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Introduction: Internalizing disorders (depression, anxiety, somatic symptom

disorder) are among the most common mental health conditions that can

substantially reduce daily life function. Early adolescence is an important

developmental stage for the increase in prevalence of internalizing disorders

and understanding specific factors that predict their onset may be germane to

intervention and prevention strategies.

Methods: We analyzed ~6,000 candidate predictors from multiple knowledge

domains (cognitive, psychosocial, neural, biological) contributed by children of

late elementary school age (9–10 yrs) and their parents in the ABCD cohort to

construct individual-level models predicting the later (11–12 yrs) onset of

depression, anxiety and somatic symptom disorder using deep learning with

artificial neural networks. Deep learning was guided by an evolutionary algorithm

that jointly performed optimization across hyperparameters and automated

feature selection, allowing more candidate predictors and a wider variety of

predictor types to be analyzed than the largest previous comparable machine

learning studies.

Results: We found that the future onset of internalizing disorders could be

robustly predicted in early adolescence with AUROCs ≥~0.90 and

≥~80% accuracy.

Discussion: Each disorder had a specific set of predictors, though parent

problem behavioral traits and sleep disturbances represented cross-cutting

themes. Additional computational experiments revealed that psychosocial

predictors were more important to predicting early adolescent internalizing

disorders than cognitive, neural or biological factors and generated models

with better performance. Future work, including replication in additional

datasets, will help test the generalizability of our findings and explore their

application to other stages in human development and mental health conditions.
KEYWORDS

deep learning, AI, internalizing disorders, adolescence, depression, anxiety, somatic
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Introduction

Depression, anxiety and problematic somatic symptoms

(physical symptoms such as headaches and stomachaches) are

common mental health issues in adolescence. Often collectively

referred to as internalizing disorders, they have been associated with

reduced levels of well-being and daily life function, increased risk of

self-harm and suicide and are substantial predictors of adult

psychopathology (1). Depression and anxiety are among the most

common mental illnesses in the population with lifetime prevalence

of ~30% and ~20% respectively (2). The incidence of internalizing

disorders increases exponentially during the peri-adolescent period,

with anxiety having an earlier developmental arc (3). Anxiety

disorders emerge during elementary school, with the median age

of onset being 11 years of age (yrs) and 75% of lifetime illness

occurring by 21 yrs. Major depression cases begin to onset at 11–12

yrs with median onset at 31–32 yrs and 75% of lifetime illness

having onset by 44 yrs (4). Problematic somatic symptoms affect up

to 40% of youth and increase over peri-adolescence: one third to a

half continue to report symptoms as adults with 5-7% in the general

population and ~17% in the primary care population meeting

criteria as adults for Somatic Symptom Disorder (SSD). (5, 6).

Given the considerable personal, societal and economic burdens

associated with internalizing disorders (7–10), there is great interest

in identifying specific factors that predict their onset, since evidence

suggests that early intervention improves outcomes (11, 12) and

reduces resource use (13). Isolating key predictors of internalizing

disorders is challenging since they have been associated with a host

of different factors from varied domains ranging from biological

(neural; genetic; hormonal) and psychological models (fear/threat

response) to interpersonal relationship function, parent

characteristics, the community environment and wider social

determinants of health such as relative poverty. Historically, an

important barrier to disambiguating the relative importance of such

factors to predicting case onset has been the paucity of appropriate

multimodal data in large participant samples. Outside the US,

national registries or school system data have been available

offering large sample sizes (n>10,000) but these typically lack

physiologic information such as neuroimaging data (14–17). An

alternative strategy is to combine data frommultiple studies offering

neuroimaging or genomic data to boost sample size such as the

datasets offered by IMAGEN or ENIGMA, though pooling across

heterogenous studies may inherently limit features (variables)

available for analysis to those that are shared across all studies

(18–20). Consequently, to promote comparative discovery at scale,

federal and other organizations have recently sponsored the

formation of large, longitudinal cohorts collecting a wide variety

of multimodal data types with standardized protocols. In peri-

adolescence, the flagship initiative of this type is the ongoing

population-level ABCD study (n = 11,800) used in the present

study (21–23).

Concomitantly, interest has recently grown in applying

machine learning (ML) methods to these newly-emerging large-

scale population cohorts as ML techniques offer advantages in

approaching such high-dimension data. Firstly, they can generate
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individual-level case predictions from multidimensional data to

bridge extant work focused on group-level statistical effects with

individual-level discoveries of potential clinical relevance by

“providing multivariate signatures that are valid at the single-

subject level” (24, 25). Secondly, ML techniques can

simultaneously analyze hundreds of candidate predictors and

incorporate non-linear relationships among a set of predictors.

These properties are relevant to the construction of individual-

level models since significant group-level effects may not be useful

at the individual level while a feature with low effect size at the

group level may prove germane. While a number of ML predictive

studies have been performed in youth internalizing disorders, these

have to date considered <200 candidate predictors and focused

largely on prevailing cases of depression, rather than new onset

cases in adolescence, especially early adolescence. The latter are of

considerable translational interest since understanding individual-

level drivers of illness onset and obtaining better visibility into

whether future onset can be reliably predicted using ML would

potentially inform risk stratification strategies. Extant work is also

highly heterogenous with respect to which candidate predictors

(input features) are considered. In particular, some studies use only

psychosocial features and some only neuroimaging features, while a

few have incorporated both types. Concomitantly, performance has

been variable, with accuracy ranging over ~50-90% but the

achievement of robust precision (positive predictive value) - an

important metric for translational relevance - typically proving

more elusive. Moreover, since obtaining physiologic measures such

as neuroimaging metrics is complex and uncommon in clinical

practice, it is relevant to understand whether they improve

individual-level case prediction. Finally, few studies have

constructed predictive models of anxiety or somatic problems in

youth using ML classifiers or applied a consistent analytic

architecture across the three major categories of internalizing

disorders simultaneously in the same population and data to

enable direct comparisons and determine the specificity of

predictive models to different internalizing disorders.

Beyond empirical findings, developmental and ecological

frameworks also suggest that a variety of personal and

environmental factors such as family context and self-regulatory

processes are influential in the emergence of internalizing disorders.

Bronfenbrenner’s bioecological model emphasizes the broader

influence of family and environment on child development, while

Cicchetti and Rogosch’s developmental psychopathology

framework highlights how multiple interacting risks can lead to

similar internalizing outcomes (26, 27). Transactional perspectives

likewise point to the reciprocal shaping of child and parent behavior

across developmental stages (28). Also, sleep has been

conceptualized as a particularly important self-regulatory domain,

with sleep disturbances proposed as a transdiagnostic risk factor for

later internalizing symptoms (29–31).

In the present study, we aim to build on prior work by

predicting cases of depression, anxiety and SSD in early

adolescence (9–12 yrs) using deep learning guided by a large-scale

AI optimization process. Specifically, we aimed to a) identify and

rank the most important predictors after analyzing thousands of
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1487894
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


de Lacy et al. 10.3389/fpsyt.2025.1487894
multidomain candidate predictors; b) provide individual-level

predictions of future, new onset cases at 11–12 yrs in comparison

to all prevailing cases at the same age and 9–10 yrs; c) determine the

incremental value of using multidomain predictors vs neural-only

modeling; and d) examine the relationship between predictor

importance and accuracy. Applying a common analytic

architecture to data from the ABCD cohort, we first constructed

multimodal predictive models by analyzing 5,810 candidate

predictors spanning demographics; developmental and medical

history; white and gray matter brain structure, neural function

(cortical and subcortical connectivity, 3 tasks); brain volumetrics;

physiologic function (e.g. sleep, hormone levels, pubertal stage,

physical function); cognitive and academic performance; social and

cultural environment (e.g. parents, friends, bullying); activities of

everyday life (e.g. screen use, hobbies); living environment (e.g.

crime, pollution, educational and food availability) and substance

use. Subsequently, we recapitulated all analytic procedures using

multiple types of neural candidate predictors.

To make these case classifications, we used deep learning with

artificial neural networks, which incorporates non-linear

relationships among predictors and is resistant to multicollinearity.

While artificial neural networks offer powerful predictive capability,

their application to translational aims can be limited by the relative

difficulty of tuning these models (setting hyperparameters that

control learning) and their tendency to act as ‘black box’ estimators

where the features used to make predictions are not interpretable and

their relative importance is difficult to determine. We enhanced deep

learning performance with Integrated Evolutionary Learning (IEL),

an AI-based form of computational intelligence, to jointly optimize

across the hyperparameters and learn the most important final

predictors and render explainable predictions. IEL is a genetic

algorithm which instantiates the principles of natural selection in

computer code, typically performing ~40,000 model fits during

training before testing final, optimized models in a holdout, unseen

data partition. All results presented are from testing for generalization

in this holdout, unseen data.
Materials and methods

Terminology and definitions

Terms used in quantitative analysis may be shared among

different fields with variant meanings. Here, we use ML

conventions throughout (32–34). ‘Prediction’ means predicting

the quantitative value of a target variable by analyzing patterns in

input data. We refer to the set of all input data as containing

‘features’ or ‘candidate predictors’ and those identified in final,

optimized models (presented in RESULTS) as ‘final predictors’. The

set of observations used to train and validate models is referred to as

the ‘training set’ and the unseen holdout set of observations is

termed the ‘test set’. We use ‘generalizability’ to refer to the ability of

a trained model to adapt to new, previously unseen data drawn from

the same distribution i.e. model fit in the test set. ‘Precision’ refers to

the fraction of positive predictions that were correct; ‘Recall’ to the
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proportion of true positives that were correctly predicted; and

‘Accuracy’ to the number of correct predictions as a fraction of

total predictions. Receiver Operating Characteristic curves (ROC

Curves) are provided that quantify classification performance at

different classification thresholds plotting true positive versus false

positive rates, where the Area Under the Curve (AUROC) is defined

as the two-dimensional area under the ROC curve from (0,0)

to (1,1).
Data and data collection in the ABCD study

Data used in the present study comes from the ABCD study, an

epidemiologically informed prospective cohort study that is the

largest study of brain development and child health conducted in

the United States to date. ABCD recruited 11,880 children (52%

male; 48% female) at ages 9–10 years (108–120 months) via 21 sites

across the United States and will follow this cohort until age 19-20.

The cohort is oversampled for twin pairs (n = 800) and non-twin

siblings from the same family may also be enrolled. A wide variety

of information is collected about participants. This data has been

made available to qualified researchers at no cost by the NIH since

2018 and is released periodically. Currently, it may be obtained

from the NBDC Data Hub (https://www.nbdc-datahub.org/). This

study uses data from release 4.0, which includes data up to the 42-

month follow-up date. A full explanation of recruitment

procedures, the participant sample and overall design of the

ABCD study may be found in Jernigan et al; Garavan et al; and

Volkow et al. (35–37) This study has been reviewed and deemed not

human subjects research by the University of Utah Institutional

Review Board.

The phenotypic and substance abuse assessment protocol is

covered in detail in Barch et al. and Lisdahl et al, respectively (38,

39). In brief, phenotypic assessments of physical and mental health,

substance use, neurocognition and culture and environment are

performed for youth and their parents and biospecimen collection

for DNA, pubertal hormone levels, substance use metabolites (hair)

and substance and environmental toxin exposure (baby teeth) are

collected from youth at 9–10 yrs. A summary description of

assessments performed and environmental and school-related

variables derived from geocoding at age 9–10 yrs surveyed in the

present study may be inspected in Supplementary Table S1.

Brain imaging is collected at 9–10 yrs and every two years

thereafter and incorporates optimized 3D T1; 3D T2; Diffusion

Tensor Imaging; Resting state functional MRI (rsfMRI); and 3 task

MRI (tfMRI) protocols that are harmonized to be compatible across

acquisition sites. The tfMRI protocol comprises the Monetary

Incentive Delay (MID) and Stop Signal (SST) tasks and an

emotional version of the n-back task which collectively measure

reward processing, motivation, impulsivity, impulse control,

working memory and emotion regulation. The ABCD study

provides fully-processed metrics from each of these imaging

types. Full details of the neuroimaging protocol may be inspected

in Casey et al. and the pre-processing and analytic pipeline used to

generate neural metrics in Hagler et al. (40, 41) The present study
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uses all available processed metrics that have passed quality control

from the diffusion fullshell; cortical and subcortical Gordon

correlations (derived from rsfMRI); structural; volumetric; and all

three tasks as well as corresponding head motion statistics for each

modality. For certain modalities such as rsfMRI, multiple scans

were attempted or completed. In such cases we use variables from

the first scan.
Study inclusion criteria and sample
partitioning for machine learning

Inclusion criteria for the present study were a) participants

enrolled in the study at baseline who were still enrolled at 2-year

follow-up (n = 8,084) who had b) complete data passing quality

control available for all neural metric types (n = 6,178) and were c)

youth participants unrelated to any other youth participant in the

study (n = 5,136). If a youth had a twin or other sibling(s) present in

the cohort, we selected the older or oldest sibling for inclusion in

our study. We present characteristics of the study sample at 9–10

yrs since these participants correspond to the input data used to

make predictions. Demographic characteristics of this sample at age

9–10 yrs are presented in Table 1.
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Sex refers to sex assigned at birth on the original birth

certificate. Gender refers to the youth’s gender identification. Race

and ethnicity refer to the parents’ view of youth’s race or ethnicity.

More than one race identification may be selected and therefore

percentages sum to >100%.

Physiologic and cognitive characteristics of the participant

sample at 9–10 yrs may be viewed in Table 2.

Steps in the formation of the study sample used to construct

predictive models of depression, anxiety and somatic symptom

disorder are shown. After exclusion criteria are applied, the sample

was randomly partitioned into training and test sets followed by

separate pre-processing of targets and features. Subsequently,

samples for each experiment were formed as described in

Preparation of predictive targets and Construction of participant

case samples for internalizing disorders and controls.
Preparation of predictive targets

The present study uses predictive targets of depression, anxiety

and somatic problems derived from the Child Behavior Checklist

for youth ages 4–18 years (CBCL) called the ‘ABCD Parent Child

Behavior Checklist Scores Aseba (CBCL) in the ABCD study. The

CBCL is a standardized instrument in widespread clinical and

research use for the assessment of mental and emotional well-

being in youth. It forms part of the Achenbach System of
TABLE 1 Demographic characteristics of participant sampled at age 9–
10 years.

Characteristic Number Percent

Sex

Male 2,663 51.8%

Female 2,473 48.2

Gender Identity

Male 2,659 51.8%

Female 2,466 48.0

Gender non-conforming 7 0.1

Don’t know/didn’t answer 4 0.1

Race

Black/African American 824 16.0%

Asian 373 7.3

White 4,069 79.2

Native American/Alaska
Native

213 4.1

Other/don’t know/didn’t
answer

390 7.6

Ethnicity

Hispanic/Latino/Latinx 1,035 20.2%

Non-Hispanic 4,042 78.7

Not indicated 59 1.1
TABLE 2 Physiologic and cognitive characteristics of participant sample
at age 9–10 years.

Characteristic Range Mean Median

Age in months 107.0-132.0 120.0 120.0

Pubertal Development Stage
Height (inches)
Weight (pounds)
Waist Circumference (cm)

1-5
36.6-74.0
11.0-255.0
17.0-61.0

1.7
55.4
82.3
26.4

1.0
55.5
77.0
25.5

Handedness
Writing
Throwing
Spoon

Vocabulary
Attention and Inhibition
Working Memory
Executive Function
Processing Speed

-100.0-100.0
-100.0-100.0
-100.0-100.0
51.0-208.0
65.0-171.0
55.0-194.0
68.0-181.0
20.0-185.0

76.5
67.1
70.2
109.2
96.4
102.1
98.0
95.2

100.0
100.0
100.0
109.0
97.0
103.0
94.0
95.0
fro
Characteristics of the study sample at 9–10 yrs. Pubertal development is measured with the
Pubertal Development Scale (adapted from the Petersen scale) in a sex-specific manner.
Height is measured twice with the average of these values presented. We note a range of 11.0-
255.0 pounds for weight which is the range present in the original ABCD data. Handedness is
assessed with the Edinburgh Handedness Inventory. Cognitive metrics are assessed with the
NIH Toolbox and are all age-corrected scores. Vocabulary is measured with the Picture
Vocabulary Test; Attention and inhibition with the Flanker Inhibitory Control & Attention
Test; Working Memory with the List Sorting Working Memory Test; Executive Function with
the Dimensional Change Card Sort Test; and Processing Speed with the Pattern Comparison
Processing Speed Test.
The resulting group of 5,136 participants was then randomly partitioned into a training set
comprising 70% of the sample (n = 3,595) and a holdout, unseen test set comprising 30% of
the sample (n = 1,541, Figure 1). This partitioning was performed prior to pre-processing
either features or predictive target to minimize bias.
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Empirically Based Assessment (ASEBA) “designed to facilitate

assessment, intervention planning and outcome evaluation among

school, mental health, medical and social service practitioners who

deal with maladaptive behavior in children, adolescents and young

adults.” (42) During assessment with the CBCL, parents rate their

child on a 0-1–2 scale on 118 specific problem items such as

“Unhappy, sad or depressed” or “Acts too young for age” for the

prior 6 months. The answers to these questions are aggregated into

raw, T and percentile scores for 8 syndrome subscales (Anxiety,

Somatic Problems, Depression, Social Problems, Thought

Problems, Attention Problems, Rule Breaking and Aggressive

Behavior) derived from principal components analysis of data

from 4455 children referred for mental health services. The CBCL

is normed in a sex/gender-specific manner on a U.S. nationally

representative sample of 2368 youth ages 4–18 that takes into

account differences in problem scores for “males versus females”.

It exhibits excellent test-retest reliability of 0.82-0.96 for the

syndrome scales with an average r of 0.89 across all scales.

Content and criterion validity is strong with referred versus non-

referred children scoring higher on 113/188 problem items and

significantly higher on all problem scales, respectively.

To form binary classification targets for prediction, we

thresholded CBCL subscale T scores for Depression, Anxiety and

Somatic problems using cutpoints established by ASEBA for clinical

practice. Specifically, a T score of 65-69 (95th to 98th percentile) is

considered in the ‘borderline clinical’ range, and scores of ≥70 are

considered in the ‘clinical range.’ Accordingly, we discretized T

scores for each of the 3 subscales under consideration by deeming

every individual with a T score ≥ 65 as a ‘case’ [1] and every

individual with a score <65 as a ‘not case’ [0]. This process was

performed separately for CBCL scores at baseline and 2-year follow-

up in the training and test sets.
Construction of participant case samples
for internalizing disorders and controls

To test our hypotheses, we formed 3 different participant

samples for each of the internalizing disorders in the training and

test sets, respectively (Figure 1). The first sample contained cases of

depression, anxiety and SSD as defined in Preparation of predictive

targets at baseline assessment, when youth were 9–10 years of age.

The second sample contained cases of depression, anxiety and SSD

at 2-year follow-up, when youth were 11–12 years of age. Finally,

the third sample contained only new onset cases of depression,

anxiety and SSD at 2-year follow-up. A new onset case was defined

as a youth who met criteria for depression, anxiety or SSD following

the ASEBA threshold in the CBCL who did not meet criteria for the

disorder in question at baseline assessment. In all samples, we

constructed a balanced sample of controls matched for age and sex/

gender selected from the eligible study population (see: Study

inclusion criteria and sample partitioning for machine learning

above) from youth with the lowest possible scores on the relevant

syndrome scale. No sample in the training sets was <200

participants, a recommended threshold for robust ML analyses.
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Preparation of candidate predictors (input
features)

The feature set in the present study comprises the majority of

available phenotypic and environmental variables derived from

baseline assessment at 9–10 years of age (including data collection

site) and all available neural metrics (including head motion

statistics) with the exception of temporal variance measures. For

continuous phenotypic features where subscale or total scores for

assessments were available, these were used. For example, subscale

scores for different types of sleep-related disorders from the larger

Munich Chronotype Questionnaire. Any metrics or instruments

that directly quantified mental health symptoms were excluded

since we aimed to predict cases of mental illness without using

symptoms. For example, the Youth 7UP Mania scale. The feature

set was then partitioned into training and test sets that conformed

with the partitions detailed above in Formation of the study

participant sample for internalizing disorders in Figure 1. Pre-

processing of phenotypic and environmental features was

subsequently performed separately in the training and test sets.

First, features with >35% missing values were discarded. This

threshold was used since prior research shows that good results

may be obtained with ML methods with imputation up to 50%

missing data (43). Also, it was selected pragmatically to balance the

retention of potentially informative features against the risk of

excessive imputation. Recent works have also suggested a slightly

more lenient threshold (e.g., 40%) to exclude variables containing

many missing values from analysis (44, 45). Nominal variables were

one-hot encoded to transform them into binary variables.

Continuous variables were then winsorized to [mean +/- 3]

standard deviations to remove outliers, whereas ordinal variables

were winsorized according to the bounds defined in the provided

data dictionary. Then, all features were scaled in the interval [0,1]

with the minimum-maximum normalization. Missing values were

imputed using non-negative matrix factorization (NNMF). NNMF

is a mathematically-proven imputation method that minimizes the

cost function of missing data rather than assuming zero values. It

can effectively reconstruct missing values in high-dimensional

datasets by leveraging latent structure. It is effective at capturing

both global and local structures in the data and has been

demonstrated to perform well regardless of the underlying pattern

of missingness (46–48). Supplementary Table S2 shows the number

and percentage of observations which were trimmed and filled with

NNMF for the training and test sets, respectively.

Further, a sensitivity analysis was performed to compare the

predictive performance of NNMF with the Multiple Imputation by

Chained Equations (MICE), which is a common alternative

imputation method modeling each variable conditionally on the

others and imputes missing values through iterative regression.

Results of the sensitivity analysis (included in the Supplementary

Table S4) demonstrate that test accuracy (when using our proposed

algorithm described in Integrated Evolutionary Learning for deep

learning optimization below) is generally consistent across the two

imputation methods, with NNMF tending to slightly outperform

MICE for most targets and case definitions (i.e., an average of 2.4%
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improvement in accuracy). In light of these findings, NNMF is

selected to be the default data imputation method adopted in this

work, as it provided equal or better performance in most scenarios

while maintaining computational efficiency for high-

dimensional datasets.

After imputation with NNMF, any variables originating from

phenotypic assessments lacking summary scores were reduced to a

summary metric using feature agglomeration to produce a final set
Frontiers in Psychiatry 06
of (n=804) phenotypic and environmental features. Neural

metrics (n = 5,006) were processed and underwent quality

control by the ABCD study team and were therefore not pre-

processed with the exception of scaling, again performed

separately in the training and test partitions. There were no

missing neural features. The final combined feature set

including neural, phenotypic, environmental, head motion and

site features comprised 5,810 features.
FIGURE 1

Formation of the study participant sample for internalizing disorders.
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Overview of predictive analytic pipeline

We used deep learning with artificial neural networks (AdamW

optimizer) to predict cases of depression, anxiety and somatic

problems in early adolescence in three scenarios: at 9–10 years of

age, at 11–12 years of age and in new onset cases at 11–12 years of

age. Deep learning models were implemented with k-fold cross-

validation and trained by an AI meta-learning algorithm that jointly

performed feature selection and optimized across the

hyperparameters in an automated manner, pursuing ~40,000

model fits for each experiment. Model training was terminated

based on the AUROC. Subsequently, final optimized models were

tested for their ability to generalize in the holdout, unseen test set

and performance statistics of AUROC, accuracy, precision and

recall, and ROC curves are reported for the best-performing

models. We also report the relative importance of final predictors

to making case predictions quantified with two techniques: Shapley

Additive Explanations (SHAP) and permutation using the eli5

algorithm. Detailed explanations of these methods are provided

below. Code for the predictive analytics may be accessed at the de

Lacy Laboratory GitHub: https://github.com/delacylab/

integrated_evolutionary_learning.
Coarse feature selection

Prior to beginning model training, we performed coarse feature

selection for each of the nine experiments i.e. 3 targets of

depression, anxiety and SSD each in 3 participant samples of 9–

10 yrs; 11–12 yrs and new onset cases at 11–12 yrs. The purpose of

this process was to quantify, for each sample, which of the 5,810

features exhibited a non-zero relationship with the target in order to

reduce the number of features entering the deep learning pipeline in

a principled manner. First, a simple filtering process was performed

in which c2 (categorical features) and ANOVA (continuous

features) statistics and mutual information metric (all features)

were computed to quantify the relationship between all features and

the target, where the target (depression, anxiety, SSD) was

represented by a categorical vector in [0,1]. Any feature with a

non-zero relationship (either positive or negative) with the target

was retained. While we acknowledge the potential risk that this

univariate filtering cannot fully capture complex interactions across

the features, it is practically advantageous to reduce the

dimensionality of the feature space before the execution of

additional filtering procedures that require high computational

complexity in face of large feature sets.

Subsequently, feature selection was performed on these filtered

feature subsets using the Least Absolute Shrinkage and Selection

Operator (LASSO) algorithm. LASSO is a popular regularization

technique based in linear regression that efficiently selects a reduced

set of features by forcing certain regression coefficients to zero. The

LASSO algorithm has a hyperparameter (commonly called the a) that
instantiates the amount of penalization (shrinkage) that will be

imposed on the features. We implemented the LASSO with our AI

meta-learning algorithm Integrated Evolutionary Learning to tune the
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a hyperparameter in the samemanner as described below in Integrated

Evolutionary Learning for deep learning optimization.

Notice that the LASSO algorithm may lead to biased feature

selection results when multicollinearity exists in the pre-selected

feature set or features were related to the target in a non-linear

manner. To alleviate these potential problems, Boruta (49) was

selected as a complementary feature selection method. Boruta is an

ensemble-based method designed to capture all relevant features

using random forest modeling and has been shown to be less

sensitive to multicollinearity (50). A sensitivity analysis

comparing the LASSO only, the Boruta only, and the LASSO

combined with Boruta methods was performed. Since the feature

set selected by Boruta tends to be small but non-overlapping with

that selected by LASSO, we focused on the comparison between

LASSO and the LASSO combined with Boruta methods. Results

from the sensitivity analysis, included in Supplementary Table S5,

demonstrated that the combined method yields 1-10%

improvement in predictive accuracy (when using our proposed

Integrated Evolutionary Learning models explained in the next

subsection) compared to the LASSO only method in all targets

and ages of case determination. In light of this improvement, this

combined method, which selects the union of features retained by

both LASSO and Boruta, is taken as the default feature selection

configuration in this study unless specified otherwise.

The number of features retained for each of the 9 experiments

after each step in the coarse feature selection process may be

examined in Table 3. Specific features selected by the LASSO

combined with Boruta and the resulting feature importance

scores (univariate coefficients in LASSO and Boruta importance

scores) between each of these features and the target vectors

(depression, anxiety, somatic problems) for each participant

sample (9–10 yrs; 11–12 yrs and new onset cases at 11–12 yrs)

may be viewed in Supplementary Table S3a-i. Each feature set

selected by the LASSO combined with Boruta then entered the deep

learning pipeline.

The total baseline set of 5,810 features was reduced via coarse

feature selection in a two-step process of filtering followed by

regularization with the LASSO algorithm combined with the

Boruta algorithm. This table displays the number of remaining

features after each step for each target (depression, anxiety and

somatic problems) and participant sample (at age 9–10 years, at age

11–12 years and for new onset cases at age 11–12 years). Detailed

tables showing the univariate coefficients between each feature

selected by the LASSO and the target vectors for each case sample

and controls may be viewed in Supplementary Table S3a-i.
Deep learning with artificial neural
networks

We used deep learning to predict cases of depression, anxiety

and somatic problems in each participant sample (at ages 9-10, ages

11–12 and for new onset cases only at ages 11–12 years). In order to

determine the relative ability of features to predict future cases of

internalizing disorders, features collected at baseline assessment
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(ages 9–10 years) were used to predict cases present at ages 11–12

years. We also constructed similar models that restricted the cases at

11–12 years of age to only new onset cases, where the participant

was not exhibiting clinical levels of symptoms at ages 9–10 years.

Finally, to quantify any dropoff in predictive power over the two-

year followup period, comparative models predicting cases at 9–10
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years of age were also computed. Therefore, the feature set

comprised only variables collected at 9–10 years of age in all

analytic scenarios (Figure 2).

Features assessed at baseline (ages 9–10 years) were used to

predict cases of depression, anxiety and somatic problems present

contemporaneously as well as all cases 2 years in the future (ages

11–12 years) and only new onset cases at ages 11–12 years.

We trained artificial neural networks using the AdamW

algorithm with 3 layers, 300 neurons per layer, early stopping

(patience = 3, metric = validation loss) and the ReLU activation

function. The last output layer contained a conventional softmax

function. Learning parameters (Table 3) were tuned with IEL as

detailed below. Deep learning models were encoded with PyTorch

embedded in custom Python code (51).
Integrated Evolutionary Learning for
optimization across hyperparameters and
fine feature selection

Many ML algorithms have hyperparameters that control

learning. Their settings require ‘tuning’ that can have a dramatic

effect on performance. Typically, tuning is performed via ‘rules of

thumb’ and ≤50 model fits are explored, introducing the possibility

of bias and potentially limiting the solution space (52–54). To

address this issue, we previously developed and here applied an AI

technique called Integrated Evolutionary Learning (IEL) which can

improve the performance of ML predictive algorithms in

comparable tabular data by up to 20-25% versus the use of

default model hyperparameters and conventional designs (55).

IEL is a form of computational intelligence or metaheuristic

based on an evolutionary algorithm that instantiates the concepts

of biological evolutionary selection in computer code. It optimizes

across the hyperparameters of the deep learning algorithm by

adaptively breeding models over hundreds of learning generations

by selecting for improvements in a fitness function (here, AUROC).

For each experiment, the deep learning algorithm was nested

inside IEL, which initialized the first generation of 100 models with

randomized hyperparameter values or ‘chromosomes’. These

hyperparameter settings (Table 4) were subsequently recombined,

mutated or eliminated over successive generations. In

recombination, ‘parent’ hyperparameters were arithmetically

averaged to form ‘children’. In mutation, hyperparameter settings

were shifted with the range of possible values shown in Table 4.

When these first 100 models were trained, the BIC was computed

for each solution. Of the 80 best models, 40 were recombined by
FIGURE 2

Analytic schema.
TABLE 4 Hyperparameter settings optimized with Integrated
Evolutionary Learning.

Hyperparameters Range Mutation shift

Learning rate
Beta 1
Beta 2

0.00001-0.01
0.9-0.999
0.9-0.999

0.0001
0.001
0.001
Optimization across the hyperparameters of learning rate, Beta 1 and Beta 2 was conducted
for deep learning with artificial neural networks within the ranges shown.
TABLE 3 Feature sets after coarse feature selection.

Condition and
age of case

determination

Number of
features
after

filtering

Number of features after
selection with LASSO
combined with Boruta

Depression, age 9–10
years

5,783 140

Anxiety, age 9–10
years

5,782 152

Somatic problems,
age 9–10 years

5,777 96

Depression, age 11–
12 years

5,779 58

Anxiety, age 11–12
years

5,783 131

Somatic problems,
age 11–12 years

5,786 207

Depression, new
onset age 11–12
years

5,773 70

Anxiety, new onset
age 11–12 years

5,767 97

Somatic problems,
new onset age 11–12
years

5,764 128
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averaging the hyperparameter setting after a pivot point at the

midpoint to produce 20 ‘child’models. 20 were mutated to produce

the same number of child models by shifting the requisite

hyperparameter by the mutation shift value (Table 4). The

remaining 20 were discarded. The next generation of models was

then formed by adding 60 new models with randomized settings

and adding these to the 40 child models retained from the initial

generation. Thereafter, IEL continued to recombine, mutate and

discard 100 models per generation in a similar fashion to minimize

the BIC until the latter fitness function plateaued. With 100 models

fitted per generation, IEL typically fits ~40,000 models per

experiment over ~400 generations.

IEL jointly performs optimization across hyperparameter

settings with automated feature selection and mitigate the risk of

overfitting. For each experiment, IEL has available to it the set of

features selected in the two-step feature selection process performed

with filtering and the LASSO (Coarse feature selection,

Supplementary Table S3). From each of these sets, a random

number of features in the range [2-50] was set for each model in

the initial generation of 100 models and specific features were

randomly sampled from the set of available features. This iterative

subset exploration reduces the risk that predictive performance

hinges on a single subset or on correlated features retained by the

initial selection. After computing the AUROC for each model,

feature sets from the best-performing 60 models were individually

allocated to the recombined and mutated child models. Other

feature sets were discarded. As with hyperparameter tuning, this

process was repeated for succeeding generations until the

AUROC plateaued.

IEL implements recursive learning to facilitate computationally

efficiency. After training until the AUROC plateaued, we determine

the elbow of the fitness function plotted versus number of features

and re-start learning with a warm start. The feature set available

after this warm start is constrained to that subset of features,

thresholded by their importance, corresponding to the fitness

function elbow. Learning then proceeds by thresholding features

available for learning at the original warm start feature importance

+ 2 standard deviations. In addition, the number of models per

generation is reduced to 50 and 20 models are recombined and 10

models are mutated. Otherwise, training after the warm start uses

the same principles as detailed above.
Cross validation

Deep learning models were fit within IEL using stratified k-fold

cross validation i.e. every one of the 100 models in each learning

generation within IEL was individually trained and validated using

cross-validation in the training partition. IEL allows the number of

features used to fit each model to differ within each model in every

generation. Accordingly, k (the number of splits) was set as the

nearest integer above [sample size/number of features]. Cross

va l i d a t i on was imp l emen t ed w i th th e s c i k i t - l e a rn

StratifiedKFold function.
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Testing for generalization in holdout,
unseen test data and performance
measurement

After training was completed, optimized models generated by

IEL were tested on the holdout, unseen test set for each sample and

mental health condition by applying the requisite hyperparameter

settings and selected features obtained from the 100 best-

performing models in the training phase to the test set. The area

under the receiver operating curve (AUROC), accuracy, precision,

and recall were computed for test set models using standard Sci-Kit

learn libraries and models with the best performance in each

statistic selected for presentation as the final, optimized models.

The threshold for prediction probability was 0.5 and receiver

operating characteristic (ROC) curves are also provided for each

experiment (Supplementary Figures 1, 2).
Feature importance determination

Shapley Additive Explanations (SHAP) values were computed

to determine the relative importance of each feature to predicting

cases of mental illness. SHAP is a game theoretic approach

commonly used in ML to explain the output of any ML model

including ‘black box’ estimators such as artificial neural networks

and is considered resistant to multicollinearity (56). In this work,

GradientSHAP, encoded in PyTorch (51) and Captum (57)

packages in Python as a combined technique of Integrated

Gradients (58) and SmoothGrad (59), is adopted as a fast

approximation of SHAP values for gradient-based models.

To illustrate the model’s decision-making process in clinically

interpretable terms, a case study is provided for each target’s onset

cases at 11–12 years. In each case, the contribution from the key

features to the predicted labels of two selected contrasting

participants were studied in terms of GradientSHAP values. The

visualized GradientSHAP values in Figures 3–5 serve as indicators

of risk versus protective factors of the relevant mental illness.
Fairness subgroup performance analysis

While the ABCD dataset is one of the most demographically

diverse pediatric neuro-developmental cohorts currently available,

it may not fully represent all racial and socioeconomic groups

within the U.S. population. Thus, even if a trained model has a

decent predictive performance in general, it may not perform as

well in each demographic subgroup. To robustly evaluate the model

performance from a fairness perspective, we conducted a subgroup

performance analysis on the held-out test set, stratified by race and

annual family income level, in order to assess whether models

perform consistently across subpopulations.

The stratification of race is conducted in terms of 3 racial

subgroups: White, Black, and other/multiple races (Others). Annual

family income level was stratified into 4 subgroups: below $15,999,
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$16,000-$34,999, $35,000-$74,999, and above $75,000). The

fairness subgroup analysis considers only the onset cases of 11–12

years of each studied internalizing disorders, which are the main

focus groups in this work. For each subgroup analysis, we evaluated

the predictive performance in terms of accuracy, precision, recall,

and AUROC to assess whether the predictive model systematically

performs better or worse across subpopulations.
Baseline modeling comparison

To assess the predictive performance of the IEL modeling

technique, we conducted a baseline modeling comparison using

several traditional ML modeling methods, including logistic

regression, random forest, and support vector machines (SVM).

Thees models were trained on the same multimodal feature sets

obtained after the LASSO combined with Boruta feature selection

step (i.e., containing 58–207 features). This aims to compare

whether the IEL modeling pipeline, which embeds an iterative

feature inclusion step in its evolutionary process, can result in

consistent predictive performance compared to the baseline

benchmarking models while involving strictly fewer features. All

baseline models were evaluated using the same train/test splits as

our deep learning approach and encoded using the Python package

sklearn (60) with their default runtime parameters. Student t-tests

were performed to verify whether the predictive accuracy score of

IEL was statistically significantly different from the scores of the

three baseline modeling methods.
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Summary of the preprocessing and
modeling pipelines

To improve the transparency and reproducibility of our study,

the data preprocessing and modeling pipelines are documented on

our code-sharing space (https://github.com/delacylab/

integrated_evolutionary_learning). Below we recap the overall

pipelines for clarity.
• Variables with less than 35% of missing values

were retained.

• The full samples were partitioned into a training set for

model training and a held-out test set for model evaluation.

• For each of the training set and test set, variables were

winsorized, scaled to the unit interval, and imputed.

• Coarse feature selection was performed to retain features

that exhibited a non-zero relationship with the target in the

training set.

• Feature selection combining LASSO and Boruta was

performed to retain relevant features.

• Cross-validated deep learning models were trained within

the IEL algorithm to perform hyperparameter optimization

and fine feature inclusion.

• Identify the elbow of the fitness curve (obtained across the

generations run in the IEL algorithm) to shrink the feature

subset further.

• Re-train the IEL algorithm with a warm-started feature

subset until the fitness score plateau.
FIGURE 3

Case study of depression predictors in the multimodal predictive model of new onset at 11–12 years. The summary plot presents the importance of
each final predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting depression with new
onset at 11–12 yrs. The color gradient represents the scaled value of each feature where red = high and blue = low. Circle and cross marks
correspond to the feature values of a pre-selected pair of (true) positive subject and (true) negative subject respectively. MH, mental health; SU,
substance use.
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Fron
• Evaluate the test data set using the model retrained with the

hyperparameter settings and selected features of the best-

fitting model identified in the last execution of IEL.
Results

Overview

All results are from testing the final model obtained after

optimization with IEL for generalization in the holdout, unseen

test dataset for each participant sample and experiment. For each

condition (depression, anxiety, SSD) a parallel set of results is

presented for each participant sample of new onset cases at 11–12

yrs; all prevailing cases at 9–10 yrs and all prevailing cases at 11–12

yrs. In all experiments only data collected at 9–10 yrs is input to

deep learning to make predictions. Thus, results obtained for new

onset and prevailing cases at 11–12 yrs represent predictions of

future case status.

For each disorder and age group, results are presented for the

metrics below for a) multimodal models constructed using all types

of input features; and b) neural-only models.
• Performance statistics: accuracy, precision, recall and

AUROC. ROC curves may be viewed in Supplementary

Figures 1, 2.

• Final predictors ranked in order of importance by their

group-level SHAP score (average absolute value across the
tiers in Psychiatry 11
participant sample) and the mean predictor importance for

the requisite experiment.

• Individual-level final predictor importance (SHAP scores)

across the participant sample. This summary plot is also

used to determine the directionality of the relationship

between the predictor and case status.
Results summary

Across all prediction scenarios, our models consistently

achieved strong discriminative ability, particularly in multimodal

settings where phenotypic, environmental, and neural predictors

were included. In all cases, multimodal models outperformed

neural-only models (see Tables 5–7), underscoring the central

importance of psychosocial domains in early prediction of

internalizing disorders. Predictive models are essential precursors

of risk stratification tools, and we note that our models here

achieved very strong positive class discrimination, with precision

(positive predictive value) of 77-84%. Parental psychopathology and

child sleep disturbances emerged as important cross-cutting

predictors across outcomes (see Figures 6–8). Our proposed IEL

modeling strategy achieved highly comparable performance with

the traditional ML modeling methods with the primary benefit of

improved model parsimony, another important feature when

creating risk stratification precursor models. We note that results

from our fairness subgroup analyses demonstrate visible disparities
FIGURE 4

Case study of anxiety predictors in the multimodal predictive model of new onset at 11–12 years. The summary plot presents the importance of
each final predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting depression with new
onset at 11–12 yrs. The color gradient represents the scaled value of each feature where red = high and blue = low. Circle and cross marks
correspond to the feature values of a pre-selected pair of (true) positive subject and (true) negative subject respectively. MH, mental health; SU,
substance use; SST, Standard Stop Signal task; MID, Monetary Incentive Delay task; ROI, region of interest; FA, fractional anisotropy; LD, longitudinal
diffusivity; WM, white matter; GM, gray matter.
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in predictive performance across different racial groups and family

income levels.
Depression

Deep learning optimized with IEL predicted depression in early

adolescence with >80% accuracy and recall and ≥90% AUROC

across all experiments (Table 5a), with precision of ~77-84%.

Performance was slightly worse by a few percentage points in

predicting new onset cases in the future (at 11–12 yrs) than either

contemporaneous or all prevailing cases at 11–12 yrs. When each

experiment was recapitulated using only neural candidate

predictors, we found that final optimized predictive models

displayed substantially lower performance (Table 5b) than those

obtained with multimodal predictors with accuracy of ~52-56% and

AUROC of ~56-60%, or some 27-39 percentage points lower than

with multimodal predictors. Similar differentials were seen in

precision and recall. In depression, multimodal models achieved

somewhat better performance when predicting prevailing cases at

9-10yrs and11–12 vs new onset cases at 11–12 yrs. In neural-only

models this was reversed, with a substantially stronger model

obtained for new onset cases.

Performance statistics of accuracy, precision, recall and the

AUROC are shown for the most accurate model obtained with

deep learning optimized with Integrated Evolutionary Learning

using a) multimodal features and b) only neural features. We

used features obtained at 9–10 years of age to predict new onset

cases of depression at 11–12 years of age as well as all prevailing

contemporaneous cases (9–10 yrs) and all prevailing cases at 11–12

years of age. Corresponding ROC curves may be viewed in

Supplementary Figures 1 and 2.

In interpreting multimodal models (Table 8), we found that

parent problem behaviors were the most important predictors of

early adolescent depression in each participant sample. Specific

parental behavioral drivers of youth cases differed by age and case

type. In new onset cases at 11–12 yrs, positive parent-youth

relationships were the top predictor, followed by parent sleep

disturbance, withdrawal traits, and excessive somnolence, while

indicators of overall parental behavioral burden and prior mental

health/substance use (MH/SU) services were also present. In all

cases at 9–10 yrs, parent avoidant and somatic traits were most

important, along with sleep disturbances and prosocial behaviors.

In all cases at 11–12 yrs, parent behavioral problems and sleep

disturances were most predictive, with positive parent-youth

relationships and prosocial behaviors appearing among the top-

ranked features. Group-level importances for multimodal model

predictors (averaged across the participant sample) were in the

range [0.05, 0.07] and the mean importance for each experiment in

the range [0.018, 0.05].

Final predictors of cases of all prevailing cases of depression at

ages 9–10 and 11–12 years as well as new onset cases only at 11–12

years of age are shown for the most accurate models obtained using

deep learning optimized with IEL obtained with a) multimodal

features and b) only neural features. Final predictors are ranked in
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order of importance where the relative importance of each predictor

is computed with the Shapley Additive Explanations technique and

presented here averaged across all participants in the sample.

Features in blue indicate an inverse relationship with depression

verified with the Shapley method. MH = mental health; SU =

substance use; SST = Standard Stop Signal task; MID = Monetary

Incentive Delay task; ROI = region of interest; FA = fractional

anisotropy; LD = longitudinal diffusivity; WM = white matter;

GM = gray matter.

Final predictors of new onset cases at 11–12 yrs obtained in

neural-only models (Table 8b) were dominated by features derived

from the Standard Stop Signal fMRI task, which measures response

inhibition. Here, SST ROIs emphasized the left hemisphere.

Specifically, SST responses in pars opercularis (Broca’s area), left

frontal pole, anterior cingulate and transverse temporal area.

Certain structural metrics also appeared as final predictors of new

onset cases. Specifically, white-gray contrast in the right superior

temporal sulcus, right accumbens T1 intensity and white matter

structural integrity in the left anterior cingulate.

Connectivity metrics in sensorimotor and cingulo-parietal

brain networks were prominent in predicting contemporaneous

prevailing cases of depression at 9-10yrs as were, again, metrics

associated with the Stop Signal task – once again in Broca’s area

(pars triangularis) and frontal regions. The final predictive model

for all prevailing future cases of depression at 11–12 yrs was

parsimonious and included contrast differences in the right

inferior temporal ROI in the Monetary Incentive Delay task,

which measures approach and avoidance during reward

processing, and correlation between the auditory functional

connectivity neural network and the right accumbens. Group-

level importances for neural-only model predictors were in the

range [0.11,0.30] and the mean importance for each experiment in

the range [0.14, 0.18]. As indicated by the color-coding of the

feature values in Figures 6 and 9, feature values of the neural

predictors generally have a smaller variance than the psychosocial

predictors in the multimodal models.

Where Table 8 presents the importance of final predictors as

summarized (mean absolute value) across the requisite

experimental participant sample, we were also interested in

predictor importance at the individual participant level. We

computed and plotted individual-level SHAP values to

understand both the dispersion of predictor importances across

individuals and the directionality of the relationship between final

predictors and clinical case status (Figure 6). In SHAP summary

plots, each data point represents an individual participant and the

colorization reflects the original value of the predictor as an input

feature. Thus, discrete-valued features appear as red or blue,

whereas a continuous feature appears as a color gradient from

low to high. The directionality of the relationship between

predictors and depression case status obtained in these plots was

further compared with coefficients obtained during LASSO

regression for Coarse Feature Selection (Supplementary Table S3)

and found to be in agreement.

Figure 6 reveals that individual-level importance of final

predictors in early adolescent depression are typically widely
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dispersed. For example, when predicting new onset cases of

depression at 11–12 yrs, the leading predictor of parent

externalizing traits has a large range of ~[-0.4,0.6] across

individual participants. Further, dispersion is typically greater for

the more important predictors. Overall, these plots also indicate

that all final predictors obtained have a positive relationship with

depression case status, with the exception of secondary caregiver

acceptance and prosocial behaviors in predicting new onset cases
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(see also Table 8). We also computed individual-level importances

of final predictors for neural-only experiments (Figure 9). Here, the

dispersion of individual-level predictor importances across

participants were consistently smaller in neural-only versus

multimodal prediction of early adolescent depression. In addition,

Figure 3 visualized the individual-level predictor importances of

two selected contrasting participants studied at the new onset cases

at 11–12 yrs, which further differentiate clearly the protective
FIGURE 5

Case study of predictors of somatic disorder in the multimodal predictive model of new onset at 11–12 years. The summary plot presents the
importance of each final predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting
depression with new onset at 11–12 yrs. The color gradient represents the scaled value of each feature where red = high and blue = low. Circle and
cross marks correspond to the feature values of a pre-selected pair of (true) positive subject and (true) negative subject respectively. MH, mental
health; SU, substance use.
TABLE 5 Performance of deep learning optimized with integrated evolutionary learning in predicting cases of depression using multimodal and
neural-only feature types.

a

Age of case
determination

Accuracy (%) Precision (%) Recall (%) AUC

New onset at age 11–12 years 83.1 86.9 77.9 93.3

All cases at age 9–10 years 91.7 92.9 90.2 96.1

All cases at age 11–12 years 87.0 89.2 84.3 94.5

b

Age of case
determination

Accuracy (%) Precision (%) Recall (%) AUC

New onset at age 11–12 years 55.9 54.5 70.6 60.4

All cases at age 9–10 years 52.5 52.4 53.9 56.3

All cases at age 11–12 years 56.5 57.1 51.9 57.3
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factors (e.g., parents and youth getting along very well) from the risk

factors (e.g., parents’ syndrome scores of multiple mental illnesses).
Anxiety

Deep learning optimized with IEL performed very well in

predicting both new onset and prevailing cases of anxiety in early

adolescence. In anxiety, ~79% accuracy and ~86% AUROC was

achieved in predicting new onset cases versus ~84% accuracy and

~92% AUROC in predicting prevailing cases using data obtained at

9–10 yrs to predict cases at the future time point of 11–12 yrs. The

best overall performance was observed using data at 9–10 yrs to

predict contemporaneous prevailing cases, with ~94% accuracy and

nearly 100% AUROC achieved (Table 6a). Similar to depression,

neural-only models did not perform as well as multimodal models

in predicting anxiety cases, being ~24-40% less accurate. Best

performance was obtained when predicting all cases of anxiety at

11–12 yrs, where the final, optimized neural-only model achieved

54% accuracy and ~55% AUROC. Neural-only predictive models of

all prevailing cases at 9–10 yrs and 11–12 yrs also showed inferior
Frontiers in Psychiatry 14
performance with accuracy of ~52 and ~50% and AUROC of 57

and 53% respectively (Table 6b).

Performance statistics of accuracy, precision, recall and the

AUROC are shown for the most accurate model obtained with

deep learning optimized with Integrated Evolutionary Learning

using a) multimodal features and b) only neural features. We

used features obtained at 9–10 years of age to predict new onset

cases of anxiety at 11–12 years of age as well as all prevailing

contemporaneous cases (9–10 yrs) and all prevailing cases at 11–12

years of age. Corresponding ROC curves may be viewed in

Supplementary Figures 1 and 2.

In anxiety, new onset cases were predicted with a relatively

complex final model comprising 5 predictors (Table 9a). Here, the

most important predictor was the parent’s total burden of

behavioral problems, followed by parent anxiety traits, whether

the youth had ever received mental health or substance use (MH/

SU) services, the youth’s race (White), and the family’s referent

scale score. Total sleep disturbance also appeared but with

lower importance.

We detected overlap between the final predictors of new onset

cases of anxiety at 11–12 yrs and those which predicted prevailing
TABLE 7 Performance of deep learning optimized with integrated evolutionary learning in predicting cases of somatic symptom disorder.

a

Age of case
determination

Accuracy (%) Precision (%) Recall (%) AUC

New onset at age 11–12 years 82.6 83.6 81.2 90.4

All cases at age 9–10 years 90.9 91.9 89.8 95.2

All cases at age 11–12 years 82.5 86.1 77.5 91.4

b

Neural data type Accuracy (%) Precision (%) Recall (%) AUC

New onset at age 11–12 years 54.3 54.8 49.3 52.2

All cases at age 9–10 years 46.1 46.2 48.0 44.7

All cases at age 11–12 years 53.8 53.1 63.3 56.2
TABLE 6 Performance of deep learning optimized with IEL in predicting cases of anxiety.

a

Age of case
determination

Accuracy (%) Precision (%) Recall (%) AUC

New onset at age 11–12 years 78.9 76.1 84.4 85.6

All cases at age 9–10 years 94.2 97.2 91.2 98.5

All cases at age 11–12 years 83.8 83.8 83.8 91.9

b

Neural data type Accuracy (%) Precision (%) Recall (%) AUC

New onset at age 11–12 years 51.6 51.9 43.8 56.6

All cases at age 9–10 years 53.5 54.1 46.9 55.3

All cases at age 11–12 years 50.0 50.0 53.2 53.1
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cases at 9–10 and 11–12 yrs. At 9–10 yrs, parent depressive and total

behavioral problem scores were the top predictors, with sleep

disturbances and parent–youth relationship quality also

appearing. For all prevailing cases at 11–12 yrs, sleep

disturbances, parent anxiety and aggressive traits, and the

mother’s history of clinical treatment were prominent, along with

overall parent behavioral burden. Group-level importances for

multimodal model predictors were in the range [0.03, 0.18] and

the mean importance for each experiment in the range [0.05, 0.09].

Final predictors of cases of all prevailing cases of anxiety at ages 9–

10 and 11–12 years as well as new onset cases only at 11–12 years of age

are shown for the most accurate models obtained using deep learning

optimized with IEL obtained with a) multimodal features and b) only

neural features. Final predictors are ranked in order of importance

where the relative importance of each predictor is computed with the

Shapley Additive Explanations technique and presented here averaged

across all participants in the sample. Features in blue indicate an inverse

relationship with depression verified with the Shapley method. MH =

mental health; SU = substance use; SST = Standard Stop Signal task;

MID = Monetary Incentive Delay task; ROI = region of interest; FA =

fractional anisotropy; LD = longitudinal diffusivity; WM = white

matter; GM = gray matter.

In neural-only models predicting new onset anxiety cases,

features from the MID fMRI task and structural metrics

predominated (Table 9b). Important final predictors were cortical

depth in the left hemisphere and right pars triangularis (Broca’s

area) as well as MID anticipation in the latter. Final, optimized

models predicting prevailing cases at 9–10 years emphasized

measures of brain function including SST and nBack task metrics

in the right postcentral and left temporal, as well as multiple

connectivity measures including the ventral attention, default

mode, sensorimotor and cingulo-opercular networks. At 11–12

yrs, results again emphasized connectivity metrics among control

and sensorimotor networks as well as structural measures. Group-

level importances for neural-only model predictors were in the

range [0.09, 0.16] and the mean importance for each experiment in

the range [0.12, 0.13]. Similar to the case of depression, the feature

values (as visualized in Figures 7, 10) of the neural predictors had a

relatively smaller variance than the psychosocial predictors in the

multimodal models.

To probe the dispersion of predictor importances at the

individual level, we again developed summary plots of individual-

level importances (Figures 7, 10). Similarly to depression, we

observed relatively more widely dispersed individual-level

importances over the participant sample in multimodal vs neural-

only models, and the trend for wider dispersion of predictor

importance in the more important final predictors. The

directionality of the relationship between predictors and

depression case status obtained in these plots was further

compared with coefficients obtained during LASSO regression for

Coarse Feature Selection (Supplementary Table S3) and found to be

in agreement.

Individual-level predictor importances for the best-performing

mixed-type neural models of anxiety again showed reduced

dispersion across the participant group (Figure 10) when
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compared with multimodal models (Figure 7). The widest

dispersion was observed when predicting new onset cases of

anxiety. Figure 4 presents the individual-level predictor

importances of two selected contrasting participants studied at

the new onset cases at 11–12 yrs. Unlike the case study for

depression, the current case study provides a less obvious

disparity, which can potentially be explained by the relatively

weaker predictive performance of the model predicting anxiety

onset at 11–12 yrs.
Somatic symptom disorder

Deep learning optimized with IEL performed well using

multimodal data in predicting both new onset and prevailing

cases of SSD in early adolescence. Here, ~83% accuracy and

~90% AUROC was achieved in predicting future, new onset cases

at 11–12 yrs with data obtained at 9–10 yrs. The best overall

performance was observed using data at 9–10 yrs to predict

contemporaneous prevailing cases, with ~91% accuracy and ~95%

AUROC. Predictive performance of all prevailing cases at 11–12 yrs

using data from 9-10yrs was comparable to new onset predictions,

with accuracy of ~83% and AUROC of ~91% (Table 7a). As with

depression and anxiety, neural-only models did not perform as well

as multimodal models (Table 7b), being ~29-45% less accurate. The

best performance was seen in predicting new onset cases at 11–12

yrs with accuracy of ~54% and AUROC of ~52% and all prevailing

cases at 11-12 yrs with accuracy of ~54% and AUROC of ~56%.

Accuracy in the model predicting prevailing cases at 9-10 yrs

dropped to ~46% with a low AUROC value of ~45%.

Performance statistics of accuracy, precision, recall and the

AUC are shown for the most accurate model obtained with deep

learning optimized with Integrated Evolutionary Learning using a)

multimodal features and b) only neural features. We used features

obtained at 9–10 years of age to predict new onset cases of somatic

symptom disorder at 11–12 years of age as well as all prevailing

contemporaneous cases (9–10 yrs) and all prevailing cases at 11–12

years of age. Corresponding ROC curves may be viewed in

Supplementary Figures 1 and 2.

In interpreting optimized multimodal predictive models for

early adolescent SSD, we observed that new onset cases were

predicted by whether the youth had ever received mental health

or substance use (MH/SU) services, the parent’s total burden of

behavioral problems, total sleep disturbances, and whether the child

had seen a clinician for a medical issue other than a regular checkup

(Table 10a). While sets of specific predictors were not the same,

overlap was observed among age groups. At 9–10 yrs, prevailing

cases were predicted by parent withdrawal, inattention, somatic,

and total behavioral problem scores, along with sleep disturbance,

visits to a clinician for non-routine medical issues, and parent

general behavior. For prevailing cases at 11–12 yrs, predictors

included a relative’s history of MH/SU services, parent aggressive

and anxiety traits, sleep-wake transition disturbances, and total

behavioral problems, as well as non-routine clinical visits and

excessive somnolence disorders. Group-level importances for
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multimodal model predictors were in the range [0.05, 0.15] and the

mean importance for each experiment in the range [0.07, 0.11].

Final predictors of cases of all prevailing cases of SSD at ages 9–

10 and 11–12 years as well as new onset cases only at 11–12 years of

age are shown for the most accurate models obtained using deep
Frontiers in Psychiatry 16
learning optimized with IEL obtained with a) multimodal features

and b) only neural features. Final predictors are ranked in order of

importance where the relative importance of each predictor is

computed with the Shapley Additive Explanations technique and

presented here averaged across all participants in the sample.
FIGURE 6

Individual-level importances of depression predictors in multimodal predictive models. Summary plots are presented of the importance of each final
predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting depression (A) with new onset at
11–12 yrs; (B) in all cases at 9–10 yrs; and (C) in all cases at 11–12 yrs. The color gradient represents the original value of each feature (metric) where
red = high and blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient from low to high.
MH, mental health; SU, substance use.
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Features in blue indicate an inverse relationship with depression

verified with the Shapley method. MH = mental health; SU =

substance use; SST = Standard Stop Signal task; MID = Monetary

Incentive Delay task; ROI = region of interest; FA = fractional
Frontiers in Psychiatry 17
anisotropy; LD = longitudinal diffusivity; WM = white matter;

GM = gray matter.

In neural-only models, we found that MID and nBack fMRI

task features were emphasized in predicting new onset cases,
FIGURE 7

Individual-level importances of final predictors of anxiety in early adolescence. Summary plots are presented of the importance of each final
predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting anxiety (A) with new onset at 11–
12 yrs; (B) in all cases at 9–10 yrs; and (C) in all cases at 11–12 yrs. The color gradient represents the original value of each feature (metric) where
red = high and blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient. MH, mental health;
SU, substance use; SST, Standard Stop Signal task; MID, Monetary Incentive Delay task; ROI, region of interest; FA, fractional anisotropy; LD,
longitudinal diffusivity; WM, white matter; GM, gray matter.
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here emphasizing the frontal pole, left amygdala, cuneus and

caudate. Important structural predictors of new onset cases were

cortical volume in the right pars triangularis and contrast in the

right lingual. As with new onset cases, final predictors of
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prevailing cases of SSD at 11–12 yrs centered on task fMRI

metrics, again the MID with the addition of SST measures.

Specific neural predictors of all prevailing cases at 11–12 yrs

centered on the cuneus, insula and fusiform along with
FIGURE 8

Individual-level importances of final predictors of somatic disorder in early adolescence. Summary plots are presented of the importance of each
final predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting SSD (A) with new onset at
11–12 yrs; (B) in all cases at 9–10 yrs; and (C) in all cases at 11–12 yrs. The color gradient represents the original value of each feature (metric) where
red = high and blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient. MH, mental health;
SU, substance use.
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structural measures in parietal, putamen and orbitfrontal

regions. In contrast, the final, optimized model predicting all

prevailing cases at 9–10 yrs was dominated by connectivity

metrics derived from rsfMRI, again emphasizing sensorimotor-

control network connections (Figure 8).

When examined at the individual level, final predictors of SSD

in each participant sample showed the same patterns as we observed

in depression and anxiety. Individual-level predictor importances

were widely dispersed, where typically the more important

predictors exhibited wider dispersions (Figures 8, 11). Further, the

dispersion of individual-level importances was greater in the more

accurate multimodal models.

Similarly to depression and anxiety, individual-level

importances of final neural predictors of somatic symptom

disorder had a generally smaller variance in terms of feature

values compared to the psychosocial predictors in the multimodal

models, as indicated in Figures 8, 11. Their group-level importances

were in the range [0.07, 0.20] where the disparity across important

predictors were similar (Figure 8), suggesting no essential

differences of explanatory power between them. The directionality

of the relationship between predictors and SSD case status obtained
TABLE 8 Final predictors of cases of depression in early adolescence.

a

Age of case
determination

Ranked final predictors Importance

New onset at age
11–12 years

Parent and youth get along very well
Total sleep disturbance syndrome
score
Parent withdrawal syndrome score
Total disorder of excessive
somnolence syndrome score
Parent total problems syndrome
score
Total disorder of initiating and
maintaining sleep score
Parent general behavior score
Parent ADHD problem syndrome
score
Parent anxiety syndrome score
Ever received MH/SU services
Mean

0.028
0.027
0.021
0.019
0.017
0.017
0.017
0.015
0.014
0.008
0.018

All cases at age
9–10 years

Parent avoidant personality problem
syndrome score
Parent somatic syndrome score
Total sleep disturbance syndrome
score
Parent total problems syndrome
score
Parent anxiety syndrome score
Total prosocial behaviors score
Total disorder of excessive
somnolence syndrome score
Parent general behavior score
Parent aggressive behavior syndrome
score
Parent withdrawal syndrome score
Mean

0.13
0.11
0.10
0.08
0.06
0.06
0.05
0.04
0.04
0.04
0.07

All cases at age
11–12 years

Parent total problems syndrome
score
Total sleep disturbance syndrome
score
Parent and youth get along very well
Parent general behavior score
Total disorder of initiating and
maintaining sleep score
Total prosocial behaviors score
Parent avoidant personality problem
syndrome score
Parent inattention syndrome score
Total disorder of excessive
somnolence syndrome score
Ever received MH/SU services
Mean

0.08
0.06
0.05
0.05
0.05
0.05
0.05
0.04
0.04
0.02
0.05

b

Neural data
type

Ranked final predictors Importance

New onset at age
11–12 years

SST incorrect stop vs correct go
contrast in left frontal pole ROI
SST incorrect stop vs correct go
contrast in left transverse temporal
ROI
T1 intensity in right ventricle ROI
T1 white-gray contrast in right
banks of the superior temporal
sulcus ROI

0.30
0.22
0.21
0.16
0.16
0.13
0.12
0.11
0.18

(Continued)
TABLE 8 Continued

b

Neural data
type

Ranked final predictors Importance

SST correct stop vs incorrect stop
contrast in left frontal pole ROI
SST any stop versus correct go
contrast in left pars opercularis ROI
FA in WM associated with cortical
left anterior cingulate ROI
T1 intensity in right accumbens ROI
Mean

All cases at age
9–10 years

Correlation between sensorimotor
mouth network and sensorimotor
mouth network
Correlation between cingulo-parietal
network and sensorimotor hand
network
SST correct stop vs incorrect stop
contrast in right pars triangularis
ROI
LD in GM associated with left banks
of superior temporal sulcus ROI
SST incorrect stop vs correct go
contrast in right caudal middle
frontal ROI
LD in WM associated with right
pericalcarine ROI
LD in GM-WM contrast associated
with right inferior temporal ROI
Mean

0.18
0.17
0.16
0.14
0.13
0.12
0.11
0.14

All cases at age
11–12 years

FA in right lateral ventricle ROI
MID anticipation of small loss vs
neutral contrast in right inferior
temporal ROI
Correlation between auditory
network and right accumbens area
ROI
Mean

0.18
0.16
0.12
0.15
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in these plots was further compared with coefficients obtained

during LASSO regression for Coarse Feature Selection

(Supplementary Table S3) and found to be in agreement. Further,

Figure 5 visualizes the case study with two contrasting participants
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at the onset cases of 11–12 yrs, where parents’ total problems

syndrome score and their history of receiving mental health or

substance use services are a strong risk factors for the

children’s SSD.
FIGURE 9

Individual-level importances of depression predictors in neural-only predictive models. Summary plots are presented of the importance of each final
predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting depression (A) with new onset at
11–12 yrs; (B) in all cases at 9–10 yrs; and (C) in all cases at 11–12 yrs. The color gradient represents the original value of each feature (metric) where
red = high and blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient. MH, mental health;
SU, substance use.
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Fairness subgroup performance analysis

To robustly evaluate the model performance from a fairness

perspective, we conducted a subgroup performance analysis on the

held-out test set, stratified by race and annual family income level.

Performance statistics are reported in Supplementary Table S6.

For the stratification of race, 58.8-68.0% of the individuals in the

held-out test set identified as White, 12.5-19.9% as Black, and 19.5-

21.0% as other races. Accuracy scores for anxiety (79.3-84.0%) and

somatic problems (83.3-86.2%) were largely consistent across

different racial groups. However, in the case of depression, a

larger disparity was observed: predictive accuracy was 92.6% for

Black participants but 79.3% for participants categorized as other

races, despite their similar sample sizes.

For the annual family income level stratification, 8.1-11.9% of

the individuals in the held-out test set reported an annual income

below $15,999, 9.0-17.1% earned $16,000-$34,999, 17.1-22.5%

earned $35,000-$74,999, and 57.7-58.6% earned $75,000 or above.

This stratification revealed larger performance disparities across

income groups. The most extreme case was observed when

predicting somatic problems, where the accuracy was 60.0% for

the lowest income group compared to 91.3% for the $35,000-

$74,999 group — a difference exceeding 30 percentage points.
TABLE 9 Final predictors of cases of anxiety in early adolescence.

a

Age of case
determination Ranked final predictors Importance

New onset at age
11–12 years

Parent total problems syndrome
score
Parent anxiety syndrome score
Ever received MH/SU services
Youth’s race: White
Family as referent scale score
Total sleep disturbance syndrome
score
Mean

0.18
0.10
0.07
0.07
0.05
0.04
0.09

All cases at age
9–10 years

Parent depressive problem syndrome
score
Parent total problems syndrome
score
Parent and youth get along very well
Total sleep disturbance syndrome
score
Parent general behavior score
Total disorder of initiating and
maintaining sleep score
Total disorder of excessive
somnolence syndrome score
Ever received MH/SU services
Mean

0.15
0.09
0.05
0.05
0.04
0.04
0.04
0.03
0.06

All cases at age
11–12 years

Total disorder of excessive
somnolence syndrome score
Parent anxiety syndrome score
Parent aggressive behavior syndrome
score
Parent ADHD problem syndrome
score
Parent total problems syndrome
score
Total sleep disturbance syndrome
score
Ever received MH/SU services
Total disorder of initiating and
maintaining sleep score
Parent general behavior score
Mean

0.09
0.07
0.06
0.06
0.04
0.04
0.04
0.04
0.04
0.05

b

Neural data
type Ranked final predictors Importance

New onset at age
11–12 years

Mean cortical sulcal depth in mm
for left hemisphere
Cortical thickness in mm of right
pars triangularis ROI
T1 intensity in brain stem ROI
T1 white-gray contrast in left
precuneus ROI
MID anticipation of large vs small
loss contrast in right parstriangularis
ROI
Mean

0.13
0.12
0.12
0.11
0.11
0.12

All cases at age
9–10 years

nBack negative face vs neutral face
contrast in right postcentral
SST correct stop vs incorrect stop
contrast in 4th-ventricle ROI
Correlation between cingulo-
opercular network and left putamen
ROI

0.16
0.14
0.13
0.13
0.12
0.11
0.10

(Continued)
TABLE 9 Continued

b

Neural data
type Ranked final predictors Importance

LD within right corticospinal
Correlation between ventral
attention network and left pallidum
ROI
SST correct stop vs correct go
contrast in left inferior temporal
Correlation between default network
and sensorimotor hand network
Correlation between cingulo-
opercular network and ventral
attention network
Mean

0.09
0.12

All cases at age
11–12 years

Cortical thickness in mm of left
transverse temporal ROI
LD in WM associated with left
cuneus ROI
Correlation between none network
and sensorimotor hand network
Cortical thickness in mm of right
pericalcarine ROI
Correlation between cingulo-
opercular network and dorsal
attention network
FA in WM associated with right
entorhinal ROI
LD in WM associated with left
pericalcarine
Correlation between fronto-parietal
network and sensorimotor mouth
network
Cortical depth in left superior
parietal
Mean

0.15
0.14
0.14
0.13
0.13
0.12
0.12
0.11
0.10
0.13
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FIGURE 10

Individual-level importances of neural final predictors of anxiety in early adolescence. Summary plots are presented of the importance of each final
predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting anxiety (A) with new onset at 11–
12 yrs; (B) in all cases at 9–10 yrs; and (C) in all cases at 11–12 yrs. The color gradient represents the original value of each feature (metric) where
red = high and blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient. MH, mental health;
SU, substance use; SST, Standard Stop Signal task; MID, Monetary Incentive Delay task; ROI, region of interest; FA, fractional anisotropy; LD,
longitudinal diffusivity; WM, white matter; GM, gray matter.
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Baseline comparison

We compared our IEL approach with three traditional ML

modeling methods: logistic regression, random forest, and SVM.

The performance statistics, defined in terms of accuracy, precision,

recall, and AUROC, of these models, trained with the multimodal

feature sets, are reported in Supplementary Table S7. The results

demonstrate that the baseline models achieved highly comparable

performance with IEL consistently. The average accuracy (across

targets and cases of determination) of IEL is 86.1% whereas the

baseline models, which include roughly 10 times more features,

have an average accuracy of 87.5-88.7%. Student t-tests verified that

IEL does not have a statistically significantly different accuracy
TABLE 10 Final predictors of cases of somatic symptom disorder in early
adolescence.

a

Age of case
determination

Ranked final predictors Importance

New onset at age
11–12 years

Parent ever received MH/SU services
Parent total problems syndrome
score
Total sleep disturbance syndrome
score
Child has seen clinician for medical
issue other than regular checkup
Mean

0.15
0.15
0.07
0.06
0.11

All cases at age
9–10 years

Parent withdrawal syndrome score
Parent inattention syndrome score
Parent somatic syndrome score
Parent total problems syndrome
score
Child has seen clinician for medical
issue other than regular checkup
Total sleep disturbance syndrome
score
Parent general behavior score
Mean

0.14
0.14
0.13
0.11
0.09
0.07
0.06
0.10

All cases at age
11–12 years

Blood relative ever received MH/SU
services
Parent aggressive behavior syndrome
score
Total sleep-wake transition disorder
syndrome score
Parent anxiety syndrome score
Parent total problems syndrome
score
Child has seen clinician for medical
issue other than regular checkup
Total disorder of excessive
somnolence syndrome score
Mean

0.09
0.09
0.08
0.08
0.07
0.05
0.05
0.07

b

Neural data
type

Ranked final predictors Importance

New onset at age
11–12 years

Cortical volume in mm3 of right
pars triangularis ROI
MID all anticipation of small reward
vs neutral contrast in 4th-ventricle
ROI
nBack positive face vs neutral face
contrast in right cuneus ROI
T1 white-gray contrast in right
lingual ROI
MID all anticipation of small reward
vs neutral contrast in right
frontalpole ROI
MID all loss positive vs negative
feedback contrast in left amygdala
ROI
nBack negative face vs neutral face
contrast in right caudate ROI
Mean

0.20
0.17
0.17
0.14
0.14
0.14
0.14
0.16

All cases at age
9–10 years

Correlation between sensorimotor
mouth network and sensorimotor
mouth network
Correlation between dorsal attention

0.16
0.15
0.15
0.14

(Continued)
TABLE 10 Continued

b

Neural data
type

Ranked final predictors Importance

network and sensorimotor hand
network
Cortical sulcal depth in mm of right
postcentral ROI
Average correlation between
auditory network and cingulo-
opercular network
FA in GM associated with left
inferior temporal ROI
T1 within corpus callosum mid-
anterior
Correlation between default network
and retrosplenial temporal network
T1 in WM in left transverse
temporal
Correlation between retrosplenial
temporal network and sensorimotor
mouth network
TD in GM associated with left
entorhinal ROI
Mean

0.12
0.12
0.11
0.11
0.11
0.09
0.13

All cases at age
11–12 years

SST incorrect go vs correct go
contrast in left lateral-ventricle ROI
Cortical area in mm2 of left inferior
parietal ROI
Diffusivity within left putamen ROI
MID all anticipation of large vs
small loss contrast in left cuneus
ROI
SST incorrect go versus incorrect
stop contrast in left cerebellum
cortex ROI
MID all anticipation of small reward
vs neutral contrast in right insula
ROI
MID all reward positive vs negative
feedback contrast in right lateral
ventricle ROI
MID all loss positive vs negative
feedback contrast in right fusiform
ROI
Depth of right orbitofrontal
Cortical thickness in mm of right
lingual
Mean

0.12
0.12
0.12
0.11
0.11
0.10
0.09
0.08
0.07
0.07
0.10
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FIGURE 11

Individual-level importances of neural final predictors of somatic symptom disorder in early adolescence. Summary plots are presented of the importance of
each final predictor (computed with the Shapley Additive Explanations technique) on an individual subject level to predicting SSD (A) with new onset at 11–12
yrs; (B) in all cases at 9–10 yrs; and (C) in all cases at 11–12 yrs. The color gradient represents the original value of each feature (metric) where red = high
and blue = low. Discrete (binary) features appear as red or blue, while continuous features appear as a color gradient. MH, mental health; SU, substance use.
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performance compared to logistic regression (p-value = 0.36),

random forest (p-value = 0.54), or SVM (p-value = 0.23).
Discussion

Common and specific themes across
internalizing disorders

We analyzed ~6,000 candidate predictors from multiple

knowledge domains (cognitive, psychosocial, neural, biological)

contributed by children of late elementary school age (9–10 yrs)

and their parents and constructed robust, individual-level models

predicting the later (11–12 yrs) onset of depression, anxiety and SSD.

Leveraging an optimization pipeline that included AI-guided

automated feature selection allowed us to extend prior work by

analyzing a wider variety of predictor types and ~40x more candidate

predictors than previous comparable ML studies. A common pre-

processing and analytic design across all three internalizing disorders

in the same youth cohort allows the direct comparison of results to

elicit their diagnostic specificity and identify common themes. In

addition, we wanted to quantify the relative predictive performance of

multimodal vs neural features and examine the relationship between

predictor importance and model accuracy. To our knowledge, this is

the first ML study in adolescent internalizing disorders to include

multiple types of neural predictors (rsfMRI connectivity; task fMRI

effects; diffusion and structural metrics), analyze >200 multimodal

features and quantify the relationship between predictor importance

and accuracy. The iterative feature sampling approach adopted in our

genetic algorithm offers additional robustness to this quantification

by reducing the risk that predictive accuracy hinges on a single subset

or on correlated predictors retained in the pre-processing phase.

Comparing across results, we found that the relative predictive

performance of our models varied according to the specific disorder

and type of predictor (psychosocial vs neural). Deep learning

optimized with IEL rendered robust individual-level predictions

of all three internalizing disorders with AUROCs of 86-99% and 79-

94% accuracy. Precision and recall were also consistently ≥~80%

with scattered exceptions in precision (new onset anxiety: 76%) and

recall (new onset depression: 78%; prevailing SSD at 11–12 yrs:

78%). Our primary focus was in predicting future, new onset cases

of each internalizing disorder in early adolescence. We found that

new onset cases of depression could be most reliably predicted

(AUROC ~93%), followed by SSD (AUROC ~90%) and anxiety

(AUROC 86%).

An important result is that we found that predicting early

adolescent internalizing disorders with multimodal features

resulted in substantially better performance than exclusively

neural-based models, and that psychosocial predictors were

preferentially selected in multimodal modeling. Our pipeline

includes automated feature selection with a genetic algorithm

(IEL) that progressively selects among features as it learns how to

optimize predictive models over a principled training process

(typically ~40,000 models). Cognitive, neural and biological

features failed to outcompete psychosocial features in training
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with multimodal. Further targeted experiments specifically

assessed the standalone predictive ability of multiple neural

feature types derived from MRI. These experiments demonstrated

that neural-only models achieved a close to 50% performance,

sacrificing 24-45% performance compared to the multimodal

models, across statistics (accuracy, AUROC, precision, recall).

While little extant research has directly compared psychosocial to

neural features in youth internalizing disorders, our results are

congruent with studies that have used multimodal feature types

including MRI metrics (18, 19). Our design extended prior work by

allowing us to examine more and wider feature types and disorders

and the prediction of new onset vs prevailing cases. Neural-only

models of new onset cases achieved superior performance to other

participant samples and selectively comprised task fMRI and

structural metrics, though more neural feature types (rsfMRI

connectivity, diffusion-based) were available for selection,

suggesting structural and task fMRI neural features may have

particular promise in predict ing adolescent onset of

internalizing disorders.

Specific sets of final predictors for each disorder and participant

sample were unique and differentiated both a) depression, anxiety

and SSD from each other and b) future new onset from all prevailing

cases. However, parental levels of various types of problem behaviors

and youth sleep disturbances appeared as cross-cutting, higher-level

themes. All three internalizing disorders showed commonality in

parent-related psychopathology measures, with anxiety- and

attentional-related difficulties assorting as predictors across different

participant samples. Notable disorder-specific predictors included

parent level of somaticizing to their child’s SSD. Taken together, our

results demonstrate that parent problem behavioral traits are

important drivers of internalizing disorders in early adolescence

and that the specific parental traits observed when their child is 9–

10 yrs may be useful in discriminating whether their child will go on

to develop depression, anxiety or SSD. This phenomenon suggests

intergenerational transmission, though our design cannot determine

whether this is underpinned by inheritance, parent-youth styles of

relating or other factors, though the presence of externalizing parental

behaviors in predicting the later onset of an internalizing disorder in

the child suggests that more than inheritance is at work. Here, our

results congruent with the small number of comparable ML studies

that have included parental traits as candidate predictors, where

parent total behavioral problems and poor maternal relationships

were leading predictors of depression (15, 61). These findings are also

consistent with developmental frameworks, such as Bronfenbrenner’s

bioecological model, which emphasizes the role of proximal family

factors in shaping child outcomes (26), and Ciccheti and Rogosch’s

developmental psychopathology framework, which underscores how

multiple risk pathways can converge on internalizing outcomes (27).

Similarly, Sameroff’s transactional model highlights the reciprocal

inference of parents and children over time, further supporting the

central role of parental psychopathology in developmental

trajectories (28).

Next, sleep disturbances may affect up to ~40% of elementary

school age children and youth with both internalizing and

externalizing disorders are at elevated risk (62, 63). We found
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that sleep disturbances in the late elementary school age group (9-

10yrs) predicted the later (11–12 yrs) onset (anxiety, SSD) and

prevalence (depression) of internalizing disorders, congruent with

recent research showing that disturbed or short duration sleep

predicts later internalizing symptoms (64–67). Here, our findings

add to a growing body of work suggesting sleep disturbances may be

important intervention targets in elementary school age youth to

reduce the later burden of internalizing symptoms (67). Beyond

empirical associations, sleep disturbance has also been

conceptualized as a transdiagnostic vulnerability process in

developmental psychopathology frameworks. Disruptions in sleep

and arousal regulation may impair affect regulation, cognitive

control, and stress reactivity, thereby increasing susceptibility to

internalizing disorders (29–31).

Recent research in association-based studies has suggested that

effect sizes in neuroimaging studies of psychopathology and

cognitive traits are often inflated, particularly in smaller

participant samples, resulting in generalization failure (68). Our

prior work in predicting externalizing disorders has similarly shown

that neural predictors tend to underperform (69). Accordingly, we

investigated predictor importance at both the group and individual

level and its relationship with model performance in generalization

testing, observing a strong relationship between predictor

importance and accuracy across experiments. In individual

experiments, psychosocial predictors in multimodal models

exhibited generally greater variances in feature values than those

in neural-only experiments, even after extensive optimization and

principled feature selection. Collectively, these results suggest that

the more restricted variability of neural predictors among

individuals were at least related to their weaker performance in

predicting cases using artificial neural networks. Future work will be

required to determine whether these phenomena are seen in other

disorders and participant samples (particularly other

developmental periods) and if other types of neural features (for

example, connectivity features obtained from data-driven rather

than ROI methods) could fare better in predicting cases of

internalizing disorders.
Depression

Depression is a common and growing problem in adolescence

which elevates later risk for suicide, poor educational outcomes and

substance use (70). In the present study, we focus on early onset

cases of depression i.e. those which onset or are present at 11–12

yrs. Most prior work in early onset depression has examined

psychosocial predictors at the group level, linking it to sleep

disturbances, childhood adverse events (neglect, abuse, loss of

parent), familial depression and pubertal changes (71–77)

Longitudinal neuroimaging studies of the onset or course of

depression in adolescence are relatively plentiful and have ranged

across a variety of MRI modalities (78). Similarly, these have

typically been group-level studies employing traditional

multivariate predictive methods in a single neuroimaging

modality and small number of ROIs, sometimes in small samples.
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Results have been inconsistent. In structural MRI, subcortical

regions (especially hippocampal) have been most intensively

studied with mostly negative results, though there is some

evidence for smaller accumbens and insula volume and equivocal

results for OFC regions (79–84). In fMRI, reward and emotion

processing have been most intensively studied. A number of studies

have demonstrated differential reward-related activity in the ventral

striatum (85–89), though these studies are nearly all from later

adolescence. In early adolescence, Morgan et al. found the inverse

was the case (90). In emotion processing, increases or decreases in

ACC activity have predicted adolescent depression onset (91–93).

More recently, a number of ML studies have performed

prospective prediction of adolescent depression incorporating

larger numbers of candidate predictors, either psychosocial and/

or neuroimaging. To our knowledge, our study represents only the

second time multimodal (including neuroimaging) candidate

predictors have been analyzed at the individual level using ML to

prospectively predict depression onset in adolescents, and the first

time in early adolescence. With an AUC of ~0.90, we achieved

performance comparable with a single prior deep learning study

and superior to that obtained using logistic regression or support

vector machines (SVM) (18, 61, 84–86). We are not aware of other

prior ML studies that have directly compared the ability of

multimodal vs neuroimaging predictors in adolescent depression

or incorporated more than one type of neuroimaging metric.

Our AI-guided optimization pipeline preferentially selected

psychosocial features to predict early onset adolescent depression

after analyzing thousands of multimodal candidate predictors.

Multimodal models achieved 27-39% better performance over all

metrics than neural-only models. However, at ~0.57 AUROC, our

neural-only deep learning model achieved performance inferior to

multimodal models in other studies using different ML methods

(logistic regression, SVM). Several recent large-scale ML

prospective predictive studies of youth depression have examined

the predictive performance of nonlinear combinations of candidate

predictors at the individual level. In youth aged 15 yrs, Rocha et al.

trained penalized logistic regression models with 11 psychosocial

metrics finding that school failure, social isolation, involvement in

physical fights, drug use, running away from home, and

maltreatment predicted depression onset at 18 yrs, achieving

AUROC 0.79 in the baseline dataset and 0.59 and 0.63 in external

validation datasets (94). Foland-Ross et al. used cortical thickness

metrics to predict new onset adolescent depression with 70%

accuracy, with thickness of the right precentral and medial OFC

and left ACC and insula representing the most important features

(84). Most recently, two important large scale ML studies utilized

multimodal candidate predictor sets. Toenders et al. applied

penalized logistic regression to 69 phenotypic and 76 structural

MRI metrics in youth aged 14 yrs from the IMAGEN dataset,

testing for generalization in a held-out set to achieve 0.72 AUROC

and 66% accuracy (78). Depressive symptoms at baseline,

neuroticism, cognition, supramarginal gyrus surface area, and

stressful life events were most predictive of later new onset

depression. Xiang et al. surveyed 188 psychosocial and rsfMRI

connectivity candidate predictors collected at 9–10 yrs and
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empirically selected based on prior literature to predict depression

trajectories (computed with latent class analysis) through 11–12 yrs

in the ABCD cohort, with deep learning achieving best performance

(61). This study is perhaps the most comparable to our own

methodologically and achieved similar AUROC (~0.90) and

accuracy (87% vs ~82, ~86%), though precision (0.45) and recall

(0.44) were lower. Total sleep disturbance, parent total behavioral

problems, financial adversity, ventral attention-left caudate and

dorsal attention-left putamen connectivity and school

disengagement were the most important predictors of depression

trajectories. Thus, we obtained thematically concordant results with

prior research in identifying parental problem behaviors of various

types and sleep disturbances being important predictors of early

adolescent depression. However, our work differs in not identifying

other types of childhood adverse experiences, cognitive traits and

pubertal status as being as important to final, optimized models. In

new onset depression, we found that the most important predictors

were the tenor of the parent-child relationship, parent withdrawn

and inattentive traits and sleep disturbances. In contrast, parent

avoidant and more general metrics of behavioral issues specifically

drove the prediction of all prevailing cases at 11–12 yrs.

We believe that this is the first time that multiple neuroimaging

feature types have been used to predict new onset depression in

adolescence in a neural-only model. Thus, it is particularly

intriguing to note that the onset of early adolescent depression

was predicted by multiple task fMRI effects – but that these centered

on the SST (which measures response inhibition) rather than the

MID (reward processing). We found rather that MID effects were

emphasized in predicting anxiety and in particular SSD – and it has

been previously noted that almost no longitudinal fMRI studies in

adolescent depression directly compare anxiety and depression in

the same sample (78). In our neural-only models, results are

concordant with existing literature in highlighting fronto-

temporal ROIs but our algorithms preferentially selected effects

from the SST over the MID. The SST is a test of inhibition of

prepotent responses and has been extensively studied in

externalizing disorders (where there is a positive relationship) but

less in the internalizing disorders. However, ex-scanner studies in

children with internalizing behaviors and adults with depression

using the SST show longer reaction time in patients with recent

work associating response inhibition deficits in children with

rumination traits (95–97). Future work may consider exploring

SST task-related effects in response inhibition further in

adolescent depression.
Anxiety

Anxiety is among the most common mental health disorders

affecting adolescents and adults. Among the internalizing disorders,

it is the condition most clearly centered on early adolescence, with a

median age of onset of 11 yrs. Many psychosocial, demographic and

cognitive risk factors have been associated with the development of

clinical anxiety including early life temperamental traits such as

anxiety sensitivity, neuroticism and anxious temperament. Thus,
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the formulation of prospective predictive models that can

discriminate among these factors and provide reliable, individual-

level predictions of anxiety onset in early adolescence is of particular

relevance. However, few ML studies have predicted future anxiety

in adolescence. To our knowledge, this is the first ML study to

predict future anxiety in early adolescence and the first to use

multiple neural features types. In important prior multimodal work,

Chavanne et al. compared the ability of psychosocial vs neural

features to predicting anxiety cases at 18–23 yrs in the IMAGEN

cohort with 14 gray matter volumetric measures and 13 clinical

metrics measured at 14 yrs using a majority voting algorithm

comprising Logistic Regression, SVM and Random Forest

classifiers. In the multimodal model, an AUROC of 0.68 was

obtained with neuroticism, hopelessness, emotional symptoms

and family factors contributing most to the prediction and

volumetric differences in the periaqueductal gray, amygdala, ACC

and subcortical regions making lesser contributions. With neural

features alone, AUROC dropped to 0.52 whereas with psychosocial

features alone it improved to 0.69.

Here, we demonstrate that new cases of anxiety at 11–12 yrs can

be reliably (AUROC ~86%; accuracy ~79% and precision ~84%)

predicted with deep learning optimized with IEL and that these

predictive models differ from depression and SSD. As in the

developmentally older IMAGEN cohort, our analysis in the

younger ABCD cohort found that multimodal features predict the

onset of anxiety better than neural-only features with a substantial

differential of 24-40% across performance statistics. We found that

new onset cases of anxiety in early adolescence were predicted by

elevated parental mental health issues, sleep disturbances and the

child having come to prior clinical attention. It is noteworthy that

elevated parental anxiety trait scores was a specific predictor of their

child’s anxiety. While the child having White race appeared as an

important predictor, we emphasize that predictive models are not

mechanistic and this factor could easily represent diagnostic

frequency. Our results are congruent with the literature and

suggest that elevated parental anxiety and the total burden of

parental behavioral issues and child sleep disturbances interact in

a nonlinear manner to predict the onset of later clinical anxiety in

early adolescence. While there was thematic overlap among our

different anxiety models (parent problem behaviors, sleep

disturbances) this particular set of factors was specific to new

onset cases. While parent depressive behaviors were a final

predictor of contemporaneous cases at 9–10 yrs, they did not

predict new onset cases at 11–12 yrs.
Somatic symptom disorder

Somatic behavioral problems refer to the presence of one or

more physical symptoms accompanied by excessive investment

(time, emotion, behaviors) in the symptom(s) that results in

significant distress or dysfunction. The diagnosis of SSD

emphasizes symptom-based impairment in daily life. Peri-

adolescence is an important period when SSD onsets and rises

towards higher adult rates. Prior research, including prospective
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studies, has frequently implicated family functioning including

parents’ own levels of physical and mental health complaints and

parent somatic problems as well as parental divorce, illness or death,

childhood traumatic experiences and insecure attachment (98–

103). Work examining adolescent predictors of subsequent

trajectories of somatic symptoms have identified the quality of

parent-youth relationships, parenting stress and youth bullying,

school dissatisfaction and lower intelligence level symptoms as

important predictors (104–108). The genetic component appears

to be small, albeit studies are limited (109). Research focused on the

cognitive-affective neural basis of somatic problems using task fMRI

has linked group-level differences in para/hippocampal, ACC,

insula, brainstem and lateral prefrontal regions to effects in

negative expectancy, attentional bias and pain catastrophizing

(110–116). Fewer neuroimaging studies have investigated circuit

abnormalities in somatic problems, though rsfMRI studies have

implicated increased brainstem, caudate, thalamus and ACC

activity and decreased lateral prefrontal activity in adults (117,

118). In a cross-sectional study in the ABCD cohort, Dhamala et al.

found disrupted temporo-parietal, default mode, dorsal attention

and control-limbic functional connections using rsfMRI data from

9–10 yrs to predict CBCL somatic problem scores at the same

age (119).

Our findings contribute to this growing body of work in several

ways. Firstly, prospective predictive studies of somatic problems

have typically focused on either psychosocial (particularly family-

or adversity-related measures) or neural predictors. In the present

study we analyzed nearly 6,000 multimodal predictors of many

types (including cognitive and non-neural biological metrics),

allowing us to assess their relative predictive ability holistically. In

these multimodal models, we found that psychosocial predictors

were preferred over neural, cognitive and biological metrics.

Secondly, the richness of parent and family-related metrics in the

ABCD sample allowed us to consider a larger range of psychosocial

predictors than has typically been available to earlier studies of

somatic problem symptoms in youth. We found that parent level of

somatic problem behaviors (9–10 yr prevailing cases) and

internalizing as well as externalizing traits were preferentially

selected as predictors over other family-, school- or peer-related

candidate predictors such as bullying, parent stress or early adverse

experiences. In all participant samples, parent somatic or

internalizing problem behaviors interacted with sleep

disturbances. Of note, whether a specific predictor of somatic

problems in new onset cases at 9–10 yrs and cases at 11–12 years

was whether the child was seen for a medical issue other than a

regular checkup. These findings comport with earlier work and

further suggest that childhood patterns of clinical use and sleep

disturbances and elevated levels of parent somatic traits may be

helpful in assessing youth risk for somatic problem behaviors.

Similarly, the wide range of neuroimaging measures available

allowed us to assess nearly 5,000 different neuroimaging metrics

over multiple modalities to predict somatic problem behaviors in

youth. While these models were not as robust as multimodal models

(AUROC ~0.45-0.56), they are congruent with extant research in

centering on temporal, frontal and cingulate regions and attentional
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network connectivity. Our work additionally highlighted the insula,

a region long known to be involved in interoception and pain

processing. Interestingly, effects in these regions during the MID

task involving reward processing and loss anticipation were

emphasized in predicting new onset cases of somatic problems in

contrast to anxiety, where they centered on loss anticipation only.

While we are not aware of prior work using the MID task in somatic

problem behaviors, this may be an interesting line of future inquiry

given a cardinal feature of somatization is the amount of valence

and/or investment given to physical symptoms. Overall, we found

that structural, task and rsfMRI were useful modalities in predicting

somatic problems in early adolescence but diffusion imaging made

less of a contribution.
Fairness subgroup performance analysis

The ABCD study was designed to approximate the

demographic characteristics of U.S. children through stratified

probability sampling of schools across 21 U.S. sites. Although it

does not guarantee full representativeness (120), some prior studies

have argued for its national representativeness (121, 122). In light of

the performance statistics reported in Supplementary Table S6,

there exist visible disparities across subpopulations, particularly

when stratified by annual family income levels. These findings

highlight the need for future research to investigate the

underlying sources of these disparities and to explore fairness-

aware approaches that can promote more equitable predictive

performance. While such fairness optimization is beyond the

scope of the present study, our results provide a foundation for

subsequent work to address these challenges.
Baseline modeling analysis

While the IEL technique performs only comparably to the

traditional ML modeling techniques, it has clear deployment

advantages — yielding more interpretable results due to its use of

fewer features, an enhanced stability through the optimization

process, and enabling individual-level explanation due to its

incorporation of SHAP values. IEL embeds a highly explainable

solution to the traditional ML modeling problems, offering the

operator the ability to visualize increasing model efficiency over

iterations to identify the optimal solution, where this solution is

parsimonious. Ultimately, parsimonious models are better suited

for clinical risk stratification purposes since they require the de novo

collection of less data in the field.

By contrast, deep-learning models and genetic algorithms for

hyperparameter optimization generally require greater

computational resources for training. That said, prediction is

relatively efficient once the model is trained. For example,

prediction with our deep-learning models typically completes in

less than a second, owing to the computation efficiency of the well-

optimized PyTorch package. This tradeoff between training time

and model interpretability is reasonable in clinical practice, where
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models are trained infrequently but deployed repeatedly to provide

rapid, interpretable predictions in single shot learning for individual

patients at the point of care. Thus, IEL framework balances practical

feasibility with the clinical need for transparent, individualized

risk assessments.
Predictive models and their future value
for risk stratification

Individual-level predictive models such as we present in this

paper can be valuable in clinical practice for their role in providing

the core of risk stratification algorithms, which calculate the amount

of risk an individual has for a specific condition. Risk stratification is a

multi-stage developmental process where the first step is building

predictive models with robust positive class discrimination. This is

typically followed by deciding on an intervention, coupling this

intervention with the predictive model to form a decision support

tool and testing this tool in the clinical population. Using a robust risk

prediction model, clinicians can stratify an individual’s relative risk

level to initiate preventive monitoring or supportive interventions at

an earlier stage. While developing and validating a fully deployable

decision support tool for risk assessment is beyond the score of the

current study, our model establishes a foundation for future work

aimed at integrating predictive risk score into clinical workflows. Our

findings also have potential implications for the development of risk

stratification tools in child and adolescent mental health. Predictive

models such as IEL could be integrated into clinical or educational

settings to classify youth into relative risk tiers (e.g., high, moderate,

or low risk) for later internalizing disorders. Such stratification could

enable more efficient allocation of limited resources, with higher-risk

individuals receiving targeted screening, preventive support, or

referral for early intervention.

An important consideration in translating predictive models

into practice is the precision-recall trade-off. While maximizing

sensitivity is valuable for identifying youth at risk of internalizing

disorders, this inevitably comes at the cost of reduced precision,

leading to false positives. In clinical contexts, false positives may

carry consequences such as unnecessary monitoring, referrals, or

anxiety for families. These potential drawbacks must be weighed

against the benefits of early identification, particularly when

interventions are low-risk or preventive in nature. Accordingly,

predictive models such as ours should be regarded as adjunctive

decision-support tools that complement, rather than replace,

clinical expertise in assessing risk.

Validation in external, independent samples will be required in

future work to strengthen the current analysis. Currently, to our

knowledge, there is no publicly available dataset with comparable

combination of sample size, longitudinal depth, and breadth of

measurement as the ABCD Study, making external validation

challenging within the scope of this work. Also, although

subsequent ABCD releases (e.g., Release 6.0) provide additional

data points, they involve the same cohort of participants at a later

age point while the present analysis is specifically focused on early

adolescence. As the ABCD Study continues to collect and release
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longitudinal data, future research will benefit from extending

predictive analyses into mid- and late-adolescence. Such work will

allow evaluation of whether early predictors identified in this work

remain stable across development or whether new risk factors emerge

during later stages of adolescence. These additional analyses will be

critical for understanding the developmental timing of risk pathways

and for refining prediction models across the adolescent period.

Additionally, expanding the feature space to include other

modalities can potentially enhance the predictive power. For

instance, sensor data recorded by electronic wearables or mobile

phones can capture how the children’s daily activities, screentime

usage, and exercise levels impact the risk of internalizing disorders.

Another route to improve the practicality of our adopted algorithm

is to explore other hyperparameter optimization strategies. Similar

to genetic algorithms which have a strong theoretical underpinning,

Bayesian optimization techniques and bandit-based methods (123)

are also feasible alternatives to streamline to model training process.
Limitations

This study uses secondary data from the ABCD study and we

were therefore unable to control for any bias during data collection.

While the ABCD study strived for population representation, there

is a mild bias toward higher-income participant families of white

race in the early adolescent cohort. Thus, the ABCD study may not

fully represent all racial, ethnical, and socioeconomic groups within

the U.S. population, or even to the broader non-U.S. populations.

While our findings in the fairness subgroup analysis indicate

disparities in predictive performance, investigation of their causes

and mitigation strategies is beyond the present study but highlights

important directions for other researchers to explore these

important questions in the future research. On the other hand,

data is not available prior to baseline (age 9–10 years) assessment

and we cannot conclusively rule out that youth participants met

criteria for depression, anxiety or somatic problems prior to this age

but not at baseline assessment at 9–10 years of age. Thus, it is

possible that certain cases coded as ‘new onset’ at 11–12 years of age

in our analysis could have met clinical criteria ≤8 yrs but were in

remission at 9–10 yrs. In the present study, we defined cases as any

individual meeting ASEBA clinical thresholds in the CBCL subscale

scores of interest and did not exclude participants who thereby met

criteria for other conditions. Thus, co-morbidity may be present in

the experimental samples as is common in clinical populations and

in most research studies in early adolescence. While we used nearly

6,000 variables available in the ABCD dataset, our study is not

exhaustive. It is possible that different results could have been

obtained if more or different candidate predictors were included.

For example, rsfMRI data includes metrics from ROI-based

parcellations but not a data-driven method such as ICA. We

focused on rigorous internal validation strategies by including

strict separation of training and test sets, and evaluation on the

holdout test set that was never used in model training or validation,

a gold standard in ML that ensures an unbiased evaluation of

generalizability. However, prospective external validation using a
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dataset other than ABCD can further improve generalizability of

our analysis.
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