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Introduction


Depression is a serious mental health disease. Traditional scale-based depression diagnosis methods often have problems of strong subjectivity and high misdiagnosis rate, so it is particularly important to develop automatic diagnostic tools based on objective indicators.







Methods


This study proposes a deep learning method that fuses multimodal data to automatically diagnose depression using facial video and audio data. We use spatiotemporal attention module to enhance the extraction of visual features and combine the Graph Convolutional Network (GCN) and the Long and Short Term Memory (LSTM) to analyze the audio features. Through the multi-modal feature fusion, the model can effectively capture different feature patterns related to depression.







Results


We conduct extensive experiments on the publicly available clinical dataset, the Extended Distress Analysis Interview Corpus (E-DAIC). The experimental results show that we achieve robust accuracy on the E-DAIC dataset, with a Mean Absolute Error (MAE) of 3.51 in estimating PHQ-8 scores from recorded interviews.







Discussion


Compared with existing methods, our model shows excellent performance in multi-modal information fusion, which is suitable for early evaluation of depression.
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1 Introduction


Depression, also known as clinical depression or depressive disorder, is a prevalent and serious mental health condition that manifests through persistent low mood, lack of energy, and other symptoms that significantly impact an individual’s thoughts, emotions, behaviors, and overall health (1). According to the World Health Organization, approximately 280 million people worldwide suffer from depression, with 15% of those affected eventually dying by suicide (2). The multifaceted nature of depression, influenced by social, psychological, and biological factors, underscores the necessity for a comprehensive approach to its treatment (3). Long-term stress, genetic predispositions, and adverse social environments are key contributors to the onset of depression, necessitating multifaceted treatment strategies to help patients regain a healthy life.


Traditional methods for diagnosing depression often rely on clinical evaluations by doctors and self-reports from patients. These scale-based methods are fraught with challenges such as high subjectivity, potential misdiagnosis, regional disparities, and a general lack of medical awareness. Moreover, the subtle nature of depressive symptoms means many individuals fail to recognize their condition promptly, leading to delayed treatment and worsening symptoms. Therefore, developing auxiliary diagnostic tools based on objective indicators is crucial for improving early diagnosis and treatment outcomes.


Recent advancements in artificial intelligence (AI) and deep learning have introduced new possibilities for assisting in the diagnosis of depression. These technologies have shown promise in identifying patterns and features indicative of depression through various data modalities (4). However, there are still some limitations in the research aimed at automatic diagnosis of depression. Some studies only consider global features and ignore local features in facial video data, which may lead to insufficient capture of subtle facial changes related to depression. Other studies only consider video data without combining audio information, ignoring the importance of multimodal information. In addition, the design of some models is too complex, which leads to the poor interpretability of the model and the difficulty in understanding its inner mechanism. We address the limitations of previous related work and propose a novel multimodal deep convolutional network, aiming to overcome these problems and provide a more efficient solution for the automatic diagnosis of depression.


In this study, we propose a novel deep learning approach that leverages multimodal data fusion to automatically diagnose depression using facial video and audio data. Our method enhances the extraction of visual features through a spatiotemporal attention module and combines Graph Convolutional Networks (GCN) and Long Short-Term Memory (LSTM) networks to analyze audio features. By integrating these multimodal features, our model effectively captures diverse patterns associated with depression. Our experimental results demonstrate that the proposed method outperforms existing approaches in terms of performance metrics, making it a promising tool for the early evaluation and diagnosis of depression. The main contributions of our study are as follows:


	
We introduce a novel multimodal network architecture that comprehensively integrates video and audio information, significantly enhancing the reliability of depression diagnosis.


	
We design a feature fusion model that effectively combines temporal and spatial features, providing a more comprehensive representation of video data and facilitating a deeper analysis of the patient’s psychological state.


	
We employ a combined GCN and LSTM model to process audio data, constructing a graph structure to analyze Mel-Frequency Cepstral Coefficients (MFCC), thereby improving the interpretability and accuracy of the diagnostic process.





This paper is organized into five sections. The first section presents the research background, discusses the status and challenges of depression identification, and introduces the objectives and significance of the study. The second section reviews recent methods for depression evaluation using both single-modal and multi-modal data. The third section details the proposed method, including the overall network architecture and its components. Section four includes the experimental environment, training process, dataset details, results and discussions. Finally, section five summarizes the contributions of this study, evaluates the advantages and limitations of the proposed method, and outlines directions for future research.






2 Related work


Studies have shown that depression state is closely related to patients’ head and face activities (5). Currently, some studies have tried multi-modal fusion of facial video information and other types of data, such as voice features and text information, to improve the accuracy of depression diagnosis. By utilizing multiple sources of information, the emotional state and psychological characteristics of patients can be captured more comprehensively, leading to more accurate assessment.


Al Jazaery and Guo (6) used 3D convolutional neural networks to extract deep spatio-temporal features of closely cropped aligned facial regions and relatively large head regions respectively, and then used recurrent neural networks to continue learning spatio-temporal information for final prediction. It is the first application of 3D convolutional neural networks to depression level analysis and shows great promise. But it focuses more on visual-based non-verbal data and does not take audio into account. Sun Haohao et al. (7) performed face detection, alignment and cropping on video frames in AVEC2013 (8) and AVEC2014 (9) depression databases to obtain the whole face image and the local eye and mouth region. Then, the deep convolutional neural network that fuses the attention mechanism of the channel layer is used to extract the corresponding global features and local features. The multiple visual features learned are more discriminative than the global features alone. But this study does not consider the influence of the audio. Yuchen Pan et al. (10) proposed the Spatio-Temporal Attention Depression Recognition Network (STA-DRN), which mainly uses the spatio-temporal attention (STA) mechanism to generate spatial and temporal attention vectors, so as to capture the global and local spatio-temporal relationships of features. In the STA module, there is also an attention vector fusion strategy that fuses spatial and temporal domain information. This model can capture the dynamic change process of facial expression and enhance the feature correlation in the process of depression recognition. JH Kim et al. (11) introduces the customized VGG-19 (CVGG-19) architecture, which integrates designs from VGG, Inception-v1, ResNet, and Xception to enhance facial emotion recognition (FER). The CVGG-19 significantly improves performance by 59.29% and reduces computational cost by 89.5% compared to the original VGG-19. Additionally, CVGG-19 achieves an average F1-score that is 3.86% higher than Inception-V1, ResNet50, and Xception architectures. Constantino Álvarez Casado et al. (12) extracted remote photoplethysmography (rPPG) signals directly from facial videos and computed a variety of statistical, geometric and physiological features including heart rate. These features were fed into machine learning regression models to identify different levels of depression. The results of this approach are comparable to other audiovisual models based on voice or facial expression.


Some studies only focus on audio information for depression recognition. Momoko Ishimaru et al. (13) input the feature vector converted from audio data into graph convolution layer and dense layer in turn, and finally obtain the prediction score. This new regression model uses the generated graph-structured data to express correlations between audio features, which can be exploited to assess the severity of depression. Li et al. (14) built speech signals into speech graphs based on feature similarity to input Graph-LSTM neural network for classification. The network is a new graph neural network structure combining LSTM aggregator and weighted pool, which enhances the interpretability of the model and can effectively identify speech emotional features. However, the model also has the shortcomings of redundant speech graph features and lack of visual features.


Some advancements in bimodal speech emotion recognition (SER) using both acoustic and text data, focusing on the significance of attention mechanisms and fusion strategies in combination with traditional deep learning techniques. Also there are some challenges such as limited datasets and difficulties in data acquisition (15).


Uddin et al. (16) input the preprocessed audio clips and video clips into the spatio-temporal network based on audio and video. The dynamic feature descriptor Volume Local Directional Structural Pattern is introduced to encode the structure, so as to extract the dynamic facial features. Then, Temporal Attentive Pooling is used to summarize the segmentation features, and Multi-modal factorized bilinear pooling is used to fuse the multimodal features. Finally, the corresponding BDI-II scores were obtained by regression to estimate the severity of depression. This method has strong feature extraction ability and considers multi-modal data but ignores the association between high-level semantic features and channels. Ming Fang et al. (17) comprehensively considered video, audio and text information, and designed a multi-modal fusion model with multi-level attention mechanism (MFM-Att) for depression detection. The model uses two LSTMs to learn video and audio features, and a Bi-LSTM with attention mechanism to learn text features, and then inputs these three outputs into the MFM-Att for feature fusion. This design can make information complementary between different modalities. However, the complexity of the model needs to be improved.


Improving the interpretability of diagnostic models for depression is crucial for clinical practice. David Gimeno-Gomez et al. (18) present a simple and flexible multimodal temporal model capable of recognizing nonverbal cues to depression from noisy real-world videos. They visualize the level to which these features contribute to the results through integrated gradients (19) based on audio-speech embeddings, facial emotion embeddings, facial, body and hand signatures, as well as gaze and blink information.






3 Methods




Figure 1
 shows the framework of the proposed method for diagnosing depression based on multimodal data. Firstly, visual information and audio information are extracted from the recorded videos of the participants, and the two kinds of information are pretreated separately. Then, the feature extraction is performed on the preprocessed data and the multimodal feature set is obtained by feature fusion. After that, the processed features are classified and the respective classification results are output. This framework allows the model to synthesize visual and audio information, which helps to deeply mine the hidden information in the data. In the process of facial behavior feature extraction, we use the spatio-temporal attention module to strengthen the correlation between features and video frames. For audio features, GCN and LSTM are mainly used.





Figure 1 | 
Framework for depression diagnosis.









3.1 Visual feature extraction


In order to effectively extract information from the facial behavior features, we propose Temporal-Spatial Network for Depression Diagnosis (TSNet-DD). The proposed model incorporates a temporal attention module and a spatial attention module to capture global and local features at the temporal and spatial levels from video frames. The core of TSNet-DD is that it can use the Temporal-Spatial Attention Module (TSAM) to enhance the correlation between pixels and frames.


The overall architecture of TSNet-DD network is shown in 
Figure 2
. The initial layer of the network uses a 7×7×7 convolution kernel to perform downsampling with a step size of 1×2×2 to extract low-level features of the input image. Next, a 3×3×3 pooling operation with a step size of 1×2×2 is performed in the second layer, and the resulting features are denoted as  . The subsequent module1, module2, module3 and module4 correspond to different convolutional layers in the ResNet, and each module consists of a different number of residual blocks. TSNet32-DD corresponds to the ResNet18, that is, each module contains two residual blocks, and two sub-modules are also contained within each residual block. In ResNet18, these submodules are 3×3 convolutional layers, while in our network, we introduce TSAM. Therefore, a total of 32 TSAMs are used in the ResNet18-based network, and we refer to this network as TSNet32-DD.





Figure 2 | 
Architecture of TSNet-DD.






Similarly, in the ResNet34-based network, there are 3,4,6 and 3 residual blocks in each module (sections marked red in 
Figure 2
). Each residual block still contains two TSAMs, resulting in a total of 64 TSAMs in the final network, thus this network is called TSnet64-DD. After all residual modules, a pooling operation is performed on the feature map to resample the features into fixed shapes, and finally a fully connected layer is used to classify the subjects.


The feature extraction module TSAM in TSNet-DD contains a temporal attention module and a spatial attention module. These two modules are used to generate the temporal attention weight vector   and spatial attention weight vector   of the input  , respectively, so as to obtain the corresponding temporal feature   and spatial feature  . Then, these two kinds of features are fused to capture the intrinsic relationship between spatial-temporal features, assigning adaptive weights to the features with spatio-temporal information. The structure of TSAM is shown in 
Figure 3
.





Figure 3 | 
Temporal-spatial attention mechanism.






The fusion process of temporal attention module and spatial attention module could be expressed by the following formula:


 



3.1.1 Temporal attention module


For video data of patients with depression, intra-frame temporal changes are crucial for depression recognition. Such temporal changes can be short term or long term dynamics spanning several seconds. Although short-term features could capture dynamic information between several frames, their ability to extract long-term dynamic features is limited. To address this problem, we introduce a temporal Attention module (TAM) for enhancing temporal information. The specific structure of this module is shown in 
Figure 4
.





Figure 4 | 
Temporal attention module.






In the TSnet-DD model, after the second layer of 3×3×3 pooling operation, the feature   is obtained, and its size is assumed to be H×W×C. The feature   is sent to the TAM. Firstly, the global average pooling and max pooling operations are performed respectively to obtain two 1×1×C channel descriptions. Subsequently, these two descriptions are fed into a two-layer neural network with shared weights for processing. Then the resulting two features are added and the weight coefficient   is obtained through the sigmoid activation function. Finally,   is multiplied with the original input feature   to obtain the new scaled feature  . The process of TAM can be summarized as follows:


 

 

To further visualize the architecture and data transfer process of TAM, we show its pseudo-code
in 
Algorithm 1
.



 Algorithm 1 Pseudocode of temporal attention module.











3.1.2 Spatial attention module


In our collection of videos about people with depression, some useful features usually appear in a sequence of consecutive video frames. Therefore, whether features can identify spatial order information is crucial in depression diagnosis. In addition, different locations of the face have their own unique features, and there are subtle relationships between these location features that cannot be captured by our naked eyes (20). With this in mind, we employ a Spatial Attention Module (SAM) to generate spatial vectors to capture the spatial information. The structure of SAM is shown in 
Figure 5
.





Figure 5 | 
Spatial Attention Module.






In SAM, the input feature   can determine where the features are meaningful. Firstly, the average pooling and maximum pooling of the channel dimension are performed on   respectively to obtain two channel descriptions of size H×W×1, then the two descriptions are concatenated together in the channel dimension. Next, through a 7×7 convolutional layer and the activation function sigmoid, the weight coefficient   are obtained. Finally, the   is multiplied with the input feature   to obtain the final spatial attention vector  . This process can be expressed as follows:


 

 

The flow of the Spatial Attention Module is shown in 
Algorithm 2
.



 Algorithm 2 Pseudocode of spatial attention module.












3.2 Audio feature extraction


The researchers found that people with depression tended to speak in a monotonous and lower tone than healthy controls (21). Therefore, in addition to the analysis of visual features, it is particularly important to mine the key features hidden in speech signals for the diagnosis of depression. See 
Figure 6
 for the audio feature processing method used in this paper.





Figure 6 | 
Audio feature extraction.






We use Mel-frequency Cepstral coefficients (MFCC) of audio data as effective features for
depression recognition (22). MFCC takes into account the
auditory properties of the human ears and can well capture the features in speech. The calculation
process of MFCC is as follows: Firstly, the input audio signal is pre-weighted to enhance the
high-frequency components. Then, the pre-weighted signal is divided into multiple short-time frames,
and a window is applied to each frame to reduce the spectral leakage. Next, the fast fourier
transform is performed on each windowed frame to convert the time domain signal to the frequency
domain. Then the power spectrum of each frame is calculated. Finally, the power spectrum is passed
through a bank of Mel filters, and its output is log transformed and discrete cosine transformed. At
this point, we have the MFCC feature vector for each frame of the input audio. After that, we
consider the MFCC feature vector of each frame as a node, and calculate the feature similarity of
each node based on the Euclidean distance between its feature vectors, so as to construct the edges
between nodes. In this process, we set a threshold of 0.5 to limit the addition of edges, that is,
only adding edges between nodes with high enough feature similarity and small enough distance.
Finally, we assign a corresponding weight to each edge based on the inverse of the distance to
better capture the local and global features in the audio signal. The specific algorithmic
architecture of MFCC Calculation is shown in 
Algorithm 3
.



 Algorithm 3 Pseudocode of MFCC calculation.







To explore the complex patterns and temporal features of audio data, we input the constructed
graph structure data into GCN and LSTM for processing. GCN aggregates the features of nodes and
their neighbors through convolution operations. LSTM could capture long and short-term dependencies
in the sequence. 
Algorithm 4
 further details the process of combining GCN and LSTM. By combining GCN and LSTM, we can capture the high-level graph features of each node and the dynamics and dependencies in the time series. Finally, by subsampling and classifying the complex features, we can obtain a diagnosis of whether the speaker in the audio has depression or not.



 Algorithm 4 Pseudocode of GCN-LSTM model.











3.3 Video-audio fusion


Assuming that the final extracted visual feature is   and the obtained audio feature is  , we now discuss how to fuse these two features. In view of the fact that not all modality features play a positive role in the severity assessment of depression, we propose a Video-Audio Fusion Network (VAFN) to fuse the feature information of the two modalities. The structure of VAFN is shown in 
Figure 7
. The input of VAFN is the multi-modal feature  , and the output feature is the fused  . The nature of video and audio data are different, which leads to different feature vector dimensions. Therefore, in the actual processing, we first perform zero-padding on the side with smaller size in   and   to ensure that the resulting dimensions of   and   are consistent. Then,   and   are superimposed in the horizontal and vertical directions respectively to obtain   and  . A fully connected layer is used to reduce the dimension of  , and the attention weight vector   is obtained. Finally,   and   are multiplied to obtain the final multi-modal fusion feature  . The obtained fusion features are max-pooling and classified to obtain the
depression prediction results. The entire fusion process described above is summarized in 
Algorithm 5
.





Figure 7 | 
Video-audio fusion network.







 Algorithm 5 Pseudocode of VAFN.












4 Experiments





4.1 Experimental settings


The GPU used in this paper is NVIDIA RTX3090. The development and testing are carried out in the Python3.9 environment, and the integrated development tool is Pycharm. We use PyTorch v1.12.0 as the deep learning framework and use CUDA 11.6 in the model training process. The operating system is Windows10. In order to alleviate the over-fitting problem, we use the AdamW optimizer for training, and add the Dropout layer to the network backbone. The dropout rate is set between [0.4, 0.6]. As for optimization, the learning rate is set to be 10e−4 for modality feature extraction and 5×10e−5 for modality fusion with linear schedule strategy. During training, the number of iterations is consistently set to 5000.


In this study, we used the Extended Distress Analysis Interview Corpus (E-DAIC) dataset (23, 24) to validate our proposed method. The E-DAIC dataset is an extended version of the WOZ-DAIC dataset (23) and consists of semi-structured clinical interviews designed to identify psychological distress conditions such as anxiety, depression, and PTSD. In E-DAIC dataset, OpenSMILE (25) was used to extract the acoustic features of subjects, including Mel-frequency cepstral coefficients (MFCC) (26), and OpenFace (27) was used to extract the corresponding visual features. Facial features, eye fixations, head poses, and motor units are included. To protect the privacy of participants, the dataset provides these extracted features directly instead of raw video recordings. The E-DAIC dataset consists of clinical interview transcripts from 219 participants, along with corresponding assessments of depression and PTSD severity. To ensure a representative distribution of the data, the training set contains 163 samples, the validation set contains 56 samples, and the test set contains 10 samples. Each participant in the E-DAIC dataset was annotated according to their Patient Health Questionny-8 (PHQ-8) score (28), with scores higher than 10 classified as 1 (indicating the presence of depression) and scores lower than 10 labeled as 0 (indicating the absence of depression).






4.2 Evaluation metrics


Evaluation measures to evaluate the depression diagnostic model included F1 score (Equation 7) (29), root-mean-square error (RMSE, Equation 8) and mean absolute error (MAE, Equation 9) (30). The F1 score is the harmonic average of precision and recall (Equation 6) and is used to comprehensively measure the performance of the depression diagnostic model. RMSE can reveal how the model performs in extreme cases, such as severely overestimating or underestimating a patient"s depression, which can have a significant impact on clinical decision making. MAE gives the average difference between the model prediction and the actual value.


 

 

 

 






4.3 Results





4.3.1 Comparison with other methods


In this study, we preliminarily use video data and audio data separately for depression recognition based on single-modal features, and the results are shown in 
Table 1
. Specifically, for video features, we compare the proposed TSNet-DD with references (6, 10, 12). It shows that TSNet-DD consistently outperforms the other three models, and TSNet64-DD outperforms TSNet32-DD. The TSNet64-DD model achieved the highest F1 score of 0.853, demonstrating its ability to capture both spatial and temporal features effectively. This improvement over previous models (6, 10, 12) suggests that our temporal-spatial attention mechanism significantly enhances feature extraction. Although the RMSE value of TSNet64-DD is slightly higher than that of TSNet32-DD at 5.11, the small difference in RMSE here is negligible compared to the advantages of its F1 value and MAE value. For audio data, the GCN-LSTM model achieved an F1 score of 0.827, outperforming previous models (13) and (14). This indicates that combining GCN and LSTM can effectively capture the complex patterns in audio features related to depression. Although the MAE value of GCN-LSTM is not the lowest, considering the characteristic that MAE is insensitive to outliers and its excellent performance on F1, we believe that GCN-LSTM has a unique advantage in processing audio features of depression.



Table 1 | 
Results of depression recognition under single-modal features.






Subsequently, we fuse facial video features and audio features to evaluate the performance of multimodal data in depression diagnosis. The results are shown in 
Table 2
. We find that the model based on multi-modal data consistently outperforms the performance using only single-modal data in terms of F1 value. The F1 value of our proposed method finally reaches 0.922, which is not only better than the performance of all single-modal data, but also the highest in all experiments based on multi-modal data. This may be due to the diversity of the input data, and it indicates that there are clear differences in facial visual features and voice features between patients with depression and healthy participants. It turns out that the multimodality-based assistive method has its unique significance in depression diagnosis when the privacy of the participants is protected as much as possible.



Table 2 | 
Results of depression recognition under multi-modal features.






To provide a comprehensive evaluation of our model’s performance, we also included the Receiver Operating Characteristic (ROC) curve and the Area Under the Curve (AUC) values. The ROC curve is a graphical representation that illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied. The AUC provides an aggregate measure of performance across all possible classification thresholds. Our model’s ROC curves for both single-modal and multi-modal data are shown in 
Figure 8
. The AUC values for TSNet64-DD, GCN-LSTM, and VAFN(TSNet64+GL) are summarized in 
Table 3
. The results indicate that our multi-modal fusion model achieves the highest AUC value, further confirming its superior performance in distinguishing between depressed and non-depressed individuals.





Figure 8 | 
Comparison of different ROCs.







Table 3 | 
Results of different model’s AUC values.






In addition, our proposed models strike a balance between computational complexity and performance. The computational complexity of TSNet-DD is primarily determined by the number of convolutional layers and the attention modules. The attention modules add a small overhead due to the additional operations for attention weight calculation. Despite the added complexity of the attention modules, TSNet-DD is designed to be non-redundant, ensuring efficient processing without unnecessary computational overhead. This balance between complexity and efficiency allows TSNet-DD to achieve high performance while maintaining reasonable computational requirements. GCN-LSTM combines the strengths of GCN and LSTM to process audio features. GCN is used to aggregate features from neighboring nodes, while LSTM captures temporal dependencies. GCN-LSTM is designed to handle the variability and noise in audio data effectively. While the combination of GCN and LSTM increases the computational complexity, the model’s ability to capture complex patterns and temporal features justifies the additional computational cost. VAFN fuses the feature information from both video and audio modalities. It uses zero-padding to handle different feature vector dimensions and attention mechanisms to assign adaptive weights to the features. The overall complexity of VAFN depends on the individual complexities of TSNet-DD and GCN-LSTM, along with the additional operations for feature fusion. The fusion process involves concatenation, fully connected layers, and attention weight calculation, which add to the computational load. VAFN is designed to leverage the complementary nature of visual and audio features, resulting in improved diagnostic performance. The fusion process, while adding some computational overhead, is optimized to ensure that the model remains efficient and scalable.






4.3.2 Ablation study


To better understand the contributions of various components in our proposed model, we conducted an ablation study. This study evaluates the impact of the Temporal-Spatial Attention Module (TSAM), the combination of Graph Convolutional Network (GCN) and Long Short-Term Memory (LSTM) for audio features, and the Video-Audio Fusion Network (VAFN). We performed experiments by systematically removing or modifying these components and observing the resulting changes in performance metrics.


We first assess the effect of the TSAM by comparing the full TSNet64-DD model with a variant that does not include the TSAM. The results are shown in 
Table 4
. It demonstrates that the TSAM significantly improves the performance of the model, highlighting its importance in capturing temporal and spatial features. Next, we evaluate the impact of using GCN and LSTM for audio feature extraction. We compare the full GCN-LSTM model with variants that use only GCN or only LSTM. The results are shown in 
Table 5
. The results indicate that the combination of GCN and LSTM outperforms the individual models, demonstrating the effectiveness of integrating both graph-based and temporal features for audio data. Finally, we assess the impact of the VAFN by comparing the full VAFN(TSNet64+GL) model with variants that use only video features (TSNet64-DD) or only audio features (GCN-LSTM). The results are shown in 
Table 6
. The results clearly show that the fusion of video and audio features significantly enhances the performance, confirming the complementary nature of these modalities. The ablation study confirms that each component of our proposed model contributes to its overall performance. The TSAM enhances the extraction of temporal and spatial features from video data, the combination of GCN and LSTM effectively captures complex audio patterns, and the VAFN successfully integrates multimodal features to improve diagnostic accuracy. These findings validate the design choices and highlight the importance of multimodal data fusion in the automatic diagnosis of depression.



Table 4 | 
Impact of Temporal-Spatial Attention Module (TSAM) on video feature extraction.







Table 5 | 
Impact of GCN and LSTM on audio feature extraction.







Table 6 | 
Impact of Video-Audio Fusion Network (VAFN) on multimodal feature fusion.










4.3.3 Effects of different subject groupings


We divide the dataset into three categories by sex: male group, female group, and mixed gender group. For each data set, we conducted experiments based on single mode and multi-mode respectively. In the video mode experiment, we adopt TSNet64, which has better performance. The experimental results are shown in 
Figure 9
, 
Figure 10
 and 
Figure 11
. We find that for each modal, the F1 values of the mixed gender group are consistently lower than those assessed on either the male or female group alone. In addition, the female group almost always outperformed the male group, which may be due to a category imbalance between the samples. It also suggests that men and women differ in the information conveyed in facial behavior and speech during the diagnosis of depression. In addition, for each subject group, the experimental results based on the multimodal feature set are generally better than those based on the single-modal feature set, which is mainly due to the diversity of training data which brings more abundant features.





Figure 9 | 
Comparison of different subject groups on video modal features.









Figure 10 | 
Comparison of different subject groups on audio modal features.









Figure 11 | 
Comparison of different subject groups on multimodal features.











4.4 Interpretability analysis


Deep learning techniques are usually ‘black-box’, but in clinical practice we need more transparent models to increase their credibility and interpretability. Therefore, we perform an interpretability analysis of our model. We show the attribution scores for audio, gaze, action unit (AU), and pose, where higher values indicate strong attribution to positive predictions. The E-DAIC dataset has more than 19,000 frames of facial images for each sample, and we aggregate every 100 frames into a whole to explain depression detection. As shown in 
Figure 12
, AU contributes to the model diagnostic results to the highest degree, followed by pose and audio, and the smallest contribution is gaze. We further visualize the degree of influence of each AU feature on the diagnostic results of different frames through the contribution matrix. As can be seen in 
Figure 13
, AU04, AU05, AU14, AU15, AU17, AU23, AU26, and AU45 have a higher degree of influence, indicating a stronger correlation with depression. These units thus play a more significant role in the diagnostic process for depression.





Figure 12 | 
Contribution of different indicators over frames.









Figure 13 | 
Contribution matrix of AU and frames.










4.5 Discussions


This study introduces a novel multi-modal deep convolutional network that leverages multi-source data fusion to provide a more effective solution for the automatic diagnosis of depression. We utilize a feature fusion module to effectively integrate temporal and spatial features, thereby extracting a more comprehensive representation that is conducive to analyzing the psychological state of patients. Our model’s complexity is balanced by its non-redundant design, ensuring efficient processing without unnecessary computational overhead. From our comprehensive test results, several noteworthy insights can be gathered. The proposed TSNet-DD model for video data demonstrates significant advantages in capturing both spatial and temporal features. For audio data, the GCN-LSTM model effectively captures complex patterns related to depression. The fusion of video and audio features further improves diagnostic performance, demonstrating the complementary nature of visual and audio features.


However, it is important to acknowledge some limitations inherent in our study. First, due to the lack of publicly available high-quality datasets in this field, our research focuses specifically on E-DAIC datasets. Future research should aim to extend this approach to include different datasets for various psychiatric disorder diagnoses. Additionally, it is important to categorize different levels of depression, which we plan to address in future studies. Furthermore, inspired by ACFun (31) and LMAC-ZS (32), future research could explore the integration of additional data types, such as textual information, into the model to enhance classification performance. This integration could provide the model with a more comprehensive contextual understanding, thereby improving its ability to recognize emotional states. Considering the inherent limitations of deep learning—black-box—we can draw from the methodologies proposed in LMAC-ZS to enhance our model’s interpretability. This kind of interpretability mechanism not only contributes to transparency in clinical applications but also provides significant directions for future research.


Overall, our results underscore the importance of multi-modal data in improving the accuracy and reliability of depression diagnosis. Future work should focus on expanding the dataset to include more diverse populations and exploring additional modalities such as text or physiological signals to further enhance diagnostic capabilities.







5 Conclusion


On the premise of protecting the privacy of patients, this paper discusses the method of realizing the high precision diagnosis of depression. We design TSNet-DD architecture for video data to comprehensively consider the temporal and spatial features of video frames through the spatial-temporal attention mechanism module. For audio data, we use a combination of GCN and LSTM to capture high-level graph features and dynamic changes in timing. Finally, the multi-modal feature fusion is realized through the video-audio fusion network. The experimental results show that our method has certain potential in the automatic diagnosis of depression. In the future, researchers can further explore the sensitive features of automatic recognition of depression through larger data sets and more diverse modalities, so as to improve the recognition accuracy and provide more powerful diagnostic and treatment support for clinicians. In addition, it is crucial to classify different levels of depression, which we plan to address in future studies.
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Introduction: Depression is a serious mental health disease. Traditional scale-


based depression diagnosis methods often have problems of strong subjectivity


and high misdiagnosis rate, so it is particularly important to develop automatic


diagnostic tools based on objective indicators.


Methods: This study proposes a deep learning method that fuses multimodal


data to automatically diagnose depression using facial video and audio data. We


use spatiotemporal attention module to enhance the extraction of visual features


and combine the Graph Convolutional Network (GCN) and the Long and Short


Term Memory (LSTM) to analyze the audio features. Through the multi-modal


feature fusion, themodel can effectively capture different feature patterns related


to depression.


Results: We conduct extensive experiments on the publicly available clinical


dataset, the Extended Distress Analysis Interview Corpus (E-DAIC). The


experimental results show that we achieve robust accuracy on the E-DAIC


dataset, with a Mean Absolute Error (MAE) of 3.51 in estimating PHQ-8 scores


from recorded interviews.


Discussion: Compared with existing methods, our model shows excellent


performance in multi-modal information fusion, which is suitable for early


evaluation of depression.

KEYWORDS


depression, multi-modal data, feature fusion, spatial-temporal attention, artificial
intelligence

1 Introduction


Depression, also known as clinical depression or depressive disorder, is a prevalent and


serious mental health condition that manifests through persistent low mood, lack of energy,


and other symptoms that significantly impact an individual’s thoughts, emotions,


behaviors, and overall health (1). According to the World Health Organization,


approximately 280 million people worldwide suffer from depression, with 15% of those


affected eventually dying by suicide (2). The multifaceted nature of depression, influenced
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by social, psychological, and biological factors, underscores the


necessity for a comprehensive approach to its treatment (3).


Long-term stress, genetic predispositions, and adverse social


environments are key contributors to the onset of depression,


necessitating multifaceted treatment strategies to help patients


regain a healthy life.


Traditional methods for diagnosing depression often rely on


clinical evaluations by doctors and self-reports from patients. These


scale-based methods are fraught with challenges such as high


subjectivity, potential misdiagnosis, regional disparities, and a


general lack of medical awareness. Moreover, the subtle nature of


depressive symptoms means many individuals fail to recognize their


condition promptly, leading to delayed treatment and worsening


symptoms. Therefore, developing auxiliary diagnostic tools based


on objective indicators is crucial for improving early diagnosis and


treatment outcomes.


Recent advancements in artificial intelligence (AI) and deep


learning have introduced new possibilities for assisting in the


diagnosis of depression. These technologies have shown promise


in identifying patterns and features indicative of depression through


various data modalities (4). However, there are still some


limitations in the research aimed at automatic diagnosis of


depression. Some studies only consider global features and ignore


local features in facial video data, which may lead to insufficient


capture of subtle facial changes related to depression. Other studies


only consider video data without combining audio information,


ignoring the importance of multimodal information. In addition,


the design of some models is too complex, which leads to the poor


interpretability of the model and the difficulty in understanding its


inner mechanism. We address the limitations of previous related


work and propose a novel multimodal deep convolutional network,


aiming to overcome these problems and provide a more efficient


solution for the automatic diagnosis of depression.


In this study, we propose a novel deep learning approach that


leverages multimodal data fusion to automatically diagnose


depression using facial video and audio data. Our method enhances


the extraction of visual features through a spatiotemporal attention


module and combines Graph Convolutional Networks (GCN) and


Long Short-Term Memory (LSTM) networks to analyze audio


features. By integrating these multimodal features, our model


effectively captures diverse patterns associated with depression. Our


experimental results demonstrate that the proposed method


outperforms existing approaches in terms of performance metrics,


making it a promising tool for the early evaluation and diagnosis of


depression. The main contributions of our study are as follows:

Fron

1. We introduce a novel multimodal network architecture


that comprehensively integrates video and audio


information, significantly enhancing the reliability of


depression diagnosis.


2. We design a feature fusion model that effectively


combines temporal and spatial features, providing a more


comprehensive representation of video data and facilitating a


deeper analysis of the patient’s psychological state.

tiers in Psychiatry 02

3. We employ a combined GCN and LSTM model to process


audio data, constructing a graph structure to analyze Mel-


Frequency Cepstral Coefficients (MFCC), thereby improving


the interpretability and accuracy of the diagnostic process.

This paper is organized into five sections. The first section


presents the research background, discusses the status and


challenges of depression identification, and introduces the


objectives and significance of the study. The second section


reviews recent methods for depression evaluation using both


single-modal and multi-modal data. The third section details the


proposed method, including the overall network architecture and its


components. Section four includes the experimental environment,


training process, dataset details, results and discussions. Finally,


section five summarizes the contributions of this study, evaluates


the advantages and limitations of the proposed method, and


outlines directions for future research.

2 Related work


Studies have shown that depression state is closely related to


patients’ head and face activities (5). Currently, some studies have


tried multi-modal fusion of facial video information and other types


of data, such as voice features and text information, to improve the


accuracy of depression diagnosis. By utilizing multiple sources of


information, the emotional state and psychological characteristics


of patients can be captured more comprehensively, leading to more


accurate assessment.


Al Jazaery and Guo (6) used 3D convolutional neural networks


to extract deep spatio-temporal features of closely cropped aligned


facial regions and relatively large head regions respectively, and


then used recurrent neural networks to continue learning spatio-


temporal information for final prediction. It is the first application


of 3D convolutional neural networks to depression level analysis


and shows great promise. But it focuses more on visual-based non-


verbal data and does not take audio into account. Sun Haohao et al.


(7) performed face detection, alignment and cropping on video


frames in AVEC2013 (8) and AVEC2014 (9) depression databases


to obtain the whole face image and the local eye and mouth region.


Then, the deep convolutional neural network that fuses the


attention mechanism of the channel layer is used to extract the


corresponding global features and local features. The multiple visual


features learned are more discriminative than the global features


alone. But this study does not consider the influence of the audio.


Yuchen Pan et al. (10) proposed the Spatio-Temporal Attention


Depression Recognition Network (STA-DRN), which mainly uses


the spatio-temporal attention (STA) mechanism to generate spatial


and temporal attention vectors, so as to capture the global and local


spatio-temporal relationships of features. In the STA module, there


is also an attention vector fusion strategy that fuses spatial and


temporal domain information. This model can capture the dynamic


change process of facial expression and enhance the feature


correlation in the process of depression recognition. JH Kim et al.
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(11) introduces the customized VGG-19 (CVGG-19) architecture,


which integrates designs from VGG, Inception-v1, ResNet, and


Xception to enhance facial emotion recognition (FER). The CVGG-


19 significantly improves performance by 59.29% and reduces


computational cost by 89.5% compared to the original VGG-19.


Additionally, CVGG-19 achieves an average F1-score that is 3.86%


higher than Inception-V1, ResNet50, and Xception architectures.


Constantino Álvarez Casado et al. (12) extracted remote


photoplethysmography (rPPG) signals directly from facial videos


and computed a variety of statistical, geometric and physiological


features including heart rate. These features were fed into machine


learning regression models to identify different levels of depression.


The results of this approach are comparable to other audiovisual


models based on voice or facial expression.


Some studies only focus on audio information for depression


recognition. Momoko Ishimaru et al. (13) input the feature vector


converted from audio data into graph convolution layer and dense


layer in turn, and finally obtain the prediction score. This new


regression model uses the generated graph-structured data to


express correlations between audio features, which can be


exploited to assess the severity of depression. Li et al. (14) built


speech signals into speech graphs based on feature similarity to


input Graph-LSTM neural network for classification. The network


is a new graph neural network structure combining LSTM


aggregator and weighted pool, which enhances the interpretability


of the model and can effectively identify speech emotional features.


However, the model also has the shortcomings of redundant speech


graph features and lack of visual features.


Some advancements in bimodal speech emotion recognition


(SER) using both acoustic and text data, focusing on the significance


of attention mechanisms and fusion strategies in combination with


traditional deep learning techniques. Also there are some challenges


such as limited datasets and difficulties in data acquisition (15).


Uddin et al. (16) input the preprocessed audio clips and video


clips into the spatio-temporal network based on audio and video. The


dynamic feature descriptor Volume Local Directional Structural


Pattern is introduced to encode the structure, so as to extract the


dynamic facial features. Then, Temporal Attentive Pooling is used to


summarize the segmentation features, and Multi-modal factorized

Frontiers in Psychiatry 03

bilinear pooling is used to fuse the multimodal features. Finally, the


corresponding BDI-II scores were obtained by regression to estimate


the severity of depression. This method has strong feature extraction


ability and considers multi-modal data but ignores the association


between high-level semantic features and channels. Ming Fang et al.


(17) comprehensively considered video, audio and text information,


and designed a multi-modal fusion model with multi-level attention


mechanism (MFM-Att) for depression detection. The model uses two


LSTMs to learn video and audio features, and a Bi-LSTM with


attention mechanism to learn text features, and then inputs these


three outputs into the MFM-Att for feature fusion. This design can


make information complementary between different modalities.


However, the complexity of the model needs to be improved.


Improving the interpretability of diagnostic models for


depression is crucial for clinical practice. David Gimeno-Gomez


et al. (18) present a simple and flexible multimodal temporal model


capable of recognizing nonverbal cues to depression from noisy


real-world videos. They visualize the level to which these features


contribute to the results through integrated gradients (19) based on


audio-speech embeddings, facial emotion embeddings, facial, body


and hand signatures, as well as gaze and blink information.

3 Methods


Figure 1 shows the framework of the proposed method for


diagnosing depression based on multimodal data. Firstly, visual


information and audio information are extracted from the recorded


videos of the participants, and the two kinds of information are


pretreated separately. Then, the feature extraction is performed on


the preprocessed data and the multimodal feature set is obtained by


feature fusion. After that, the processed features are classified and


the respective classification results are output. This framework


allows the model to synthesize visual and audio information,


which helps to deeply mine the hidden information in the data.


In the process of facial behavior feature extraction, we use the


spatio-temporal attention module to strengthen the correlation


between features and video frames. For audio features, GCN and


LSTM are mainly used.

FIGURE 1


Framework for depression diagnosis.
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3.1 Visual feature extraction


In order to effectively extract information from the facial


behavior features, we propose Temporal-Spatial Network for


Depression Diagnosis (TSNet-DD). The proposed model


incorporates a temporal attention module and a spatial attention


module to capture global and local features at the temporal and


spatial levels from video frames. The core of TSNet-DD is that it can


use the Temporal-Spatial Attention Module (TSAM) to enhance the


correlation between pixels and frames.


The overall architecture of TSNet-DD network is shown in


Figure 2. The initial layer of the network uses a 7×7×7 convolution


kernel to perform downsampling with a step size of 1×2×2 to


extract low-level features of the input image. Next, a 3×3×3 pooling


operation with a step size of 1×2×2 is performed in the second layer,


and the resulting features are denoted as Fv . The subsequent


module1, module2, module3 and module4 correspond to different


convolutional layers in the ResNet, and each module consists of a


different number of residual blocks. TSNet32-DD corresponds to


the ResNet18, that is, each module contains two residual blocks, and


two sub-modules are also contained within each residual block. In


ResNet18, these submodules are 3×3 convolutional layers, while in


our network, we introduce TSAM. Therefore, a total of 32 TSAMs


are used in the ResNet18-based network, and we refer to this


network as TSNet32-DD.


Similarly, in the ResNet34-based network, there are 3,4,6 and 3


residual blocks in each module (sections marked red in Figure 2).
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Each residual block still contains two TSAMs, resulting in a total of


64 TSAMs in the final network, thus this network is called TSnet64-


DD. After all residual modules, a pooling operation is performed on


the feature map to resample the features into fixed shapes, and


finally a fully connected layer is used to classify the subjects.


The feature extraction module TSAM in TSNet-DD contains a


temporal attention module and a spatial attention module. These


two modules are used to generate the temporal attention weight


vector Wt and spatial attention weight vector Ws of the input Fv ,


respectively, so as to obtain the corresponding temporal feature Ft
and spatial feature Fs. Then, these two kinds of features are fused to


capture the intrinsic relationship between spatial-temporal features,


assigning adaptive weights to the features with spatio-temporal


information. The structure of TSAM is shown in Figure 3.


The fusion process of temporal attention module and spatial


attention module could be expressed by the following formula:


Fts = Ft + Fs (1)

3.1.1 Temporal attention module
For video data of patients with depression, intra-frame temporal


changes are crucial for depression recognition. Such temporal


changes can be short term or long term dynamics spanning


several seconds. Although short-term features could capture


dynamic information between several frames, their ability to


extract long-term dynamic features is limited. To address this


problem, we introduce a temporal Attention module (TAM) for

FIGURE 2


Architecture of TSNet-DD.
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enhancing temporal information. The specific structure of this


module is shown in Figure 4.


In the TSnet-DD model, after the second layer of 3×3×3 pooling


operation, the feature Fv is obtained, and its size is assumed to be


H×W×C. The feature Fv is sent to the TAM. Firstly, the global average


pooling and max pooling operations are performed respectively to


obtain two 1×1×C channel descriptions. Subsequently, these two


descriptions are fed into a two-layer neural network with shared


weights for processing. Then the resulting two features are added


and the weight coefficient Wt is obtained through the sigmoid


activation function. Finally, Wt is multiplied with the original input


feature Fv to obtain the new scaled feature Ft . The process of TAM can


be summarized as follows:


Wt = s(Conv(AvgPool(Fv)) + Conv(MaxPool(Fv))) (2)


Ft = Fv*Wt (3)


To further visualize the architecture and data transfer process of


TAM, we show its pseudo-code in Algorithm 1.

Fron

Step 1 Input: Feature map FvϵR
H�w�c


Step 2 Global Average Pooling: Favg = AvgPool(Fv) where


Favg   ϵR
1�1�c.


Step 3 Global Max Pooling: Fmax = MaxPool(Fv) where Fmax  ϵ


R1�1�c.


Step 4 Shared Network: Wt = s(Conv(Favg) + Conv(Fmax)) where
Wt   ϵR


1�1�c, and s is the sigmoid function.


Step 5 Attention Scaling: Ft = Fv*Wt where * denotes


element-wise multiplication.

Algorithm 1. Pseudocode of temporal attention module.

tiers in Psychiatry 05

3.1.2 Spatial attention module
In our collection of videos about people with depression, some


useful features usually appear in a sequence of consecutive video


frames. Therefore, whether features can identify spatial order


information is crucial in depression diagnosis. In addition,


different locations of the face have their own unique features, and


there are subtle relationships between these location features that


cannot be captured by our naked eyes (20). With this in mind, we


employ a Spatial Attention Module (SAM) to generate spatial


vectors to capture the spatial information. The structure of SAM


is shown in Figure 5.


In SAM, the input feature Fv can determine where the features


are meaningful. Firstly, the average pooling and maximum pooling


of the channel dimension are performed on Fv respectively to obtain


two channel descriptions of size H×W×1, then the two descriptions


are concatenated together in the channel dimension. Next, through


a 7×7 convolutional layer and the activation function sigmoid, the


weight coefficientWs are obtained. Finally, theWs is multiplied with


the input feature Fv to obtain the final spatial attention vector Fs.


This process can be expressed as follows:


Ws = s(Conv(½AvgPool(Fv),MaxPool(Fv)�)) (4)


Fs = Fv*Ws (5)


The flow of the Spatial Attention Module is shown in


Algorithm 2.

Input: Feature map FveRH�w�cChannel-wise Average


Pooling: Favg = AvgPool(Fv ,  axis = C) where Favg   ϵR
H�W�1.


Channel-wise Max Pooling: Fmax = MaxPool(Fv,  axis = C)


where Fmax   ϵR
H�W�1.


Concatenation: Fconcat = ½Favg ;  Fmax� where Fconcat   ϵR
H�W�2.

FIGURE 3


Temporal-spatial attention mechanism.
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Fron

Convolution: Ws = s (Conv(Fconcat)) where Ws   ϵR
H�W�1, and s is


the sigmoid function.


Attention Scaling: Fs = Fv ∗Ws where ∗ denotes element-


wise multiplication.

Algorithm 2. Pseudocode of spatial attention module.

3.2 Audio feature extraction


The researchers found that people with depression tended to


speak in a monotonous and lower tone than healthy controls (21).


Therefore, in addition to the analysis of visual features, it is


particularly important to mine the key features hidden in speech


signals for the diagnosis of depression. See Figure 6 for the audio


feature processing method used in this paper.

tiers in Psychiatry 06

We use Mel-frequency Cepstral coefficients (MFCC) of audio


data as effective features for depression recognition (22). MFCC


takes into account the auditory properties of the human ears and


can well capture the features in speech. The calculation process of


MFCC is as follows: Firstly, the input audio signal is pre-weighted to


enhance the high-frequency components. Then, the pre-weighted


signal is divided into multiple short-time frames, and a window is


applied to each frame to reduce the spectral leakage. Next, the fast


fourier transform is performed on each windowed frame to convert


the time domain signal to the frequency domain. Then the power


spectrum of each frame is calculated. Finally, the power spectrum is


passed through a bank of Mel filters, and its output is log


transformed and discrete cosine transformed. At this point, we


have the MFCC feature vector for each frame of the input audio.


After that, we consider the MFCC feature vector of each frame as a


node, and calculate the feature similarity of each node based on the


Euclidean distance between its feature vectors, so as to construct the

FIGURE 5


Spatial Attention Module.

FIGURE 4


Temporal attention module.
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edges between nodes. In this process, we set a threshold of 0.5 to


limit the addition of edges, that is, only adding edges between nodes


with high enough feature similarity and small enough distance.


Finally, we assign a corresponding weight to each edge based on the


inverse of the distance to better capture the local and global features


in the audio signal. The specific algorithmic architecture of MFCC


Calculation is shown in Algorithm 3.

Fron

Step 1:Apply a pre-emphasis filter to the audio signal Xt.


Step 2: Divide the signal into overlapping frames.


Step 3: Windowing: Apply a Hamming window to each frame.


Step 4: Compute the Fast Fourier Transform of each


frame.


Step 5: Apply a Mel filter bank to the power spectra.


Step 6: Take the logarithm of the Mel-filtered spectra.


Step 7: Apply the Discrete Cosine Transform to


obtain MFCCs.

Algorithm 3. Pseudocode of MFCC calculation.


To explore the complex patterns and temporal features of audio


data, we input the constructed graph structure data into GCN and


LSTM for processing. GCN aggregates the features of nodes and


their neighbors through convolution operations. LSTM could


capture long and short-term dependencies in the sequence.


Algorithm 4 further details the process of combining GCN and


LSTM. By combining GCN and LSTM, we can capture the high-


level graph features of each node and the dynamics and


dependencies in the time series. Finally, by subsampling and


classifying the complex features, we can obtain a diagnosis of


whether the speaker in the audio has depression or not.

Step 1: Construct a graph (G = (V, E)) where each node (Vi)


represents an MFCC feature vector of a frame.


Step 2: Compute edge weights based on feature similarity


(Euclidean distance).


Step 3: Aggregate features from neighboring nodes: Hl+1 =


s (D−1=2AD−1=2HlWl), where A is the adjacency matrix, D is


the degree matrix, Hl is the feature matrix at layer l,


and Wl is the weight matrix.
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Step 4: LSTM Layer: Capture temporal dependencies: Ht =


LSTM(xt,  ht−1), where xt   is the input at time t and ht is the


hidden state.

Algorithm 4. Pseudocode of GCN-LSTM model.

3.3 Video-audio fusion


Assuming that the final extracted visual feature is FV and the


obtained audio feature is FA, we now discuss how to fuse these two


features. In view of the fact that not all modality features play a


positive role in the severity assessment of depression, we propose a


Video-Audio Fusion Network (VAFN) to fuse the feature


information of the two modalities. The structure of VAFN is


shown in Figure 7. The input of VAFN is the multi-modal feature


FMM = FV , FAf g, and the output feature is the fused FVA. The nature
of video and audio data are different, which leads to different feature


vector dimensions. Therefore, in the actual processing, we first


perform zero-padding on the side with smaller size in FV and FA to


ensure that the resulting dimensions of FVP and FAP are consistent.


Then, FVP and FAP are superimposed in the horizontal and vertical


directions respectively to obtain HVA and VVA. A fully connected


layer is used to reduce the dimension of VVA, and the attention


weight vector VVAF is obtained. Finally, HVA and VVAF are


multiplied to obtain the final multi-modal fusion feature FVA. The


obtained fusion features are max-pooling and classified to obtain


the depression prediction results. The entire fusion process


described above is summarized in Algorithm 5.

Step 1: Zero-pad the smaller feature vector FV or FA to


match dimensions.


Step 2: Concatenate the padded features horizontally


and vertically: HVA=[FVP ;FAP], VVA=[FVP ;FAP].


Step 3: Apply a fully connected layer to VVA to obtain an


attention weight vector VVAF=FC (VVA)


Step 4: Multiply HVA with VVAF to obtain the fused feature


FVA = HVA* VVAF.

Algorithm 5. Pseudocode of VAFN.

4 Experiments


4.1 Experimental settings


The GPU used in this paper is NVIDIA RTX3090. The


development and testing are carried out in the Python3.9


environment, and the integrated development tool is Pycharm.
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We use PyTorch v1.12.0 as the deep learning framework and use


CUDA 11.6 in the model training process. The operating system is


Windows10. In order to alleviate the over-fitting problem, we use


the AdamW optimizer for training, and add the Dropout layer to


the network backbone. The dropout rate is set between [0.4, 0.6]. As


for optimization, the learning rate is set to be 10e−4 for modality


feature extraction and 5×10e−5 for modality fusion with linear


schedule strategy. During training, the number of iterations is


consistently set to 5000.


In this study, we used the Extended Distress Analysis Interview


Corpus (E-DAIC) dataset (23, 24) to validate our proposed method.


The E-DAIC dataset is an extended version of the WOZ-DAIC


dataset (23) and consists of semi-structured clinical interviews


designed to identify psychological distress conditions such as


anxiety, depression, and PTSD. In E-DAIC dataset, OpenSMILE


(25) was used to extract the acoustic features of subjects, including


Mel-frequency cepstral coefficients (MFCC) (26), and OpenFace


(27) was used to extract the corresponding visual features. Facial


features, eye fixations, head poses, and motor units are included. To


protect the privacy of participants, the dataset provides these
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extracted features directly instead of raw video recordings. The E-


DAIC dataset consists of clinical interview transcripts from 219


participants, along with corresponding assessments of depression


and PTSD severity. To ensure a representative distribution of the


data, the training set contains 163 samples, the validation set


contains 56 samples, and the test set contains 10 samples. Each


participant in the E-DAIC dataset was annotated according to their


Patient Health Questionny-8 (PHQ-8) score (28), with scores


higher than 10 classified as 1 (indicating the presence of


depression) and scores lower than 10 labeled as 0 (indicating the


absence of depression).

4.2 Evaluation metrics


Evaluation measures to evaluate the depression diagnostic


model included F1 score (Equation 7) (29), root-mean-square


error (RMSE, Equation 8) and mean absolute error (MAE,


Equation 9) (30). The F1 score is the harmonic average of


precision and recall (Equation 6) and is used to comprehensively

FIGURE 7


Video-audio fusion network.

FIGURE 6


Audio feature extraction.
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measure the performance of the depression diagnostic model.


RMSE can reveal how the model performs in extreme cases, such


as severely overestimating or underestimating a patient"s


depression, which can have a significant impact on clinical


decision making. MAE gives the average difference between the


model prediction and the actual value.


Precision =
TP


TP + FP
,  Recall =


TP
TP + FN


(6)


F1  =  2� Precision� Recall
Precision + Recall


(7)


RMSE =


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No


N
i=1(yi − ŷ i)


2


r
(8)


MAE =
1
No


N
i=1 yi − ŷ ij j (9)

4.3 Results


4.3.1 Comparison with other methods
In this study, we preliminarily use video data and audio data


separately for depression recognition based on single-modal


features, and the results are shown in Table 1. Specifically, for


video features, we compare the proposed TSNet-DD with references


(6, 10, 12). It shows that TSNet-DD consistently outperforms the


other three models, and TSNet64-DD outperforms TSNet32-DD.


The TSNet64-DD model achieved the highest F1 score of 0.853,


demonstrating its ability to capture both spatial and temporal


features effectively. This improvement over previous models (6,


10, 12) suggests that our temporal-spatial attention mechanism


significantly enhances feature extraction. Although the RMSE value


of TSNet64-DD is slightly higher than that of TSNet32-DD at 5.11,


the small difference in RMSE here is negligible compared to the


advantages of its F1 value andMAE value. For audio data, the GCN-


LSTMmodel achieved an F1 score of 0.827, outperforming previous


models (13) and (14). This indicates that combining GCN and


LSTM can effectively capture the complex patterns in audio features


related to depression. Although the MAE value of GCN-LSTM is
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not the lowest, considering the characteristic that MAE is


insensitive to outliers and its excellent performance on F1, we


believe that GCN-LSTM has a unique advantage in processing


audio features of depression.


Subsequently, we fuse facial video features and audio features to


evaluate the performance of multimodal data in depression


diagnosis. The results are shown in Table 2. We find that the


model based on multi-modal data consistently outperforms the


performance using only single-modal data in terms of F1 value. The


F1 value of our proposed method finally reaches 0.922, which is not


only better than the performance of all single-modal data, but also


the highest in all experiments based on multi-modal data. This may


be due to the diversity of the input data, and it indicates that there


are clear differences in facial visual features and voice features


between patients with depression and healthy participants. It turns


out that the multimodality-based assistive method has its unique


significance in depression diagnosis when the privacy of the


participants is protected as much as possible.


To provide a comprehensive evaluation of our model’s


performance, we also included the Receiver Operating


Characteristic (ROC) curve and the Area Under the Curve (AUC)


values. The ROC curve is a graphical representation that illustrates


the diagnostic ability of a binary classifier system as its


discrimination threshold is varied. The AUC provides an


aggregate measure of performance across all possible classification


thresholds. Our model’s ROC curves for both single-modal and


multi-modal data are shown in Figure 8. The AUC values for


TSNet64-DD, GCN-LSTM, and VAFN(TSNet64+GL) are


summarized in Table 3. The results indicate that our multi-modal


fusion model achieves the highest AUC value, further confirming its


superior performance in distinguishing between depressed and


non-depressed individuals.


In addition, our proposed models strike a balance between


computational complexity and performance. The computational


complexity of TSNet-DD is primarily determined by the number of


convolutional layers and the attention modules. The attention


modules add a small overhead due to the additional operations


for attention weight calculation. Despite the added complexity of


the attention modules, TSNet-DD is designed to be non-redundant,


ensuring efficient processing without unnecessary computational


overhead. This balance between complexity and efficiency allows


TSNet-DD to achieve high performance while maintaining


reasonable computational requirements. GCN-LSTM combines


the strengths of GCN and LSTM to process audio features. GCN


is used to aggregate features from neighboring nodes, while LSTM


captures temporal dependencies. GCN-LSTM is designed to handle

TABLE 1 Results of depression recognition under single-modal features.


feature model F1 RMSE MAE


video RNN-C3D (6) 0.723 8.07 5.78


STA-DRN (10) 0.702 8.94 6.77


RFR (12) 0.710 8.49 6.57


TSNet32-DD 0.800 5.11 5.03


TSNet64-DD 0.853 5.23 4.45


audio GCNN (13) 0.690 9.28 6.65


GLNN (14) 0.788 8.43 5.04


GCN-LSTM 0.827 6.67 6.28

TABLE 2 Results of depression recognition under multi-modal features.


model F1 RMSE MAE


MFM-Att (17) 0.895 7.29 4.03


GCN 0.918 6.24 3.88


VAFN(TSNet32+GL) 0.903 5.77 4.00


VAFN(TSNet64+GL) 0.922 6.06 3.51
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the variability and noise in audio data effectively. While the


combination of GCN and LSTM increases the computational


complexity, the model’s ability to capture complex patterns and


temporal features justifies the additional computational cost. VAFN


fuses the feature information from both video and audio modalities.


It uses zero-padding to handle different feature vector dimensions


and attention mechanisms to assign adaptive weights to the


features. The overall complexity of VAFN depends on the


individual complexities of TSNet-DD and GCN-LSTM, along


with the additional operations for feature fusion. The fusion


process involves concatenation, fully connected layers, and


attention weight calculation, which add to the computational


load. VAFN is designed to leverage the complementary


nature of visual and audio features, resulting in improved


diagnostic performance. The fusion process, while adding some


computational overhead, is optimized to ensure that the model


remains efficient and scalable.


4.3.2 Ablation study
To better understand the contributions of various components


in our proposed model, we conducted an ablation study. This study


evaluates the impact of the Temporal-Spatial Attention Module


(TSAM), the combination of Graph Convolutional Network (GCN)


and Long Short-Term Memory (LSTM) for audio features, and the
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Video-Audio Fusion Network (VAFN). We performed experiments


by systematically removing or modifying these components and


observing the resulting changes in performance metrics.


We first assess the effect of the TSAM by comparing the full


TSNet64-DD model with a variant that does not include the TSAM.


The results are shown in Table 4. It demonstrates that the TSAM


significantly improves the performance of the model, highlighting its


importance in capturing temporal and spatial features. Next, we


evaluate the impact of using GCN and LSTM for audio feature


extraction. We compare the full GCN-LSTM model with variants


that use only GCN or only LSTM. The results are shown in Table 5.


The results indicate that the combination of GCN and LSTM


outperforms the individual models, demonstrating the effectiveness


of integrating both graph-based and temporal features for audio data.


Finally, we assess the impact of the VAFN by comparing the full


VAFN(TSNet64+GL) model with variants that use only video


features (TSNet64-DD) or only audio features (GCN-LSTM). The


results are shown in Table 6. The results clearly show that the fusion


of video and audio features significantly enhances the performance,


confirming the complementary nature of these modalities. The


ablation study confirms that each component of our proposed


model contributes to its overall performance. The TSAM enhances


the extraction of temporal and spatial features from video data, the


combination of GCN and LSTM effectively captures complex audio


patterns, and the VAFN successfully integrates multimodal features


to improve diagnostic accuracy. These findings validate the design


choices and highlight the importance of multimodal data fusion in


the automatic diagnosis of depression.

4.3.3 Effects of different subject groupings
We divide the dataset into three categories by sex: male group,


female group, and mixed gender group. For each data set, we

FIGURE 8


Comparison of different ROCs.

TABLE 3 Results of different model’s AUC values.


model AUC FLOPs


TSNet64-DD 0.912 453,787,648


GCN-LSTM 0.880 4,915,200


VAFN(TSNet64+GL) 0.950 463,424,512
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conducted experiments based on single mode and multi-mode


respectively. In the video mode experiment, we adopt TSNet64,


which has better performance. The experimental results are shown


in Figure 9, Figure 10 and Figure 11. We find that for each modal,


the F1 values of the mixed gender group are consistently lower than


those assessed on either the male or female group alone. In addition,


the female group almost always outperformed the male group,


which may be due to a category imbalance between the samples. It


also suggests that men and women differ in the information


conveyed in facial behavior and speech during the diagnosis of


depression. In addition, for each subject group, the experimental


results based on the multimodal feature set are generally better than


those based on the single-modal feature set, which is mainly due to


the diversity of training data which brings more abundant features.

4.4 Interpretability analysis


Deep learning techniques are usually ‘black-box’, but in clinical


practice we need more transparent models to increase their


credibility and interpretability. Therefore, we perform an


interpretability analysis of our model. We show the attribution


scores for audio, gaze, action unit (AU), and pose, where higher


values indicate strong attribution to positive predictions. The E-


DAIC dataset has more than 19,000 frames of facial images for each

TABLE 5 Impact of GCN and LSTM on audio feature extraction.


Model F1 RMSE MAE


GCN-LSTM 0.827 6.67 6.28


GCN only 0.742 7.89 7.12


LSTM only 0.756 7.65 6.87

TABLE 6 Impact of Video-Audio Fusion Network (VAFN) on multimodal
feature fusion.


Model F1 RMSE MAE


VAFN(TSNet64+GL) 0.922 6.06 3.51


TSNet64-DD 0.853 5.23 4.45


GCN-LSTM 0.827 6.67 6.28

TABLE 4 Impact of Temporal-Spatial Attention Module (TSAM) on video
feature extraction.


Model F1 RMSE MAE


TSNet64-DD 0.853 5.23 4.45


TSNet64-DD w/o TSAM 0.789 6.12 5.37

FIGURE 9


Comparison of different subject groups on video modal features.
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sample, and we aggregate every 100 frames into a whole to explain


depression detection. As shown in Figure 12, AU contributes to the


model diagnostic results to the highest degree, followed by pose and


audio, and the smallest contribution is gaze. We further visualize


the degree of influence of each AU feature on the diagnostic results

Frontiers in Psychiatry 12

of different frames through the contribution matrix. As can be seen


in Figure 13, AU04, AU05, AU14, AU15, AU17, AU23, AU26, and


AU45 have a higher degree of influence, indicating a stronger


correlation with depression. These units thus play a more


significant role in the diagnostic process for depression.

FIGURE 10


Comparison of different subject groups on audio modal features.

FIGURE 11


Comparison of different subject groups on multimodal features.
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FIGURE 12


Contribution of different indicators over frames.

FIGURE 13


Contribution matrix of AU and frames.
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4.5 Discussions


This study introduces a novel multi-modal deep convolutional


network that leverages multi-source data fusion to provide a more


effective solution for the automatic diagnosis of depression. We utilize


a feature fusion module to effectively integrate temporal and spatial


features, thereby extracting a more comprehensive representation that


is conducive to analyzing the psychological state of patients. Our


model’s complexity is balanced by its non-redundant design, ensuring


efficient processing without unnecessary computational overhead.


From our comprehensive test results, several noteworthy insights


can be gathered. The proposed TSNet-DD model for video data


demonstrates significant advantages in capturing both spatial and


temporal features. For audio data, the GCN-LSTM model effectively


captures complex patterns related to depression. The fusion of video


and audio features further improves diagnostic performance,


demonstrating the complementary nature of visual and audio features.


However, it is important to acknowledge some limitations inherent


in our study. First, due to the lack of publicly available high-quality


datasets in this field, our research focuses specifically on E-DAIC


datasets. Future research should aim to extend this approach to


include different datasets for various psychiatric disorder diagnoses.


Additionally, it is important to categorize different levels of depression,


which we plan to address in future studies. Furthermore, inspired by


ACFun (31) and LMAC-ZS (32), future research could explore the


integration of additional data types, such as textual information, into the


model to enhance classification performance. This integration could


provide the model with a more comprehensive contextual


understanding, thereby improving its ability to recognize emotional


states. Considering the inherent limitations of deep learning—black-box


—we can draw from the methodologies proposed in LMAC-ZS to


enhance our model’s interpretability. This kind of interpretability


mechanism not only contributes to transparency in clinical


applications but also provides significant directions for future research.


Overall, our results underscore the importance of multi-modal


data in improving the accuracy and reliability of depression diagnosis.


Future work should focus on expanding the dataset to include more


diverse populations and exploring additional modalities such as text


or physiological signals to further enhance diagnostic capabilities.

5 Conclusion


On the premise of protecting the privacy of patients, this paper


discusses the method of realizing the high precision diagnosis of


depression. We design TSNet-DD architecture for video data to


comprehensively consider the temporal and spatial features of video


frames through the spatial-temporal attention mechanismmodule. For


audio data, we use a combination of GCN and LSTM to capture high-


level graph features and dynamic changes in timing. Finally, the multi-


modal feature fusion is realized through the video-audio fusion


network. The experimental results show that our method has certain


potential in the automatic diagnosis of depression. In the future,


researchers can further explore the sensitive features of automatic


recognition of depression through larger data sets and more diverse


modalities, so as to improve the recognition accuracy and providemore
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powerful diagnostic and treatment support for clinicians. In addition, it


is crucial to classify different levels of depression, which we plan to


address in future studies.
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