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Schizophrenia is a severe mental disorder with a strong lifetime impact on

patients’ health and wellbeing. Usually, symptomatic treatment includes typical

or atypical antipsychotics. Study findings show an involvement of low-grade

inflammation (blood, brain parenchyma, and cerebrospinal fluid) in

schizophrenia. Moreover, experimental and neuropathological evidence

suggests that reactive microglia, which are the main resident immune cells of

the central nervous system (CNS), have a negative impact on the differentiation

and function of oligodendrocytes, glial progenitor cells, and astrocytes, which

results in the disruption of neuronal networks and dysregulated synaptic

transmission, contributing to the pathophysiology of schizophrenia. Here, the

role of microglial cells related to neuroinflammation in schizophrenia was

discussed to be essential. This review aims to summarize the evidence for the

influence of antipsychotics on microglial inflammatory mechanisms in

schizophrenia. Furthermore, we propose an established astrocyte–microglia

co-culture model for testing regulatory mechanisms and examining the effects

of antipsychotics on glia-mediated neuroinflammation. This could lead to a

better understanding of how typical and atypical antipsychotics can be used to

address positive and negative symptoms in schizophrenia and comorbidities like

inflammatory diseases or the status of low-grade inflammation.
KEYWORDS

antipsychotic drugs, glia, neuroinflammation, astrocyte-microglia co-culture model,
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1 Introduction

1.1 Pathophysiology of schizophrenia

Schizophrenia is a severe mental disorder associated with

increased mortality and significant morbidity (1). The symptoms of

schizophrenia can be divided into positive symptoms (e.g.,

hallucinations and delusions), negative symptoms (e.g., social

withdrawal and anhedonia), mood deficits (e.g., depressed/irritated

mood), cognitive deficits (e.g., attention and memory deficits), and

motor symptoms (1–3). The pathophysiology of schizophrenia is

multifactorial. Genome-wide association studies have identified

numerous genetic variants associated with an increased risk of

schizophrenia (e.g., DISC1, NRG1, and DTNBP1) by influencing

synaptic functions, neurotransmission, and neuronal development

and plasticity (4–8). Furthermore, biochemical dysregulation has

been discussed considering “the dopamine hypothesis of

schizophrenia,” which postulates that overactivity of the

mesolimbic dopamine system results in positive symptoms of

schizophrenia, while underactivity of the mesocortical dopamine

system causes the negative symptoms (9). Another hypothesis

postulates the hypofunction of the N-methyl-D-aspartate (NMDA)

receptor, a subset of the glutamate receptor (10–13). This hypothesis

is underlined by NMDA receptor antagonists such as ketamine and

phencyclidine (PCP), which can induce symptoms that resemble

those of schizophrenia (14–20). Importantly, the inflammatory

mechanisms and status of low-grade inflammation have been

discussed including the terms “mild encephalitis” (21) and

“autoimmune psychosis” (22), the role of prenatal infections (23)

and infections during early childhood (24), and the role of peripheral

(25) and cytokines in cerebrospinal fluid (CSF) (26, 27). Furthermore,

the interrelation between impaired social interactions and

inflammatory reactions in schizophrenia has been recognized (28).

Moreover, the role of brain microvascular endothelial cells and

blood–brain barrier (BBB) dysfunction has been found relevant in

inflammation in schizophrenia (29). Structural and functional

abnormalities in the brains of patients, which are often present

before the onset of clinical symptoms (30, 31), and chronic stress

and traumatic experiences have been further discussed (32–

34) (Figure 1A).
1.2 Glial dysfunction in schizophrenia

Glial cells (astrocytes, microglia, and oligodendrocytes) perform

a variety of supportive functions for neurons (35). In schizophrenia,

various dysfunctions in glial cells have been identified (36, 37).

Astrocytes, the most abundant glial cells in the central nervous

system (CNS), have numerous essential roles (e.g., supporting ion and

transmitter homeostasis). Findings indicate that astrocytes in

schizophrenia exhibit dysregulated glutamate homeostasis.

Normally, astrocytes uptake glutamate from the synaptic cleft to

prevent neurotoxicity, but in schizophrenia, reduced expression of

the glutamate transporters excitatory amino acid transporter 1

(EAAT1) and excitatory amino acid transporter 2 (EAAT2) has
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been observed, leading to elevated extracellular glutamate

concentrations and neuronal hyperexcitability (38–40). Furthermore,

in schizophrenia, there is evidence of a dysregulated astrocyte-

dependent release of D-serine, a co-agonist for NMDA receptors

(41–43). Oligodendrocytes, responsible for the myelination of

neurons, also exhibit dysfunctions in schizophrenia. Reduced

myelin-associated gene expression and impaired myelination have

been observed in the white matter of patients with schizophrenia,

which can lead to deficits in neuronal connectivity and signal

transmission. These myelination-related deficits have been suggested

to contribute to cognitive impairment in schizophrenia (44–48).

Additionally, microglial cells have been found to influence

oligodendrocytes and their progenitor cells, and as a result,

myelination in schizophrenia (49, 50).

1.2.1 The role of microglia in schizophrenia
Microglia are the resident immune cells of the CNS,

maintaining neuronal homeostasis, defending against pathogens,

and repairing tissue damage. They are highly dynamic cells that

adapt their morphology and function to changes in the neuronal

environment (51, 52).

Postmortem studies have demonstrated an increase in different

inflammatory markers related to microglia in schizophrenia, e.g., an

increase in microglial density in cortical gray matter using ionized

calcium-binding adaptor molecule-1 (Iba1) (53). Furthermore, an

increase in the density of cells [using staining for major

histocompatibility complex class II (MHC-II)] morphologically

resembling microglia and a change in interleukin-1b (IL-1b),
interleukin-6 (IL-6), and interleukin-8 (IL-8) have been found

(54). Additionally, the role of an increase in the human leukocyte

antigen–DR isotype-positive (HLA-DR+) microglia in the frontal

cortex and hippocampus of patients with schizophrenia (55, 56) and

calprotectin co-expressed with the microglial marker cluster of

differentiation 68 (CD68) has been discussed (57). Other studies

have found a change in microglial phenotype rather than a change

in the density of cells according to a meta-analysis (58). Twin

studies using human induced pluripotent stem cell (iPSC)-derived

microglia found an increased expression of inflammatory genes in

microglia like MHC-II but no signs of hyperactivation of microglia

(59). Furthermore, translocator protein (TSPO) positron emission

tomography (PET) and the second-generation radioligand [(11)C]

PBR28 in vivo confirmed microglial reactivity in patients with

schizophrenia and subclinical symptoms (60). However,

importantly, postmortem studies did not conclude microglial

activation for all the cases, and further in vivo studies did not find

microglial activation using PET and TSPO in patients with

schizophrenia. It can be concluded that postmortem and in vivo

findings are discussed to be related to brain regions and stage of the

disorder and if a antipsychotic treatment was used or not at the

same time (36, 37, 61–66). The described state of chronic

neuroinflammation could contribute to the pathophysiology of

schizophrenia, as inflammatory mediators can impair synaptic

transmission and plasticity, resulting in symptoms of

schizophrenia (37, 67–69). Furthermore, physiological microglia

can perform synaptic pruning, which is crucial for maintaining
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healthy neuronal circuits. However, the “synaptic hypothesis of

schizophrenia” describes a lower synaptic density, which was

demonstrated in patients with schizophrenia. Here, genetic and

environmental stressors could lead to a microglia-mediated and

complement-dependent (among others complement protein C4)

elimination of synaptic structures (70–74). Interestingly,

microgliosis in patients with schizophrenia, those with
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depression, and matched controls who committed suicide was

found in the dorsolateral prefrontal cortex (DLPC), anterior

cingulate cortex (ACC), and mediodorsal thalamus (MD),

pointing toward possible further connections between

inflammation and psychopathology (75, 76). A further finding

that could contribute to the pathophysiology of psychiatric

diseases and schizophrenia is the interesting role of microglial
FIGURE 1

(A) Pathophysiology of schizophrenia with focus on microglia. (B) Proposal for an in vitro astrocyte–microglia co-culture model of inflammation for
studying the effects of antipsychotic drugs. DAMP, damage-associated molecular pattern; IFN, interferon; IL, interleukin; LPS, lipopolysaccharide;
PAMP, pathogen-associated molecular pattern; TNF, tumor necrosis factor. Created in BioRender. Ismail, F. (2024) https://BioRender.com/z92a369.
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priming after early-life infections (first hit) and consequently long-

term changes, e.g., on memory after a “second hit” later in life (77,

78). These findings consider the impaired synaptic plasticity in

schizophrenia (71). In addition to in vivo, postmortem, and animal

studies, future directions point toward iPSC models in

schizophrenia investigating microglia and neuron interactions (for

review, see (65)).

In summary, dysfunctional microglia were found to

contribute to the pathophysiology of schizophrenia by

promoting inflammatory reactions, abnormal phagocytosis, and

reactions to early life stressors. These findings offer potential

targets for therapeutic interventions aimed at modulating

microglial function (37, 54, 67) (Figure 1A). Interestingly, a

pharmacological approach (antipsychotics) may mitigate these

effects by suppressing microglial activation, offering a dual

therapeutic mechanism beyond dopamine modulation (79).

Cognitive deficits in schizophrenia are closely tied to microglial

overactivation, which exacerbates neurotoxicity through pro-

inflammatory cytokines and free radicals. Targeting microglial

activation presents a promising avenue for ameliorating cognitive

symptoms (80). Also, stress-induced alterations in microglial

function have been shown to impact fear memory and

extinction deficits, mechanisms that may overlap with

schizophrenia pathology. Research has highlighted that

aberrant microgl ia l cytokine product ion affects fear

generalization and inhibitory processes in memory, as observed

in post-traumatic stress disorder (PTSD) models, and has

underscored the necessity for translational studies bridging the

gap between animal models and human conditions (81).
2 Pharmacological approaches
to schizophrenia

2.1 Antipsychotics

Antipsychotics are the main therapeutic strategy in

schizophrenia and other disorders with psychotic symptoms and

can be divided into first-generation (typical) and second-

generation (atypical) antipsychotics (82–84). The most valuable

difference is the reduced ability to cause extrapyramidal side

effects and tardive dyskinesia when using atypical antipsychotics

compared to typical antipsychotics. Typical antipsychotics

primarily provide modulations of dopaminergic transmission

compared to a more serotonergic transmission in cases of

atypical antipsychotics. The most prominent antipsychotics are

haloperidol as a typical antipsychotic and clozapine as an atypical

antipsychotic, which is also useful in cases of treatment-resistant

schizophrenia. Different effects on positive and negative

symptoms in schizophrenia when using antipsychotics have

been discussed. Clozapine has a strong effect on positive

symptoms l ike hal lucinat ions and delusions with an

improvement in social functioning. Haloperidol was found to

have an effect on positive [scale for the assessment of positive

symptoms (SAPS)] and negative symptoms [scale for the
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assessment of negative symptoms (SANS)], and negative

symptoms were found to be independent of positive ones (85–88).
2.2 Effects of antipsychotics
on microglia and microglia-
mediated neuroinflammation

2.2.1 Clinical evidence (effects on microglia
and cytokines)

Increased activity of microglia and pro-inflammatory cytokines

was found to be important in the pathophysiology of schizophrenia.

These inflammatory findings were potentially influenced by

antipsychotics (89, 90). A cytokine imbalance in serum was found

to be an important biomarker in treatment-resistant schizophrenia,

and concentrations vary between acute and chronic stages (25, 91).

In a meta-analysis, antipsychotic treatment was found to reduce

cytokine levels in patients with schizophrenia in vivo and here,

especially IL-6 levels (92). In contrast, using PET studies for TSPO

as a marker for microglial activity revealed a significant increase in

the marker in schizophrenia patients with antipsychotic treatment.

Furthermore, the marker correlated with negative symptoms using

the Positive and Negative Syndrome Scale (PANSS) (66, 93). Other

data found a decrease in TSPO in antipsychotic-treated patients

(94). Moreover, an increase in TSPO binding in rats upon clozapine

treatment was found (95). Reviewing clinical data, no clear

conclusion could be drawn about antipsychotic drugs influencing

microglial cells (96). Nevertheless, microglial proliferation and

morphological changes resembling microglial activation were

found in vivo in rats during an 8-week treatment with haloperidol

and olanzapine (97).

2.2.2 Experimental evidence
2.2.2.1 Typical antipsychotics

Haloperidol is a typical and strong dopamine D2 receptor

blocker (98). It reduces pro-inflammatory action in C57/BL6

murine microglial cells (BV-2 microglia) (99) and increases brain-

derived neurotrophic factor (BDNF), transforming growth factor-b
(TGF-b), and neurotrophin-3 (NT-3) gene expression in microglial

cells from newborn Wistar rats (100). Interestingly, haloperidol did

not change microglial density in an in vivo rat model (101) and did

not prevent microglial activation in a PCP model of psychosis in

rats (102). Furthermore, a high-fat diet increased microglial

expression in rats, and this was not found in a combination of

diet and haloperidol (103). Expression of OX-42 protein and IL-6

expression was decreased, and extracellular signal-regulated kinase

(ERK) and signal transducer and activator of transcription 3

(STAT3) was suppressed by haloperidol in lipopolysaccharide

(LPS)-activated microglia (104). Microglial proton currents in

BV-2 microglial cells were inhibited by haloperidol and could

contribute to the anti-inflammatory effects of antipsychotics

on microglia.

Furthermore, the same was found for chlorpromazine, another

typical antipsychotic (105). Additionally, chlorpromazine reduced

secretion of interleukin-2 (IL-2) and IL-1b in mixed glial cultures
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(106) and acts as a microglia Kv1.3 (voltage-gated potassium

channel) channel inhibitor (107).

Flupentixol decreased IL-2 and IL-1b release by microglial cells,

and trifluperidol reduced IL-1b and IL-2 release by mixed glial

cultures (108). Both antipsychotics also reduced the nitric oxide

(NO) and tumor necrosis factor-alpha (TNF-a) release from LPS-

influenced microglial cultures (109).

Spiperone attenuates TNF-a production, expression of IL-1b
and TNF-a, and nuclear translocation of the p65 subunit of nuclear

factor kappa B (NF-kB) in BV-2 microglia and reduces microglia-

mediated cell death in microglia/neuron co-cultures (110).

2.2.2.2 Atypical antipsychotics

Clozapine is an atypical antipsychotic with a strong influence on

serotonergic transmission [blockade of 5-HT(2A) receptors] and

reduced blockade of dopamine D2 receptors in the ventral and

dorsal striatum (111). In a mouse model of experimental

autoimmune encephalomyelitis (EAE), clozapine regulated the

iron-impaired microglial function and reduced the release of IL-6

and neuronal phagocytosis (112). Furthermore, it reduced the

inflammatory NOD-, LRR-, and pyrin domain-containing protein

3 (NLRP3) pathway in a polyriboinosinic–polyribocytidylic acid

(poly(I:C))-stimulated primary microglial cell culture model (113).

Clozapine reduces the inhibition of calcium/calmodulin/Akt-

mediated NF-kB activation in microglia (114), and clozapine-

induced neuronal protection was microglial mediated in an LPS-

induced model of inflammatory neurodegeneration using neuron–

glia cultures (115). Interestingly, clozapine can reduce proton

currents in BV-2 microglial cells, which could be considered as an

anti-inflammatory effect (116).

Aripiprazole is a partial agonist at the dopamine D2 and

serotonin 5-HT(1A) receptor and an antagonist at the serotonin

5-HT(2A) receptor (117). Aripiprazole inhibited inflammatory

mechanisms in a poly(I:C)-induced microglial activation model in

mice (118). An interferon-gamma (IFN-g)-induced microglial

activation was found to be attenuated by aripiprazole via

intracellular calcium regulation in vitro (119). In BV-2

microglial cells, aripiprazole reduced the pro-inflammatory

action and expression of anti-inflammatory markers (99).

Interestingly, aripiprazole and minocycline inhibited damage of

oligodendrocytes via the inhibition of IFN-g-activated
microglia (50).

Quetiapine inhibited NO generation and TNF-a release from

activated microglia (120). In a transgenic mouse model of

Alzheimer’s disease, it decreased b-amyloid-(1-42) (Ab(1-42))-
induced activation of primary microglia by attenuating pro-

inflammatory cytokines and in primary microglia stimulated by

Ab(1-42) via activation of the NF-kB pathway (121). Furthermore,

quetiapine inhibits microglial activation via neutralization of

abnormal intercellular calcium homeostasis in a cuprizone mouse

model (122).

Risperidone reduced the pro-inflammatory activation of BV-2

microglial cells (99) and deactivated IFN-g-induced microglia (123).

Moreover, risperidone reduced the expression of OX-42 protein

and decreased the IL-6 and TNF-a production via STAT3 in LPS-

activated microglia (104).
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Olanzapine reduced NO release in an LPS-activated mouse

microglia cell line N9 (124). A high-fat diet increased microglial

expression in rats, and this was not found in a combination of diet

and olanzapine (103).

In summary, mitogen-activated protein kinase (MAPK) was

found to be important in the activation of BV2 microglia by LPS

and ERK in IFN-g activated BV2 microglia (125, 126). As previously

described, antipsychotics seem to modulate intracellular signals like

MAPK, calcium homeostasis, NF-kB, and protein kinase C (PKC),

which further inhibit nuclear activation and cytokine production

and release by microglia (89). These discussions could contribute to

the described decrease in pro-inflammatory cytokines when using

antipsychotics. Ca2+ is a main point of interest, as it is an activator

of PKC and found to be dysregulated in schizophrenia (127). It

could also be influenced by aripiprazole, for example (89).

Taken together, psychopathologies in psychiatric diseases have

been known to be associated with the sensitization of glial and

particularly microglial cells, which could be influenced by

psychotropic drugs like antipsychotics, contributing to the

microglia hypothesis of schizophrenia. Here, the involvement of

microglia and oligodendrocytes in negative and cognitive

symptoms in schizophrenia was discussed (37, 46, 48, 66, 128,

129). As described above, the known antipsychotics (typical and

atypical) can contribute to a possible anti-inflammatory effect

concerning microglial cells (Table 1). Furthermore, in this vein,

specific effects on positive and negative symptoms of schizophrenia

when using antipsychotic drugs were discussed. In contrast,

microglial reactivity could not be concluded as ubiquitous in

schizophrenia and psychiatric diseases concerning postmortem

and in vivo studies in humans. Postmortem microglial markers

were found to be increased or unchanged, and the reason for this is

not clear; similar findings were found to be related to PET studies.

The contradictory findings in postmortem studies and PET

investigations may be attributed to differences in the sensitivity of

the methods capturing different stages of microglial activity (36, 62,

130). Furthermore, the role of antipsychotics in the treatment of

psychiatric diseases and their role in glial reactivity were discussed.

The interrelations among neurons, astrocytes as part of the

tripartite synapse, and microglia underline the complex glial

mechanisms influenced by antipsychotics (131). Nevertheless,

using antipsychotics could be one way of regulating a microglial

immune response.
3 Proposal for an in vitro astrocyte–
microglia co-culture model for
investigation of antipsychotic drugs

The astrocyte–microglia co-culture model of inflammation was

developed in 2003 by Faustmann et al. to investigate the physiological

as well as pathological inflammatory conditions in the brain in relation

to the percentage and activation state of microglia (132) (Figure 1B).

The astrocytes and microglia were obtained from the brains of

postnatal Wistar rats (postnatal days 0–2) and were prepared

according to an established protocol (132, 133).
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The physiological astrocyte–microglia co-culture model (so-

called M5) contains 5%–10% microglia with the predominantly

homeostatic ramified phenotype (formerly known as resting

ramified). The pathological, inflammatory astrocyte–microglia co-

culture model (so-called M30) contains 30%–40% microglia with

predominantly reactive phenotype (formerly known as activated,

round phagocytic) (132, 134). Treatment of M5 co-cultures with the

pro-inflammatory cytokines TNF-a, IL-1b, IL-6, and IFN-g led to

microglial reactivity, whereas treatment of M30 co-cultures with the

main anti-inflammatory cytokine transforming growth factor-b1
(TGF-b1) caused a reduction of microglial reactivity. In addition,

treatment of M5 co-cultures with the anti-inflammatory cytokine

interferon-beta (IFN-b) prevented the pro-inflammatory effects of

TNF-a, IL-1b, and IFN-g (134). Further, the study findings of our

co-culture model revealed a functional relationship between

microglial activation states and astroglial coupling (132).

Interestingly, previous findings point to the fact that functional

abnormalities of tripartite synapses, contributing to dynamic

signaling between pre- and post-synaptic neurons as well as

astrocytes, can be involved in the pathophysiology of

schizophrenia and associated cognitive impairments (135). The

gliotransmitter release through vesicles, hemichannels, and

reverse transport of astrocytes plays an important role in

tripartite synaptic transmission. Astrocytes are connected with
Frontiers in Psychiatry 06
each other and other cell types via connexin (Cx)-based gap

junctions, mainly consisting of Cx43 and Cx30 (136). Connexins

can also form hemichannels that enable the connection between

intra- and extracellular spaces. Study findings show that atypical

antipsychotics such as clozapine, brexpiprazole, and quetiapine

increased astroglial Cx43 containing hemichannel activities,

resulting in enhanced tripartite synaptic glutamatergic

transmission (135). In vivo chronic treatment of mice with

clozapine caused increased Cx43 expression in the prefrontal

cortex; however, haloperidol led to a decrease in Cx43 (137).

The inflammatory astrocyte–microglia co-culture model offers the

possibility to examine the inflammatory states including microglial

morphology and Cx-based gap junctional coupling, which are also

involved in the pathophysiology of schizophrenia. Consequently, the

co-culture model can have a long-term impact on the treatment of

schizophrenia, such as in the development of new drugs. For example,

connexin-based channels could serve as a target for new drugs in

schizophrenia, modulating the gap junctional coupling, and indirectly,

the microglial reactivity. Study findings suggest that astrocytic deficits

in the dorsolateral prefrontal cortex can disrupt the neuron–glia

interactions, resulting in a dysfunctional effect on prefronto-striatal

circuits in schizophrenia (138). Repairing astrocytic dysfunction could

offer new therapeutic options for schizophrenia. Our astrocyte–

microglia co-culture model has more advantages for studying cellular
TABLE 1 Literature on antipsychotic drugs influencing microglia.

Author Glial culture (in vitro/in vivo) Antipsychotic drug Effect

Lee et al. (107) Mouse medial prefrontal cortex treated with LPS Chlorpromazine Acts as a microglia Kv1.3 channel inhibitor

Long et al. (104) BV-2 microglia activated with LPS and treated
with minocycline

Haloperidol, risperidone Strong anti-inflammatory effect of risperidone (IL-6
and TNF-a) and minocycline (IL-6, TNF-a, and IL-
1b) via MAPK and JAK-STAT

Conen et al. (93) In vivo imaging of microglia activity (TSPO) Antipsychotics TSPO binding potential was higher in patients with
schizophrenia and antipsychotic medication

Ceylan et al. (112) Iron-impaired microglia in EAE mouse model Clozapine Reduces release of IL-6 and normalization of
neuronal phagocytosis

Racki et al. (99) BV-2 microglia Haloperidol,
risperidone, aripiprazole

All reduce pro-inflammatory action; mTORC1
activity reduces with aripiprazole

Maredia et al. (103) Microglia of male Sprague Dawley rats in in vitro
autoradiography and high-fat diet

Haloperidol, olanzapine High-fat diet but not antipsychotics increases
activated microglial expression

Giridharan et al. (113) Unstimulated and poly(I:C)-stimulated primary
microglial cell cultures

Clozapine,
risperidone, haloperidol

Clozapine exhibits anti-inflammatory effects via the
NLRP3 pathway

Namjoo et al. (100) Cultured rat microglia Haloperidol Increases gene expression (TGF-b, BDNF, and
NT-3)

Jeon et al. (114) Microglial cells LPS activated Clozapine Clozapine has an anti-inflammatory effect via
inhibition of calcium/calmodulin/Akt-mediated NF-
kB activation

Bloomfield et al. (101) Microglia of male Sprague Dawley rats—
TSPO expression

Haloperidol Microglia cell density, morphology, and TSPO
expression unchanged

Di Biase et al. (94) In vivo imaging of microglia activity (TSPO)
in schizophrenia

Antipsychotics TSPO was decreased in medicated patients

Holmes et al. (66) In vivo imaging of microglia activity (TSPO)
in schizophrenia

Antipsychotics TSPO was elevated in medicated patients

(Continued)
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interactions compared to only astrocyte or microglia monocultures

(133). Our co-culture model mimics natural inflammation because of

the preparation method, allowing concomitant proliferation of

astrocytes and microglia (132). In contrast to this, other astrocyte–

microglia co-cultures consist of a mixture of two primary cultures

(astrocytes and microglia) cultivated together in different ratios. Of

course, there is a limitation of our model to tricultures, including

neurons in addition to astrocytes and microglia (139). Nevertheless,
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our model is robust and suitable for schizophrenia research in the first

step before further steps are taken in animal models.

In further studies, the in vitro model was already used for the

investigation of pharmaceutical effects on glia-mediated

neuroinflammation and cellular interactions (133). Different groups

of neuropsychiatric drugs including anti-seizure medication and

mood-stabilizing drugs/antidepressants were already investigated in

the co-culture model (139–147). For example, venlafaxine as well as
TABLE 1 Continued

Author Glial culture (in vitro/in vivo) Antipsychotic drug Effect

Sato-Kasai et al. (118) Murine and human microglial cells (poly(I:
C)-stimulated)

Aripiprazole Inhibition of TNF-a via MAPK—possibly via Ca2+

and TRPM7

Wang et al. (122) Microglia in cuprizone-induced demyelination
mouse model; microglial N9-cells activated with LPS

Quetiapine Reduces recruitment and activation of microglia/
macrophage; inhibits NO and TNF-a release;
reduces translocation of NF-kB p65 subunit; and
reduces LPS-induced and STIM1-mediated
intercellular calcium homeostasis

Cotel et al. (97) Microglia of rats in vivo Haloperidol, olanzapine Proliferation and activation of microglia in the naïve
rat brain

Shin et al. (116) BV-2 microglia Clozapine,
olanzapine, risperidone

Clozapine and olanzapine reduce proton currents
(clozapine even at therapeutic doses)

Zhu et al. (121) Glial activation in mice (APP/PS1 mice—in vitro
and in vivo) and primary microglia

Quetiapine Attenuates glial activation, reduces pro-
inflammatory microglia, and inhibits NF-
kB pathway

Shin et al. (105) BV-2 microglia Chlorpromazine, haloperidol Inhibit voltage-gated proton currents

Hu et al. (115) Primary cortical and mesencephalic neuron–glia
cultures, primary neuron-enriched and microglia-
enriched cultures, and HAPI microglial cell line
activated with LPS

Clozapine Neurotoxicity was reduced, and ROS production
and TNF-a were reduced

Zheng et al. (110) BV-2 microglia and microglia/neuron co-cultures Spiperone Attenuates TNF-a production and expression of IL-
1b and TNF-a, nuclear translocation of the p65
subunit of NF-kB

Bian et al. (120) Activated microglia Perospirone,
ziprasidone, quetiapine

All inhibit NO generation, and perospirone and
quetiapine inhibit TNF-a release

Kato et al. (119) Murine microglial cells—IFN-g activated Aripiprazole Inhibition of NO and TNF-a generation may be via
suppression of intracellular Ca2+

Danovich et al. (95) C6 rat glioma cells, MA-10 mouse Leydig tumor
cells, male Sprague Dawley rats (TSPO binding)

Clozapine, risperidone,
thioridazine, sulpiride

Clozapine increases TSPO binding in both cell lines
and in rats

Kato et al. (123) Microglial cells—IFN-g activated Risperidone, haloperidol Risperidone reduces NO, iNOS, TNF-a, IL-6, and
IL-1b

Hou et al. (124) Mouse microglial cell line N9 activated with LPS Clozapine,
olanzapine, haloperidol

Olanzapine significantly inhibits NO release

Labuzek et al. (106) Rat mixed glial and microglial cell cultures activated
with LPS

Chlorpromazine, loxapine Reduce IL-1b and IL-2 from both cultures

Kowalski et al. (108) Rat mixed glial and microglial cell cultures Flupentixol, trifluperidol Reduce IL-1b and IL-2 from both cultures

Kowalski et al. (109) Rat microglial cell cultures activated with LPS Flupentixol, trifluperidol Reduce TNF-a and NO

Nakki et al. (102) Microglia of 30- to 90-day-old rats and exposure to
ketamine and PCP

Haloperidol Failed to prevent microglial activation
BDNF, brain-derived neurotrophic factor; BV-2 microglia, C57/BL6 murine microglial cells; EAE, experimental autoimmune encephalomyelitis; Kv1.3, voltage-gated potassium channel; IL-6,
interleukin-6; IL-2, interleukin-2; IL-1b, interleukin-1b; IFN-g, interferon-gamma; iNOS, nitric oxide synthase; JAK-STAT, Janus kinase and signal transducer and activator of transcription; LPS,
lipopolysaccharide; MAPK, mitogen-activated protein kinase; mTORC1, mammalian target of rapamycin complex 1; NO, nitric oxide; NF-kB pathway, nuclear factor kappa B pathway; NLRP3,
NOD-, LRR-, and pyrin domain-containing protein 3; NT-3, neurotrophin-3; PCP, phencyclidine; poly(I:C), polyriboinosinic–polyribocytidylic acid-stimulated; ROS, reactive oxygen species;
STIM1, stromal interaction molecule 1; TGF-b, transforming growth factor-b; TNF-a, tumor necrosis factor-alpha; TRPM7, transient in receptor potential in melastatin 7; TSPO,
translocator protein.
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doxepin and amitriptyline reduced the microglial reactivity, leading

to the attenuation of microglia-mediated neuroinflammation (141,

146). Next, the co-culture model can be suitable for testing the

possible pro-/anti-inflammatory effects of antipsychotic drugs.
4 Conclusion

Psychotic disorders encompass a broad spectrum of psychiatric

conditions including schizophrenia as one of the leading psychotic

disorders with a strong lifetime impact on patients’ health and

wellbeing. In recent years, studies have been conducted to better

understand the cellular neurobiology of schizophrenia, particularly

with regard to cellular-mediated neuroinflammation (28, 79, 148).

The low-level inflammation concept of schizophrenia was linked to

risk genes promoting inflammation, prenatal maternal and early

childhood infections with microglial reactivity, and an increase in

cytokines, environmental stress factors, and alterations of the

immune system (69). In addition, autoimmune factors such as

anti-NMDA receptor antibodies contributing to psychosis were

discussed (22). Experimental and neuropathological evidence

suggests that reactive microglia have a negative impact on the

differentiation and function of oligodendrocytes, glial progenitor

cells, and astrocytes, which results in the disruption of neuronal

networks and dysregulated synaptic transmission, contributing to

the pathophysiology of schizophrenia (148) (Figure 1A). Following

this, research focusing on therapeutic approaches modulating

microglia-mediated neuroinflammation has potential. However, it

is currently even more exciting to consider whether antipsychotics

used in everyday clinical practice have anti-inflammatory properties

in relation to microglia-mediated neuroinflammation.
4.1 Future perspectives

Research focusing on inflammatory disease mechanisms in

many neuropsychiatric disorders has recently expanded. Also,

various immunotherapeutic approaches have been developed, e.g.,

immunotherapy for Alzheimer’s disease with monoclonal

antibodies removing abnormal b-amyloid (Ab) from the brain

and preventing disease progression (149–153). Preliminary data

have been about the effects of monoclonal antibodies acting by

directly neutralizing cytokines or by binding cytokine receptors in

schizophrenia (154). Subsequently, aiming at the involvement of

microglia in schizophrenia, the use of in vitro models such as our

astrocyte–microglia co-culture model of inflammation can help to

better understand the underlying pathomechanism by testing the
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effect of antipsychotic and anti-inflammatory drugs (Figure 1B).

This could lead to a better understanding of how typical and

atypical antipsychotics can be used to address positive and

negative symptoms in schizophrenia and comorbidities like

inflammatory diseases or the status of low-grade inflammation.
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