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Identification of biomarkers
related to propionate
metabolism in schizophrenia
Weiqi Xie †, Zhihong Luo †, Jiang Xiao, Xuehua Zhang,
Chanjuan Zhang, Ping Yang* and Liang Li*

School of Clinical Medicine, Hunan Brain Hospital, Hunan University of Chinese Medicine, Changsha,
Hunan, China
Purpose: Schizophrenia (SCZ) is a severe mental disorder with complex etiology.

Research shows propionate metabolism is crucial for neurological function and

health. This suggests abnormalities in propionate metabolism may link to SCZ.

Therefore, identifying biomarkers associated with propionate metabolism might

be beneficial for the diagnosis and treatment of SCZ patients.

Methods: SCZ datasets and propionate metabolism-related genes (PMRGs) from

public databases were obtained. DE-PMRGs were identified through differential

and correlation analysis of PMRGs. Machine learning was used to screen for key

genes and validate expression levels, aiming to identify potential biomarkers.

Gene Set Enrichment Analysis (GSEA) and immune infiltration analysis were

performed on the biomarkers. An upstream regulatory network was

constructed, and potential drugs targeting these biomarkers were explored.

Finally, real-time fluorescence quantitative PCR (qPCR) was used to verify

biomarker expression levels.

Result: A total of 11 DE-PMRGs were identified, andmachine learning technology

was employed to further screen for 5 key genes. Among these, LY96 and

TMEM123 emerged as potential biomarkers through expression verification. A

diagnostic model was developed, achieving an area under the curve (AUC)

greater than 0.7, which indicates strong diagnostic performance. Additionally,

nomograms based on these biomarkers demonstrated promising predictive

capabilities in assessing the risk of SCZ. To explore gene functions and

regulatory mechanisms at a deeper level, a competitive endogenous RNA

(ceRNA) regulatory network was constructed, including 2 biomarkers, 72

microRNAs, and 202 long non-coding RNAs. In addition, a regulatory network

containing 2 biomarkers and 104 transcription factors (TFs) was also established

to investigate the transcription factors interacting with the biomarkers. Potential

biomarker-targeted drugs were identified by exploring the DrugBank database;

notably, LY96 exhibited higher binding affinities for four drugs, with docking

scores consistently below-5 kcal/mol. The qPCR results indicated that the

expression levels of LY96 and TMEM123 in the whole blood of SCZ patients

were significantly higher than those in the healthy control group, which was

consistent with the results in the GSE38484 and GSE27383 datasets.
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Conclusion: This study identified disease diagnostic biomarkers associated with

propionate metabolism in SCZ, specifically LY96 and TMEM123. These findings

offer novel perspectives for the diagnosis and management of SCZ.
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1 Introduction

Schizophrenia is a severe mental disorder with a complex

etiology and global impact. It significantly affects patients’ social

and occupational functioning (1, 2). The symptoms of SCZ

encompass positive symptoms such as hallucinations and

delusions, negative symptoms like apathy and anhedonia, and

cognitive deficits, with cognitive impairment being a central

feature of the illness (3–5). SCZ affects approximately 1.0% of the

global population and substantially burdens individuals and their

families (6). The exact cause of SCZ remains unclear, with evidence

pointing towards a multifaceted interplay of genetic and

environmental factors during critical stages of brain development

(7). Current medical research focuses on identifying disease

biomarkers to elucidate pathogenic mechanisms and guide

diagnostic and treatment strategies. Recent studies have

uncovered promising findings on objective biomarkers of SCZ,

including genetic susceptibility genes, biochemical markers, brain

imaging, electrophysiological features (such as abnormal eye

movements or negative waves), retinal dysfunction, epigenetic

changes, and gene-environment interactions (8). The role of

metabolic processes in disease pathogenesis is of particular

interest, focusing on how alterations in propionate metabolism

impact overall health and disease progression.

Immune dysregulation plays a crucial role in the pathophysiology

of schizophrenia. Research indicates impairments in both innate and

adaptive immunity throughout the clinical course of the disorder,

suggesting a pro-inflammatory state in certain patients (9). Elevated

levels of inflammatory cytokines, such as IL-1b and TNF-a, have
been detected in the serum of individuals with schizophrenia (10).

These cytokines are associated with neuroinflammation, which can

promote neurodegenerative processes and neuronal damage,

potentially correlating with symptom severity and cognitive

dysfunction (11–13). However, the precise mechanisms by which

immune dysregulation contributes to schizophrenia remain under

investigation (9, 14). Exploring inflammation-related biomarkers

presents a particularly promising avenue of research. The presence

of systemic inflammation in schizophrenia suggests that immune

dysregulation may serve as a biological marker for the disease.

Increased levels of C-reactive protein (CRP) and other

inflammatory markers are associated with more severe psychosis
02
and cognitive decline (9, 15). These biomarkers could assist in

diagnosing and stratifying patients based on their inflammatory

profiles, thereby facilitating more personalized treatment

approaches. Furthermore, identifying specific immune cell types

and their roles in the disease may reveal new therapeutic targets

and enhance our understanding of the fundamental mechanisms

underlying schizophrenia (16, 17).

Propionate, a short-chain fatty acid, is crucial in the human

body (18). It is an intermediate product generated through

intracellular glycolysis and fatty acid oxidation. Propionate can be

converted into acetyl-CoA by pyruvate dehydrogenase and enter

the tricarboxylic acid cycle, providing cells with the necessary

energy. Its metabolism is intricately linked to key biological

processes such as oxidative phosphorylation, cholesterol synthesis,

lipid metabolism, and amino acid metabolism (19). Recent research

has demonstrated that propionate plays a significant role in

neurodegenerative diseases, with its neuroprotective effects

mediated through signaling between neurons and the intestine.

The aggregation of alpha-synuclein in neurons triggers the

intestinal mitochondrial unfolded protein response (mitoUPR),

which in turn reduces propionate production. Decreased levels

of propionate lead to the downregulation of metabolism-

related genes, resulting in intestinal energy deficits and

exacerbating neurodegeneration via lactic acid and neuropeptide-

mediated communication between the intestine and the brain

(20). Furthermore, neurodegenerative and neuropsychiatric

diseases, such as schizophrenia, share common signaling

molecules and phenomena, including proinflammatory cytokines,

gCaMKII, MAPK/ERK, chemokine receptors, blood-brain

barrier (BBB) permeability, and the intestinal microbiota-brain

axis (21). Consequently, it can be speculated that abnormal

propionate metabolism may be linked to the development

of schizophrenia.

Further research is required to explore the relationship between

propionate metabolism and SCZ. However, current research in this

area offers a fresh perspective on the pathophysiological

mechanisms of SCZ. Potential biomarkers can be identified,

thereby leading to new approaches for early diagnosis and

treatment of SCZ by investigating the abnormal changes in

propionate metabolism-related genes (PMRGs) in SCZ

through bioinformatics.
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2 Materials and methods

2.1 Source of data

The two data sets, GSE38484 and GSE27383, were obtained from

the GEO database1 (22) for analysis. The GSE38484 data set, consisting

of 106 SCZ patients and 96 normal control whole blood samples, was

used as a training set. The GSE27383 data set, containing peripheral

blood mononuclear cell (PBMC) samples from 43 SCZ patients and 29

normal HC, was used as a validation set. Furthermore, 16 genes

associated with PMRGs were identified in the GeneCards database2

(23) through the keyword “Propionate metabolism”.
2.2 Differential expression analysis and
screening of DE-PMRGs

Differential analysis was conducted using R software v4.2.2 and

the limma software package (v1.38.0) (24). Genes meeting the criteria

of |log2FC| > 0.5 and P < 0.05 were identified as differentially

expressed genes (DEGs). The ggplot2 software package (v3.4.1)

(25) was used to generate volcano plots and heat maps.

The GSE38484 dataset was used to analyze the expression

differences of PMRGs between samples with schizophrenia (SCZ)

and control samples. Boxplots were generated using the ggplot2

software package (v3.4.1). The difference in PMRG scores between

SCZ samples and HC was computed using the GSVA software

package (v1.42.0) (26). Significant differences in PMRG scores

between SCZ and control samples were assessed using the Wilcoxon

test. Spearman correlation analysis was conducted to determine the

correlation between DEGs and PMRGs scores, with a correlation

coefficient |r|>0.5andP<0.05as thecriteria for identifyingDE-PMRGs.
2.3 Functional enrichment analysis of
DE-PMRGs

The distribution of DE-PMRGs on the chromosome was

depicted using the Circos visualization tool. The relationship

between these genes was then analyzed using Spearman

correlation and visualized through a heat map. GO and KEGG

pathway enrichment analysis was then conducted on DE-PMRGs

using the clusterProfiler software package (v4.7.1.3) (27).
2.4 Screening biomarkers by
machine learning

Lasso regression analysis was conducted on the candidate genes

using the glmnet software package (v4.1.4) (28). In the Lassomodel, the

cross-validation method is employed to select the optimal

regularization parameter, l. Specifically, by minimizing the mean
1 https://www.ncbi.nlm.nih.gov/geo/

2 https://www.genecards.org
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squared error (MSE), the optimal value of l was determined in this

study to be 0.0127193 (logl =-1.8955). The Lasso coefficient spectrum

and cross-validation error plots were generated to identify the key

genes, which are those with regression coefficients not penalized to 0.

Box plots were generated to display the expression of key genes

in SCZ samples and control samples from the training set

GSE38484 and validation set GSE27383. Genes identified by their

expression levels were noted as potential biomarkers.
2.5 Construction of diagnostic models
and nomograms

Binomial logistic regression analysis was used to develop a

diagnostic model using biomarkers from the training set GSE38484

and validation set GSE27383. The ROC package pROC was used to

generate an ROC curve to evaluate the model’s efficacy in

differentiating SCZ samples from control samples.

In the GSE38484 training set, biomarkers are used to predict

disease status as the outcome event. The R package “rms” was used to

develop a nomogram model based on these biomarkers, and a

calibration curve was generated to assess the predictive performance

of the nomogram model. The Hosmer-Lemeshow test (HL test) serves

as an indicator of model fit by assessing the discrepancy between

predicted and actual values. A p-value greater than 0.05 indicates that

the model passes the HL test, suggesting no significant difference

between the predicted and actual values. Conversely, a p-value less than

0.05 implies that the model fails the HL test, highlighting a significant

discrepancy and indicating poor model fit. Furthermore, a Mean

Absolute Error (MAE) of more than 0.05 indicates a small error

between actual and predicted disease risks, reflecting the high precision

of the nomogram model in predicting disease risk. Additionally, DCA

curve analysis was conducted using the R package “rmda” to evaluate

the clinical utility of the nomogram. To further assess the effectiveness

of the nomogram, the ROC curve was plotted using the R package

“PRROC” (29) and the model’s AUC was calculated to evaluate the

model’s effectiveness.
2.6 GeneMANIA network construction and
GSEA functional enrichment analysis

The GeneMANIA database3 (30) was used to construct and

analyze the interaction network between biomarkers and their co-

expressed genes. Correlations between biomarkers and all genes in the

GSE38484 dataset were calculated, and the genes were ranked based on

the correlation coefficient. GSEA enrichment analysis was subsequently

conducted using the clusterProfiler software package (v4.7.1.3) with

reference to the c2.cp.kegg.v2023.1.Hs.symbols.gmt gene set and

c5.go.v2023.2 in the MSigDB database4 (31). The top three positive

and negative pathways with enrichment scores were selected for

visualization based on thresholds of |NES| > 1 and P < 0.05.
3 http://genemania.org/

4 https://www.gsea-msigdb.org/gsea/msigdb
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2.7 Immune cell infiltration analysis

The GSVA software package (v1.42.0) was used to assess immune

cell infiltration in all samples from the training set GSE38484 using the

ssGSEA algorithm. A box plot was generated to illustrate the

distribution proportion of 28 immune cell types in the samples. The

Wilcoxon test was used to compare differences in immune cell

infiltration among the samples. A significance level of P < 0.05 was

established for screening, and a box plot was created to visualize the

immune scores between samples from individuals with SCZ and

control samples. Spearman correlation analysis was used to

investigate the relationship between biomarkers and differential

immune infiltrating cells. A correlation with |r| > 0.4 and P < 0.05

was deemed statistically significant.
2.8 Construction of the upstream
regulatory network

The TarBase database5 (32) was used to predict the miRNAs

associated with the biomarkers, while the Starbase database6 (33) was

used to predict the lncRNAs corresponding to the miRNAs.

Subsequently, a ceRNA network consisting of lncRNA-miRNA-

mRNA was established. Moreover, transcription factors (TFs) for the

biomarkers were predicted using the ChEA3 database7 (34), where TFs

with scores below 500 were selected, creating a TF-mRNA network.

The visualization of both the ceRNA network and TF-mRNA network

was done using Cytoscape software.
2.9 Construction and molecular docking of
biomarker-drug interaction networks

The DrugBank database8 (35) was used to identify potential

drugs targeting biomarkers, while Cytoscape software was used to

visualize the mRNA-drug network. The 3D structure of the drug

was obtained from the PubChem database9 (36), and the protein

structure of the biomarker was retrieved from the PDB database10

(37). Molecular docking was then performed.
2.10 Clinical validation

2.10.1 Subject recruitment
A total of fifteen schizophrenia patients hospitalized at Hunan

Provincial Brain Hospital (Hunan Provincial Second People’s Hospital)

between March 2024 and June 2024 were included in the experimental

group. The inclusion criteria consisted of meeting the ICD-10
5 http://www.tarbase.com/

6 http://starbase.sysu.edu.cn/

7 https://maayanlab.cloud/chea3/

8 https://go.drugbank.com/

9 https://pubchem.ncbi.nlm.nih.gov/

10 https://www.rcsb.org/
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schizophrenia criteria; not having taken antipsychotic medications

for one month prior to the onset of illness; being aged between 18

and 60 years; being capable of completing all scales; and providing

written informed consent from a legal guardian. The exclusion criteria

encompassed patients with mental retardation or organic brain

diseases, as well as those with serious physical conditions such as

heart, liver, or kidney diseases; patients exhibiting severely reduced

social functioning or inability to cooperate due to psychiatric

symptoms; and patients currently receiving psychological treatment.

Additionally, fifteen healthy subjects who underwent physical

examinations during the same period were selected as the control

group. There were no significant differences in basic demographic

information, such as gender (P = 0.635) and age (P = 0.642), between

the two groups (Table 1). This research plan received approval from the

Medical Committee of Hunan Provincial Brain Hospital (Approval

Number: 2023K018). All participants provided informed consent at the

beginning of the study.

2.10.2 Quantitative reverse transcription
polymerase chain reaction

Fasting venous blood samples were collected from subjects with

SCZ and HC in the early morning. The samples were centrifuged at

4°C at 3000 r/min for 20 minutes, and the supernatant was retained.

Total RNA was extracted from each sample using Trizol (Vazyme).

Reverse transcription was conducted using HiScript II Q RT

SuperMix for qPCR (+gDNA wiper) (Vazyme). Subsequently,

quantitative PCR (qPCR) was performed using Taq Pro Universal

SYBR qPCR Master Mix (Vazyme) on an ABI Q5 thermal cycler.

The 2−DDCT method was employed to assess the relative expression

levels between SCZ and HC for each selected central gene. The

primer sequences utilized in this study are provided in Table 2.

Details of the partial melting curves for the genes are included in the

Supplementary Figure 1.
2.11 Statistical analysis

R version 4.2.2 was utilized for all statistical tests. Figure panels

were pieced together by EdrawMax. The significance of the correlation

between the two groups was assessed through Spearman correlation

analysis. Among patients and healthy volunteers, demographic and

clinical behavioral data were compared using t-tests or chi-square tests,

with a significance threshold set at P < 0.05. Data visualization was

carried out using GraphPad Prism v.9.5.1 in conjunction with R

version 4.2.2.
3 Result

3.1 Differentially expressed
gene identification

The differential expression analysis results of the GSE38484 dataset

revealed 27 differential genes between SCZ and normal HC, with 26

up-regulated genes and 1 down-regulated gene. The volcano plot
frontiersin.org
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(Figure 1A) displays the 10 most significant up-regulated and down-

regulated genes, including RPS15A, RPL9, HINT1, EVI2A, RPS3A,

COX7C, COMMD6, RPL17, EIF1AY, and RPS4Y1 for up-regulated

genes, and NRGN for the down-regulated gene. Furthermore, the

heatmap (Figure 1B) displays the expression levels of the 27 DEGs.

The boxplot (Figure 1C) illustrates the expression variances of

PMRGs between samples from individuals with SCZ and HC

samples. Among these, 5 PMRGs exhibited significantly higher

levels in the control samples compared to the SCZ samples,

specifically ACLY (P < 0.01), FBP1 (P < 0.0001), HCFC1 (P <

0.0001), MMAB (P < 0.01), and PCCA (P < 0.001).

The Wilcoxon test evaluated the GSVA scores of differentially

expressed PMRGs between the disease group and the HC group

within the GSE38484 dataset, revealing a significantly lower score in

SCZ compared to the normal HC group (P < 0.05) (Figure 1D).

Spearman correlation analysis was conducted to assess the

relationship between the DEGs and PMRG scores. Following the

screening criteria of correlation coefficient |r| > 0.5, P < 0.05, a total

of 11 DE-PMRGs were identified, including ARGLU1, CAPZA2,

EVI2A, LY96, NRGN, RPL17, RPL9, RPLP0, S100A8, SUZ12, and

TMEM123 (Figure 1E).
3.2 Functional enrichment analyses

The Circos heat map illustrates the distribution of 11 DE-

PMRGs across different chromosomes. Specifically, S100A8 is
Frontiers in Psychiatry 05
situated on chromosome 1, RPL9 on chromosome 4, CAPZA2 on

chromosome 7, LY96 on chromosome 8, TMEM123 and NRGN on

chromosome 11, RPLP0 on chromosome 12, ARGLU1 on

chromosome 13, EVI2A and SUZ12 on chromosome 17, and

RPL17 on chromosome 18 (Figure 2A).

Spearman correlation analysis was conducted to assess the

correlation between DE-PMRGs. The heat map (Figure 2B)

revealed a significant correlation among all genes (P < 0.05).

Notably, NRGN exhibited a significant negative correlation with

other candidate genes (r <-0.4, P < 0.05), while the rest of DE-

PMRGs showed a significant positive correlation (r > 0.4, P < 0.05).

GO and KEGG enrichment analyses were conducted on DE-

PMRGs, resulting in a total of 109 outcomes from GO enrichment.

The screening criteria used was P < 0.05, with 69 BP (biological

processes), 21 CC (cell components), and 19 MF (molecular

functions) being enriched. The enriched results were arranged in

ascending order based on the P value, and the top 10 gene functions

were presented (Figure 2C). Regarding biological processes, DE-

PMRGs exhibited significant associations with cytoplasmic

translation, positive regulation of lipopolysaccharide-mediated

signaling pathways, response to glycoproteins, glial cell

differentiation, and positive regulation of cell size. In terms of cell

components, DE-PMRGs were notably linked to cytoplasmic large

ribosomal subunits, cytoplasmic ribosomes, large ribosomal

subunits, ribosomal subunits, and ribosomes. DE-PMRGs were

found to bind to TOLL-like receptors, ribosomal structural

components, ribosomal RNA, RAGE receptors, and lncRNAs for

molecular functions. Furthermore, KEGG functional enrichment

analysis identified 13 pathways, with the top 10 enriched pathways

including ribosome, novel coronavirus, pertussis, polycomb protein

inhibitory complex, IL-17 signaling pathway, NF-kappa B signaling

pathway, TOLL-like receptor signaling pathway, toxoplasmosis,

alcoholic liver disease, and motor protein pathway. The most

significant enrichment results for pathways are illustrated

in Figure 2D.
3.3 Screening for biomarkers

Lasso regression analysis was conducted on 11 DE-PMRGs

(Figures 3A, B). 5 specific genes, namely LY96, NRGN, RPLP0,

S100A8, and TMEM123, were identified as key genes as their

regression coefficients were not penalized to 0.
TABLE 2 Primer sequence list.

Gene Primer Sequence (5’-3’) PCR Products

Homo GAPDH
Forward TCCACTGGCGTCTTCACC

78bp
Reverse GGCAGAGATGATGACCCTTTT

Homo LY96
Forward CCCTGTATAGAATTGAAAGGATCC

124bp
Reverse TGCGCTTTGGAAGATTCATGGTG

Homo TMEM123
Forward GCTTCCACACAACTCCAGTGCT

121bp
Reverse ACTGGAGTCTGAGGCAACTGAAG
TABLE 1 Comparison of the basic data of the two groups (Mean ± SD).

Parameter
HC

(N=15)
Schizophrenia

(N=15)
P value

Age (years) 34.20 ± 9.47 35.80 ± 8.78 0.635

Disease duration (years) NA 7.73 ± 5.27 NA

Gender (Male/Female) 8/7 8/7 0.642

PANSS-total NA 110.07 ± 3.65 NA

PANSS-positive NA 30.20 ± 3.71 NA

PANSS- negative NA 30.53 ± 2.97 NA

PANSS- general NA 49.53 ± 2.03 NA
For analysis of difference between HC and schizophrenia group, independent samples t-tests
and pearson’s chi-square test were used. Results were considered statistically significant at
P < 0.05. SD, standard deviation; NA, not applicable.
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FIGURE 1

Differential expression analysis and correlation analysis to identify DE-PMRGs. (A, B) Differential expression analysis. Volcano plot (A) and Heatmap
(B) of differentially expressed genes (DEGs) between SCZ and HC samples in the GSE38484 dataset. Heatmap: The upper section is a density
heatmap of the expression levels of the top 10 up- and down-regulated genes, displaying lines for the five quantiles and the mean; the lower
section is a heatmap of the expression of differential genes (with red representing high expression and green representing low expression);
(C) Differences in propionate metabolism-related genes (PMRGs) in disease and HC. ns= no significant difference, **P < 0.01, ****P < 0.0001;
(D) Differences in PMRGs scores in SCZ and HC; (E) Correlation volcano plot. ARGLU1, CAPZA2, EVI2A, LY96, RPL17, RPL9, RPLP0, S100A8,
SUZ12, and TMEM123 exhibited negative correlations with PMRGs scores, whereas NRGN demonstrated a positive correlation with PMRGs scores.
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The box plot shows the expression levels of key genes in SCZ

samples and control samples in the training set GSE38484

(Figure 3C) and the validation set GSE27383 (Figure 3D). LY96

and TMEM123 were expressed similarly and significantly

differently in these two data sets and were, therefore, identified

as biomarkers.
3.4 Construction of diagnostic models
and nomograms

A biomarker-based diagnostic model was constructed in the

two data sets using binomial logistic regression analysis, and a ROC

curve plot was drawn to evaluate and verify the effectiveness of the

model in distinguishing SCZ and control samples. The results show

that the AUC of the diagnostic model in the training set GSE38484

is 0.735 (Figure 4A), and the AUC in the validation set GSE27383 is

0.847 (Figure 4B). In both data sets, the AUC values of the logistic
Frontiers in Psychiatry 07
regression models constructed by LY96 and TMEM123 both

exceeded 0.7, indicating a good diagnostic effect.

A nomogram (Figure 4C) was constructed to predict the

probability of SCZ for samples in the training set GSE38484. The

Hosmer-Lemeshow test was conducted to determine the dispersion

between the predicted and true values. As shown in Figure 4D, the P

value of the HL test is 0.568 (> 0.05), indicating no conspicuous

difference between the predicted value and the true value.

Moreover, the mean absolute error (MAE) is 0.02 (< 0.05),

indicating that the error between the actual disease risk and the

predicted disease risk is small and that the nomogram model has

high accuracy in predicting the disease risk of the sample. In the

DCA curve (Figure 4E), the nomogram model’s benefit rate,

represented by the red line, significantly outperforms both the

diagonal line (All) and the horizontal line (None). This indicates

that, in comparison to the strategies of either treating all patients or

none, the nomogram model offers additional benefits and

demonstrates superior performance. Furthermore, in the ROC
FIGURE 2

DE-PMRGs functional enrichment analysis. (A) Chromosomal location of DE-PMRGs; (B) DE-PMRGs correlation heat map, ***P < 0.001; (C) GO
enrichment analysis of DE-PMRGs; (D) KEGG pathway analysis of DE-PMRGs.
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curve (Figure 4F), the model’s AUC exceeds 0.7, suggesting that the

nomogram possesses a considerable level of predictive accuracy.
3.5 Biomarker analysis

The GeneMANIA database was queried, and 20 genes

interacting with the biomarkers LY96 and TMEM123 were

obtained. Figure 5A shows the GeneMANIA network of

biomarkers, including a total of 7 interactions between

biomarkers and genes. Physical interactions account for the

highest proportion (77.64%), followed by co-expression (8.01%).

Moreover, among the biomarkers and their interacting genes, the

top five related functions are the toll-like receptor signaling

pathway, response to molecule of bacterial origin, pattern

recognition receptor signaling pathway, regulation of pattern

recognition receptor signaling pathway, and regulation of toll-like

receptor signaling pathway.

The GSEA enrichment analysis results of LY96 and TMEM123

showed that KEGG of LY96 was enriched in 30 pathways and GO
Frontiers in Psychiatry 08
was enriched in 46 pathways; KEGG of TMEM123 was enriched in

18 pathways, and GO was enriched in 34 pathways. According to the

threshold of |NES| > 1 and P < 0.05, the top three pathways with

positive and negative enrichment scores were selected for picture

drawing. KEGG enrichment analysis of LY96 found pathways such as

ribosomes, autophagy regulation, Leishmania infection,

phenylalanine metabolism, tricarboxylic acid cycle, and circadian

rhythm disorders (Figure 5B). The GO enrichment analysis of

LY96 includes pathways such as response to nitrosative stress,

cytoplasmic small ribosome subunits, cytoplasmic ribosomes,

regulation of nucleotide excision repair, npBAF complex, bBAF

complex, etc (Figure 5C). KEGG enrichment analysis of

TMEM123 revealed pathways such as protein export, ribosomes,

basal transcription factors, base excision repair, glycerophospholipid

metabolism, porphyrin, and chlorophyll metabolism (Figure 5D).

GO enrichment analysis of TMEM123 involves pathways such

as mitotic sister chromatid cohesion, cytoplasmic small

ribosome subunits, GDP binding, actin filament binding,

semaphorin plexin signaling pathway, and structural components

of muscle (Figure 5E).
FIGURE 3

Machine learning and expression quantification for identification of biomarkers. (A) Lasso coefficient spectrum. The horizontal axis represents the
logarithm of lambdas, and the vertical axis represents the variable coefficients, with each line representing a gene. As lambdas increase, the variable
coefficients of the genes approach 0. When the optimal lambda is reached, variables with coefficients equal to 0 are eliminated; (B) Ten-fold cross-
validation of adjusted parameters in LASSO analysis; (C, D) Key gene expression level verification. The training set GSE38484 (C), the verification set
GSE27383 (D). ***P < 0.001, ****P < 0.0001. ns, no significant difference.
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3.6 Immune infiltration analysis

Figure 6A illustrates the infiltration of immune cells in all

samples from the training set GSE38484. The immune cell type

with the highest relative abundance is myeloid-derived suppressor

cells (MDSC), while the immune cell type with the lowest relative

abundance is Th2 cells. Figure 6B presents the differences in
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immune cell infiltration between SCZ and control samples.

Significant variations were observed in 12 types of immune

infiltration cells between the disease group and the HC group,

including activated CD4 T cells, CD56 bright natural killer cells,

CD56 dark natural killer cells, central memory CD8 T cells, effector

memory CD4 T cells, effector memory CD8 T cells, eosinophils, gd
T cells, immature dendritic cells, natural killer T cells, follicular
FIGURE 4

Constructing diagnostic models and nomograms. (A, B) Key gene logistic model ROC curve. The left picture is the training set GSE38484 (A), and
the right picture is the verification set GSE27383 (B); (C) Creation of the nomogram for SCZ patients; (D) The calibration curve of the nomogram.
(E) The DCA curve. The diagonal line (All) represents that all samples are intervened; the horizontal line (None) represents that none of the samples
are intervened. (F) Nomogram model ROC curve.
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FIGURE 5

GeneMANIA network construction and GSEA enrichment analysis. (A). GeneMANIA network of biomarkers. Identifying 20 interacting genes, with
physical interactions constituting 77.64% and co-expression 8.01%, encompassing key functions such as the toll-like receptor signaling pathway and
response to molecule of bacterial origin. (B, C) Functional analysis of LY96 gene. The left picture shows KEGG pathway analysis (B), the right picture
shows GO enrichment analysis (C). LY96 is associated with 30 KEGG pathways including ribosomes and autophagy regulation, as well as 46 GO
pathways; (D, E) Functional analysis of TMEM123 gene. The left picture shows KEGG pathway analysis (D), the right picture shows GO enrichment
analysis (E). TMEM123 is associated with 18 KEGG pathways including protein export and ribosomes, as well as 34 GO pathways.
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FIGURE 6

Immune infiltration analysis. (A) Relative abundance of 28 immune cells in the immune microenvironment of SCZ patients. The immune cell type
with the highest relative abundance is MDSC, while the type with the lowest relative abundance is Th2 cells; (B) Twelve types of immune cells show
significant variations between SCZ and HC samples. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001; (C, D) Correlation analysis of biomarkers
and differential immune infiltrating cells. Both Type 1 T helper cells and Activated CD4 T cells, which are differentially infiltrating immune cells,
exhibited significant positive correlations with the two biomarkers, LY96 and TMEM123.
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helper T cells, and type 1 T helper cells. Then, Spearman correlation

analysis was used to calculate the correlation between the

biomarkers LY96, TMEM123, and differential immune infiltrating

cells (correlation |r| > 0.4, P < 0.05 results were considered as

significant correlation results).As depicted in Figures 6C, D, Type 1

T helper cell, Activated CD4 T cell, LY96, and TMEM123 all

showed a significant positive correlation(r > 0.4, P < 0.05); LY96,

CD56dim natural killer cell, and Effector memory CD8 T cell

showed a significant positive correlation. Negative correlation(r

<-0.4, P < 0.05), TMEM123 and Central memory CD8 T cell, T

follicular helper cell, and Natural killer T cell showed significant

negative correlation(r <-0.4, P < 0.05).
3.7 The competing endogenous RNA and
TF-mRNA regulatory networks

The miRNAs of 72 biomarkers were predicted using TarBase.

Among them, LY96 predicted 14 miRNAs, and TMEM123 predicted

67 miRNAs. The lncRNAs corresponding to miRNAs were predicted

through Starbase. Among them, 72 miRNAs predicted a total of 202

relationships with corresponding lncRNAs and a total of 34 non-

repeating lncRNAs. The construction of the lncRNA-miRNA-mRNA

ceRNA network (Figure 7A) aids in understanding the gene

expression regulatory mechanisms of biomarkers.

TFs for biomarkers were predicted using the ChEA3 database.

LY96 predicted 42 TFs, and TMEM123 predicted 73 TFs, including

11 common TF transcription factors. A TF-biomarker regulatory

network was constructed (Figure 7B).
3.8 Drug prediction-molecular docking

Potential drugs targeting biomarkers LY96 and TMEM123 were

searched for through the DrugBank database. LY96 predicted four

drugs: Lauric acid, (R)-3-hydroxytetradecanoic acid, Morphine, and

Myristic acid (Figure 8A). The 3D structures of these drugs and the

protein structure of LY96 (PDB ID: 2E56) were obtained in

PubChem and PDB databases, and molecular docking was

performed on LY96 and the four drugs, respectively (Figure 8B,

Supplementary Figure 2). A docking score below-5 kcal/mol

indicates that the selected drug has a high binding affinity to the

target. In Table 3, the docking scores of the four drugs and LY96 are

all lower than-5 kcal/mol, indicating that small molecule

compounds and key gene proteins have high binding affinity.

Among them, the one with the lowest docking score was

Morphine. Figure 8B shows the molecular docking of LY96

and Morphine.
3.9 Verification of biomarkers expression
by qPCR

The expression levels of the LY96 and TMEM123 genes in

whole blood samples from patients with SCZ were assessed using
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quantitative polymerase chain reaction (qPCR). As anticipated, the

results indicated that the expression levels of LY96 and TMEM123

in the whole blood of SCZ patients were significantly elevated

compared to those in HC (Figure 9).
4 Discussion

Propionate is a short-chain fatty acid that is generated through

intracellular glycolysis and fatty acid oxidation. It plays a crucial

role in various biological processes, including the tricarboxylic acid

cycle, oxidative phosphorylation, cholesterol synthesis, lipid

metabolism, and amino acid metabolism (19), plays an important

role in the human body (18). Previous studies have indicated that

abnormal propionate metabol i sm is assoc ia ted with

neurodegenerative diseases such as Parkinson’s and Alzheimer’s.

These conditions share common pathological features with

schizophrenia, including pro-inflammatory cytokines, aberrant g
CaMKII, dysregulation of the MAPK/ERK pathway, increased

blood-brain barrier (BBB) permeability, and dysregulation of the

gut-microbiota-brain axis (21). This suggests a potential link

between abnormal propionate metabolism and the development

of schizophrenia. While existing studies have not delved into

propionate metabolism in SCZ, this study has been the first to

investigate abnormal propionate metabolism in SCZ patients. By

analyzing 2 SCZ datasets and 16 PMRGs, DEGs were identified in

patients and correlated with PMRGs to identify intersecting genes.

Machine learning techniques were then used to identify key genes

for expression verification, ultimately determining LY96 and

TMEM123 as biomarkers associated with propionate metabolism

in SCZ. Subsequent analyses included GSEA, immune infiltration

analysis, construction of upstream regulatory networks, and

molecular docking for drug prediction.

In this study, the validation dataset (GSE27383) comprised only

male patients with SCZ and HCs, a characteristic that may limit the

generalizability of the findings and subsequent analyses. This

limitation restricts the study’s ability to fully represent the

conditions experienced by female patients, particularly concerning

gene expression, drug metabolism, and disease management.

Females may exhibit distinct gene expression patterns and drug

responses, as well as face gender-specific challenges such as

pregnancy, childbirth, and menopause, which are not accounted

for in male samples (38, 39). Future research should incorporate a

more diverse patient population, including both males and females,

to achieve a more comprehensive understanding of the differences

in schizophrenia across genders.

LY96, also known as MD2, serves as a co-receptor for Toll-like

receptor 4 (TLR4) by binding to its extracellular domain (40). The

primary function of TLR4 is to detect lipopolysaccharide (LPS)

derived from Gram-negative bacteria (41). LY96 is integral to this

interaction (40). The TLR4-MD2 complex is situated on the cell

membrane (42). Upon LPS recognition, this complex activates

signaling pathways such as MyD88 and TRIF, which in turn

initiate an inflammatory response (43) and stimulate the

production of immune and inflammatory cytokines, as well as
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pro-inflammatory enzymes (41). Activation of the MyD88 pathway

can lead to the activation of NF-kB and MAPKs (41), potentially

exacerbating neurotoxic effects and promoting neurodegeneration

(44). The TLR4-MD2 pathway may drive the progression of

schizophrenia through multiple mechanisms. It promotes the

activation of microglia (45) and the release of pro-inflammatory
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cytokines, such as IL-6 and TNF-a, resulting in chronic

neuroinflammation and oxidative stress, which contribute to

neuronal damage (46) and exacerbate positive symptoms,

including delusions and hallucinations, as well as cognitive

impairments. Additionally, the activation of this pathway

upregulates dopamine synthase, resulting in excessive dopamine
FIGURE 7

Regulatory network. (A). CeRNA network; (B) TF-biomarker regulatory network.
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release within the mesolimbic system (47). Additionally, it inhibits

glutamate uptake by astrocytes, which leads to synaptic glutamate

accumulation and a reduction in NMDA receptor function (48, 49).

These mechanisms are associated with the positive symptoms (50)

and cognitive impairments (51) observed in schizophrenia.

Furthermore, the activation of the TLR4 pathway in microglia

contributes to excessive synaptic pruning, which may play a role

in the onset of schizophrenia (52). Regarding treatment, TLR4

inhibitors such as TAK-242 and baicalin have demonstrated

potential in mitigating neuroinflammation and depressive-like
Frontiers in Psychiatry 14
behaviors (53). Clozapine and minocycline exhibit anti-

inflammatory effects (54, 55), and combining inflammatory

marker detection can optimize therapeutic efficacy. However, it is

necessary to balance the risks of immunosuppression and overcome

the delivery limitations of the blood-brain barrier. Our study reveals

that LY96 expression is significantly elevated in schizophrenia

patients compared to control samples, thereby supporting the

involvement of LY96 in LPS-induced TLR4 signaling pathway

activation and the pathogenesis of schizophrenia.

TMEM123, also known as PORIMIN or KCT3, is a gene located

in the q22.2 region of chromosome 11. TMEM123 encodes a

transmembrane protein that plays a key role in cel l

communication, signal transduction, and substance transport.

Research indicates that TMEM123 can induce tumor-like cell

death in Jurkat cells (56). Our research found that the expression

of TMEM123 in patients with schizophrenia is significantly higher

than in the HC group, but there is currently insufficient evidence to

support its reliability and specificity as a biomarker.

KEGG enrichment analysis revealed that LY96 is associated with

pathways including ribosomes, regulation of autophagy, phenylalanine
FIGURE 9

qPCR results showed that the expression levels of LY96 (A) and TMEM123 (B). ****P < 0.0001.
FIGURE 8

Drug prediction and molecular docking. (A) LY96 biomarker-drug network diagram; (B) Molecular docking of LY96 and Morphine.
TABLE 3 LY96-drug molecule docking scores.

Gene Drug Score

LY96 Lauric acid -5.8

LY96 (R)-3-hydroxytetradecanoic acid -6.0

LY96 Myristic acid -6.0

LY96 Morphine -7.6
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metabolism, tricarboxylic acid cycle, and circadian rhythm disorders.

Similarly, TMEM123 was found to be linked to pathways such as

ribosomes, basal resection repair, and glycerophospholipidmetabolism.

Patients with schizophrenia in the European population exhibit

elevated levels of ribosomal DNA (rDNA) in their blood (57, 58).

The transcriptional activity of rDNA may be a significant factor in

neuronal plasticity, with dysfunctional neuroplasticity being considered

a crucial pathophysiological mechanism of schizophrenia and being

linked to genetic factors (59). Autophagy plays an important role in

SCZ, involving neuronal homeostasis, pathophysiology, and symptom

regulation (60), in which the regulation of autophagy-related genes

(ARGs) plays a key role. Genetic variations in ARGs, including

polymorphisms or mutations, may disrupt the normal process of

autophagy and increase susceptibility to SCZ (61). Dopamine is the

main neurotransmitter related to the neurobiology of SCZ.

Phenylalanine hydroxylase (PAH) catalyzes the conversion of

phenylalanine (Phe) to tyrosine (Tyr) in the brain. These two amino

acids are a precursor for the synthesis of dopamine (62). Studies have

shown that SCZ patients have PAH activity impairment (63), causing

increased Phe levels and decreased Tyr levels in plasma (64–67),

affecting the production of dopamine and leading to nervous system

disorders. The intermediate products of the tricarboxylic acid (TCA)

cycle may indirectly influence the onset and progression of

schizophrenia by modulating neurotransmitter synthesis. Alpha-

ketoglutarate, a pivotal molecule linking the TCA cycle to the

glutamate-GABA-glutamine cycle, has been shown that its reduced

levels can directly inhibit GABA synthesis (68, 69). GABA, the

principal inhibitory neurotransmitter in the brain, plays a crucial role

in the pathophysiology of schizophrenia (70). SCZ is closely related to

circadian rhythm disorders, including abnormal staging, instability,

and discontinuity of sleep-activity rhythms (71–74). The two often

occur simultaneously and may involve the same brain mechanisms

(75). The XRCC1 protein plays a key role in the base excision repair

process and is closely related to the susceptibility to SCZ (76). Excessive

oxidative stress triggers phospholipid remodeling, disrupts membrane

lipid homeostasis, causes membrane dysfunction, and leads to SCZ

progression (77). Glycerophospholipids are the most common

component of biological membranes, and their metabolism is

reduced in SCZ patients (78). This abnormality plays a key role in

the disease progression.

GO enrichment analysis revealed that LY96 is associated with

the response to nitrosative stress, regulation of nucleotide excision

repair, npBAF complex, and bBAF complex, among others.

Additionally, TMEM123 is linked to the semaphorin plexin

signaling pathway. Nitrosative stress is mediated by nitric oxide

(NO) released from NO synthase (NOS). It has emerged as a crucial

signaling molecule in schizophrenia (79). Based on this, the increase

in nitrosative stress or reactive nitrogen associated with abnormal

NO levels is related to neuronal damage in SCZ (80, 81), and is

considered an emerging pathological process in the disease (82).

The XPC gene, involved in the early stages of nucleotide excision

repair (NER) (83), may be impacted by XPC polymorphisms,

leading to compromised DNA repair mechanisms and heightened

SCZ susceptibility (84). The BAF complex plays a critical role in
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neural development by influencing neural fate and function.

Mutations in BAF complex subunits have been associated with

neurodevelopmental disorders, including SCZ (85). Semaphorins

act as ligands for plexins and are involved in the plexin signaling

system. Research indicates that variations in the SEMA3D gene may

contribute to SCZ pathogenesis by influencing neural network

development (86). This suggests that abnormalities in semaphorin

plexin signaling pathways could increase the risk of

neurodevelopmental disorders in SCZ patients.

In immune infiltration analysis, significant differences were noted

in 12 types of immune cells between the disease group and the control

group. The correlation between the two biomarkers and these

immune cells was then analyzed. The results showed that type 1 T

helper cells, activated CD4 T cells, significantly correlated with LY96

and TMEM123, indicating that these two differential immune cells

may be involved in pathogenesis of SCZ. LY96 is a key accessory

molecule of the TLR4 signaling pathway. Activation of the TLR4

signaling pathway can promote the secretion of cytokines such as

interferon-gamma (IFN-g), thereby enhancing the immune function

of Th1 cells. At the same time, activated CD4 T cells can further

differentiate and proliferate, enhancing the body’s cellular immune

response (87). In addition, the TLR4 signaling pathway promotes the

secretion of IL-12 (88) and induces the differentiation of naive CD4+

T cells towards the Th1 lineage through the STAT4 signaling pathway

(89), which may lead to Th1/Th2 imbalance, causing abnormal

immune responses and subsequently affecting the function of the

nervous system, related to the occurrence and development of

schizophrenia (90). On the other hand, TMEM123 is involved in

cell death and immune regulation and may play a role in T cell

activation and apoptosis. It regulates the survival and function of T

cells by controlling cell death, thereby modulating the activity of Th1

and activated CD4+ T cells, indirectly participating in the occurrence

and development of schizophrenia.

The ceRNA network links the functions of protein-coding

mRNAs with those of non-coding RNAs, such as microRNAs,

long non-coding RNAs, pseudogene RNAs, and circular RNAs.

lncRNAs can competitively bind to shared miRNAs, and their

expression levels are positively correlated. The upregulation of an

lncRNA can sequester more shared miRNAs (91). In our study, a

ceRNA network was constructed through LY96 and TMEM123,

indicating that this regulatory network plays a role in schizophrenia,

which provides direction and evidence for further elucidating the

mechanisms of these biomarkers in SCZ.
5 Conclusion

In summary, this study established a connection between

propionate metabolism-related genes SCZ through differential

analysis, GSVA, GSEA, and other methodologies. The biomarkers

LY96 and TMEM123 were identified and demonstrated a good

ability to distinguish patients with SCZ from HC. This work lays the

groundwork for further exploration of the role of propionate

metabolism-related genes in SCZ.
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SUPPLEMENTARY FIGURE 1

Amplification curve and melting curve of Q-PCR. (A). Amplification plot of
HomoGAPDH; (B). Melt curve plot of HomoGAPDH. (C). Amplification plot of

Homo LY96; (D). Melt curve plot-Homo LY96; (E). Amplification plot of Homo
TMEM123; (F). Melt curve plot of Homo TMEM123.

SUPPLEMENTARY FIGURE 2

Molecular Docking. (A) . Molecular Docking of LY96 and (R)-3-

hydroxytetradecanoic acid; (B). Molecular Docking of LY96 and Lauric acid;
(C). Molecular Docking of LY96 and Myristic acid.
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