025.1487894
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org

de Lacy et al.

studies, has frequently implicated family functioning including
parents’ own levels of physical and mental health complaints and
parent somatic problems as well as parental divorce, illness or death,
childhood traumatic experiences and insecure attachment (98-
103). Work examining adolescent predictors of subsequent
trajectories of somatic symptoms have identified the quality of
parent-youth relationships, parenting stress and youth bullying,
school dissatisfaction and lower intelligence level symptoms as
important predictors (104-108). The genetic component appears
to be small, albeit studies are limited (109). Research focused on the
cognitive-affective neural basis of somatic problems using task fMRI
has linked group-level differences in para/hippocampal, ACC,
insula, brainstem and lateral prefrontal regions to effects in
negative expectancy, attentional bias and pain catastrophizing
(110-116). Fewer neuroimaging studies have investigated circuit
abnormalities in somatic problems, though rsfMRI studies have
implicated increased brainstem, caudate, thalamus and ACC
activity and decreased lateral prefrontal activity in adults (117,
118). In a cross-sectional study in the ABCD cohort, Dhamala et al.
found disrupted temporo-parietal, default mode, dorsal attention
and control-limbic functional connections using rsfMRI data from
9-10 yrs to predict CBCL somatic problem scores at the same
age (119).

Our findings contribute to this growing body of work in several
ways. Firstly, prospective predictive studies of somatic problems
have typically focused on either psychosocial (particularly family-
or adversity-related measures) or neural predictors. In the present
study we analyzed nearly 6,000 multimodal predictors of many
types (including cognitive and non-neural biological metrics),
allowing us to assess their relative predictive ability holistically. In
these multimodal models, we found that psychosocial predictors
were preferred over neural, cognitive and biological metrics.
Secondly, the richness of parent and family-related metrics in the
ABCD sample allowed us to consider a larger range of psychosocial
predictors than has typically been available to earlier studies of
somatic problem symptoms in youth. We found that parent level of
somatic problem behaviors (9-10 yr prevailing cases) and
internalizing as well as externalizing traits were preferentially
selected as predictors over other family-, school- or peer-related
candidate predictors such as bullying, parent stress or early adverse
experiences. In all participant samples, parent somatic or
internalizing problem behaviors interacted with sleep
disturbances. Of note, whether a specific predictor of somatic
problems in new onset cases at 9-10 yrs and cases at 11-12 years
was whether the child was seen for a medical issue other than a
regular checkup. These findings comport with earlier work and
further suggest that childhood patterns of clinical use and sleep
disturbances and elevated levels of parent somatic traits may be
helpful in assessing youth risk for somatic problem behaviors.
Similarly, the wide range of neuroimaging measures available
allowed us to assess nearly 5,000 different neuroimaging metrics
over multiple modalities to predict somatic problem behaviors in
youth. While these models were not as robust as multimodal models
(AUROC ~0.45-0.56), they are congruent with extant research in
centering on temporal, frontal and cingulate regions and attentional
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network connectivity. Our work additionally highlighted the insula,
a region long known to be involved in interoception and pain
processing. Interestingly, effects in these regions during the MID
task involving reward processing and loss anticipation were
emphasized in predicting new onset cases of somatic problems in
contrast to anxiety, where they centered on loss anticipation only.
While we are not aware of prior work using the MID task in somatic
problem behaviors, this may be an interesting line of future inquiry
given a cardinal feature of somatization is the amount of valence
and/or investment given to physical symptoms. Overall, we found
that structural, task and rstMRI were useful modalities in predicting
somatic problems in early adolescence but diffusion imaging made
less of a contribution.

Fairness subgroup performance analysis

The ABCD study was designed to approximate the
demographic characteristics of U.S. children through stratified
probability sampling of schools across 21 U.S. sites. Although it
does not guarantee full representativeness (120), some prior studies
have argued for its national representativeness (121, 122). In light of
the performance statistics reported in Supplementary Table S6,
there exist visible disparities across subpopulations, particularly
when stratified by annual family income levels. These findings
highlight the need for future research to investigate the
underlying sources of these disparities and to explore fairness-
aware approaches that can promote more equitable predictive
performance. While such fairness optimization is beyond the
scope of the present study, our results provide a foundation for
subsequent work to address these challenges.

Baseline modeling analysis

While the IEL technique performs only comparably to the
traditional ML modeling techniques, it has clear deployment
advantages — yielding more interpretable results due to its use of
fewer features, an enhanced stability through the optimization
process, and enabling individual-level explanation due to its
incorporation of SHAP values. IEL embeds a highly explainable
solution to the traditional ML modeling problems, offering the
operator the ability to visualize increasing model efficiency over
iterations to identify the optimal solution, where this solution is
parsimonious. Ultimately, parsimonious models are better suited
for clinical risk stratification purposes since they require the de novo
collection of less data in the field.

By contrast, deep-learning models and genetic algorithms for
hyperparameter optimization generally require greater
computational resources for training. That said, prediction is
relatively efficient once the model is trained. For example,
prediction with our deep-learning models typically completes in
less than a second, owing to the computation efficiency of the well-
optimized PyTorch package. This tradeoff between training time
and model interpretability is reasonable in clinical practice, where
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models are trained infrequently but deployed repeatedly to provide
rapid, interpretable predictions in single shot learning for individual
patients at the point of care. Thus, IEL framework balances practical
feasibility with the clinical need for transparent, individualized
risk assessments.

Predictive models and their future value
for risk stratification

Individual-level predictive models such as we present in this
paper can be valuable in clinical practice for their role in providing
the core of risk stratification algorithms, which calculate the amount
of risk an individual has for a specific condition. Risk stratification is a
multi-stage developmental process where the first step is building
predictive models with robust positive class discrimination. This is
typically followed by deciding on an intervention, coupling this
intervention with the predictive model to form a decision support
tool and testing this tool in the clinical population. Using a robust risk
prediction model, clinicians can stratify an individual’s relative risk
level to initiate preventive monitoring or supportive interventions at
an earlier stage. While developing and validating a fully deployable
decision support tool for risk assessment is beyond the score of the
current study, our model establishes a foundation for future work
aimed at integrating predictive risk score into clinical workflows. Our
findings also have potential implications for the development of risk
stratification tools in child and adolescent mental health. Predictive
models such as IEL could be integrated into clinical or educational
settings to classify youth into relative risk tiers (e.g., high, moderate,
or low risk) for later internalizing disorders. Such stratification could
enable more efficient allocation of limited resources, with higher-risk
individuals receiving targeted screening, preventive support, or
referral for early intervention.

An important consideration in translating predictive models
into practice is the precision-recall trade-off. While maximizing
sensitivity is valuable for identifying youth at risk of internalizing
disorders, this inevitably comes at the cost of reduced precision,
leading to false positives. In clinical contexts, false positives may
carry consequences such as unnecessary monitoring, referrals, or
anxiety for families. These potential drawbacks must be weighed
against the benefits of early identification, particularly when
interventions are low-risk or preventive in nature. Accordingly,
predictive models such as ours should be regarded as adjunctive
decision-support tools that complement, rather than replace,
clinical expertise in assessing risk.

Validation in external, independent samples will be required in
future work to strengthen the current analysis. Currently, to our
knowledge, there is no publicly available dataset with comparable
combination of sample size, longitudinal depth, and breadth of
measurement as the ABCD Study, making external validation
challenging within the scope of this work. Also, although
subsequent ABCD releases (e.g., Release 6.0) provide additional
data points, they involve the same cohort of participants at a later
age point while the present analysis is specifically focused on early
adolescence. As the ABCD Study continues to collect and release
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longitudinal data, future research will benefit from extending
predictive analyses into mid- and late-adolescence. Such work will
allow evaluation of whether early predictors identified in this work
remain stable across development or whether new risk factors emerge
during later stages of adolescence. These additional analyses will be
critical for understanding the developmental timing of risk pathways
and for refining prediction models across the adolescent period.
Additionally, expanding the feature space to include other
modalities can potentially enhance the predictive power. For
instance, sensor data recorded by electronic wearables or mobile
phones can capture how the children’s daily activities, screentime
usage, and exercise levels impact the risk of internalizing disorders.
Another route to improve the practicality of our adopted algorithm
is to explore other hyperparameter optimization strategies. Similar
to genetic algorithms which have a strong theoretical underpinning,
Bayesian optimization techniques and bandit-based methods (123)
are also feasible alternatives to streamline to model training process.

Limitations

This study uses secondary data from the ABCD study and we
were therefore unable to control for any bias during data collection.
While the ABCD study strived for population representation, there
is a mild bias toward higher-income participant families of white
race in the early adolescent cohort. Thus, the ABCD study may not
fully represent all racial, ethnical, and socioeconomic groups within
the U.S. population, or even to the broader non-U.S. populations.
While our findings in the fairness subgroup analysis indicate
disparities in predictive performance, investigation of their causes
and mitigation strategies is beyond the present study but highlights
important directions for other researchers to explore these
important questions in the future research. On the other hand,
data is not available prior to baseline (age 9-10 years) assessment
and we cannot conclusively rule out that youth participants met
criteria for depression, anxiety or somatic problems prior to this age
but not at baseline assessment at 9-10 years of age. Thus, it is
possible that certain cases coded as ‘new onset” at 11-12 years of age
in our analysis could have met clinical criteria <8 yrs but were in
remission at 9-10 yrs. In the present study, we defined cases as any
individual meeting ASEBA clinical thresholds in the CBCL subscale
scores of interest and did not exclude participants who thereby met
criteria for other conditions. Thus, co-morbidity may be present in
the experimental samples as is common in clinical populations and
in most research studies in early adolescence. While we used nearly
6,000 variables available in the ABCD dataset, our study is not
exhaustive. It is possible that different results could have been
obtained if more or different candidate predictors were included.
For example, rsfMRI data includes metrics from ROI-based
parcellations but not a data-driven method such as ICA. We
focused on rigorous internal validation strategies by including
strict separation of training and test sets, and evaluation on the
holdout test set that was never used in model training or validation,
a gold standard in ML that ensures an unbiased evaluation of
generalizability. However, prospective external validation using a
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dataset other than ABCD can further improve generalizability of
our analysis.
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