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microstates in autism
spectrum disorder revealed
by meta-analysis: the
contribution of individual age
to heterogeneity across studies
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Jianxing Gao1, Xinyue Xu1, Xiaoyan Ke1* and Hua Jin2,3*

1Children's Mental Health Research Center of the Affiliated Brain Hospital of Nanjing Medical
University, Nanjing, China, 2Child Healthcare Department of the Affiliated Suzhou Hospital of Nanjing
Medical University, Suzhou, China, 3Child Healthcare Department of the Suzhou Maternal and Child
Health Hospital, Suzhou, China
Background and purpose: Electroencephalographic (EEG) microstates, as quasi-

stable scalp EEG spatial patterns, are characterized by their high temporal

resolution, making them a potentially powerful approach for studying the

function of large-scale brain networks. A substantial body of research has

demonstrated that abnormalities in the function or structure of large-scale

brain networks are closely related to many characteristics of autism spectrum

disorder (ASD). Investigating the EEG microstate features of individuals with

autism can help reveal the nature of autism. To date, numerous studies have

observed unique resting-state microstate patterns in individuals with autism.

However, the results of these studies have not been consistent. Therefore, the

present study aims to assess the differences in microstate parameters between

ASD and non-autistic groups through meta-analysis and to explore the sources

of research heterogeneity.

Method: This meta-analys is was preregistered with PROSPERO

(CRD42024599897) and followed PRISMA guidelines. Studies in English

comparing EEG microstate patterns between ASD and Non-autistic groups

were retrieved by database search to October 20, 2024. The meta-analysis

was then conducted using RevMan5.2. Pooled results are expressed as

standardized mean difference (SMD). Heterogeneity (I²) and publication bias

were assessed using Stata15.0.

Result: Seven studies enrolling 194 ASD individuals were included, four deemed

high quality and three moderate quality according to bias risk assessment.

Microstate B duration and coverage were significantly greater in the pooled

ASD group (duration SMD=0.83, 95%CI: 0.17–1.5; coverage SMD=0.54, 95%CI:

0.18–0.90), but heterogeneity could not be excluded. Microstate C occurrence

frequency was also in the ASD group (SMD= -0.61, 95%CI: -1.08 to -0.15), and

heterogeneity was significant. Sensitivity analysis revealed that only the group

difference in microstate B coverage was robust. Subgroup analysis suggested
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that age was the main source of heterogeneity in microstate B and C coverage.

Results were not affected by publication bias according to Egger’s test.

Conclusion: Future studies on the EEG microstate characteristics of ASD must

control for age as an important cofounding variable.

Systematic Review Registration: PROSPERO, identifier CRD42024599897
KEYWORDS

autism spectrum disorder, age-dependence, EEG microstate, meta-analysis, EEG
1 Background
Autism spectrum disorder (ASD) is a neurodevelopmental

condition characterized by differences in social communication,

focused interests, and repetitive behaviors (1, 2). The global median

prevalence of ASD is about 100 cases per 10,000 people, or

approximately 0.6% of the general population, and is currently on

the rise (3, 4). The core characteristics of ASD can substantially

impede academic achievement, career success, and social

functioning. Moreover, autism is associated with greater risks of

epilepsy and sleep disorders (5–7). Neuroimaging studies, including

functional magnetic resonance imaging (fMRI) investigations, have

revealed Large-scale brain networks level abnormalities in ASD that

may constitute the neurophysiological bases for the condition

occurrence and development (8–12).

A brain network study (13) involving 152 individuals with ASD

and 159 healthy comparisons, based on the Autism Brain Imaging

Data Exchange (ABIDE) database, revealed that ASD participants

exhibited lower energy levels in the default mode network (DMN)

and salience network (SN) compared to healthy comparisons. This

finding suggests a lack of dynamic switching and flexibility within

the brain network, which may be associated with the core

characteristics of ASD. Another study (14) utilizing the ABIDE

database investigated changes in the DMN subsystems of ASD

individuals during childhood and adolescence. The results indicated

that the connection strength between DMN subsystems decreased

in the ASD group, while the DMN subsystem organization

remained relatively stable in the comparison group. This suggests

that the development of the DMN in ASD individuals may be

delayed. A large-scale meta-analysis (15) of 1728 individuals with

ASD and 1747 typically developing (TD) individuals also

demonstrated structural and functional abnormalities in the

DMN. Specifically, increased spontaneous activity was observed

in the right precuneus, while decreased functional activity was

noted in the right inferior temporal gyrus (ITG) and left angular

gyrus. These abnormalities are likely closely related to core

characteristics such as differences in social communication.

Collectively, these findings suggest that structural, functional, and
02
developmental abnormalities in large-scale brain networks may

underlie the pathogenesis of ASD.

However, fMRI has limited temporal resolution, so

abnormalities in highly dynamic neural processes may be missed.

In contrast, EEG can record brain electrical activity with

millisecond temporal resolution, complementing fMRI for

assessment of ASD-associated network dysfunction (16, 17).

As a novel method for analyzing EEG signals, an EEG

microstate is a brief period of quasi-stable scalp potential

topography in EEG recordings, characterized by unique spatial

patterns that last for about 60-120 milliseconds before

transitioning to another state, reflecting millisecond level large-

scale brain network activity with its high temporal resolution. EEG

microstates are believed to reflect rapidly changing neural

activity (18).

Microstates are topologically represented by template maps

derived from EEG signals through spatial clustering analysis

methods, such as k-means clustering and the topological

atomization and aggregation hierarchical clustering (T-AAHC)

algorithm (19), These methods identify multiple distinct

microstates, with four patterns emerging as the most consistent

across studies. These patterns exhibit spatially opposite polarity

characteristics on topographic maps: Microstate A (right frontal–

left posterior), Microstate B (left frontal–right posterior), Microstate

C (anterior–posterior), and Microstate D (central–peripheral) (18,

20, 21). Overall, these Microstate account for 65% to 85% of the

total terrain variance recorded by EEG (18, 22). In terms of

function, Britz et al. (21), Yuan et al. (46), Musso et al. (45) have

suggested that microstate A is associated with the phonological

processing network after investigating the relationship between the

blood oxygen level-dependent (BOLD) signal in functional

magnetic resonance imaging and the parameters of EEG

microstates. Microstate B is related to the visual network.

Microstate C is associated with the salience network. Microstate

D is related to the attention network.

The typical time parameters calculated for microstates include

the following: (1) the average duration that a given microstate

remains stable, (2) the frequency of occurrence for each microstate,

which is independent of its individual duration, and (3) the
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proportion of the total recording time dominated by a given

microstate, also referred to as its fraction or coverage (18, 20).

And there is mounting evidence that these parameters are abnormal

in neuropsychiatric and neurodevelopmental disorders, including

schizophrenia and mood disorders (22–25). Moreover, microstate

pattern was also reported to reflect characteristic changes follow

repetitive transcranial magnetic stimulation (rTMS) (26, 27).

Therefore, the characterization of EEG microstate abnormalities

may prove useful for the condition diagnosis, prognosis, and

treatment evaluation.

Recent studies have investigated the characteristics of EEG

microstates in individuals with ASD. For instance, D’Croz Baron

et al. (28) and Bochet et al. (29) reported that ASD group exhibited

longer average duration, higher frequency, and greater time

coverage of microstate B compared to comparisons. Jia et al. (30)

observed that the frequency and time coverage of microstate B were

elevated in the ASD group, while the duration and time coverage of

microstate C decreased. Additionally, they found reduced duration

of microstate A and increased frequency of microstate D.

Nagabushhan et al. (31) noted increased frequency and coverage

of microstate B, as well as longer duration and higher frequency of

microstate C. takarae et al. (32) identified an increased occurrence

frequency of microstate C. In a recent study (33), ASD group

showed decreased duration, frequency, and coverage of microstate

C, with no significant changes in these metrics for microstate B.

However, the time coverage of microstate A was found to increase.

Iftimovici et al. (25) reported significantly reduced frequency and

time coverage of microstate D in the ASD group. Despite these

findings, significant heterogeneity across studies has been observed,

likely attributable to differences in subject age, microstate clustering

methods, and/or sample size.

Das et al. (34) recently summarized research findings on the

distinct EEG microstate characteristics of ASD as of May 30, 2022,

and concluded that the time parameters of microstates B and C often

differed between ASD and TD groups. Further, they also analyzed the

reasons for differences in results across studies but did not provide a

quantitative analysis or delve into the origins of the observed

heterogeneity. Moreover, subsequent to publication, a number of

new EEG microstate studies have appeared (25, 33). Consequently,

the objective of the current study is to conduct a quantitative

synthesis of the existing research, including the most recent studies,

to identify specific microstate parameters that distinguish ASD from

TD. By assessing the robustness of these differences, examining

potential publication biases, and quantifying the sources of

heterogeneity across studies, we also aim to provide guidance for

future studies on the EEG microstate characteristics of ASD.
2 Methods

This meta-analysis was registered in advance with PROSPERO

(https://www.crd.york.ac.uk/prospero) (CRD42024599897)

and written in accordance with the 2020 Preferred Reporting
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Items for Systematic Reviews and Meta-analyses (PRISMA)

guidelines (35). The PRISMA checklist can be found in

Supplementary Table 1.
2.1 Inclusion criteria

The following criteria were preset for literature inclusion

according to the purpose of this meta-analysis: (a) articles written

in English, (b) including participants of any age (children,

adolescents, or adults), (c) at least four microstate types identified

and analyzed (A, B, C, and D), (d) comparing an ASD group to a

matched TD group, (e) analyses based on resting EEG, (f) sufficient

data available for calculation of SMD, I2, and effective size, and (g)

ASD diagnosed according to accepted guidelines (DSM- IV/V or

ICD-10). Exclusion criteria are as follows: (a) non-English

literature, (b) fewer than four microstates identified, (c) no

comparison group, (d) event-related potential (ERP) or other

non-resting EEG study, (e) insufficient data to calculate SMD, I2,

and effective size, and (f) enrolling individuals with other

neurodevelopmental disorders such as attention deficit

hyperactivity disorder (ADHD), mental retardation, and

tic disorder.
2.2 Information sources and searches

We conducted searches of PubMed, Web of Science, EMBASE,

EBSCO, PsychoInfo, and Cochrane Library, with a deadline of

October 20, 2024, and literature search was conducted without

restrictions on document type, encompassing studies, reviews, case

reports, and clinical trials. The search strategy included keywords

related to (a) ASD, (b) EEG, and (c) microstates. The specific search

strings are detailed in Supplementary Table 2.
2.3 Study selection

The three authors (WR, WYL, GLY) identified potentially

eligible articles meeting inclusion criteria. After removing

duplicates, two independent reviewers (WR, WYL) screened all

potentially eligible articles according to title and abstract contents.

Finally, full texts of the remaining potentially eligible articles were

reviewed and authors reached a consensus based on inclusion

criteria. Ultimately, seven articles were selected for inclusion.
2.4 Outcome measures

The primary outcome measures were duration, frequency of

occurrence, and coverage of four microstates (A, B, C, D), in accord

with previous studies on other psychiatric disorders (36).
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2.5 Data extraction

Two authors (GJX, XXY) downloaded the bibliography and

used EndNote for unified bibliography management. The following

study parameters were extracted independently for ASD and TD

groups and recorded in Office Excel: number of participants,

number of males (%), mean age, whether EEG data were collected

with eyes open or closed, and the duration, frequency of occurrence,

and coverage of each EEG microstate. In addition, the microstate

algorithm (k-means or T-AAHC) was recorded for each included

study. We contacted the authors of included studies to collect any

missing data, and studies were excluded if no data were provided.

Alternatively, studies remained in the analyses if some data (e.g., a

missing parameter) were provided (30, 32).
2.6 Risk of bias and quality assessment

All studies ultimately included in this meta-analysis were cross-

sectional, so methodological quality was rated by three authors (FH,

JH, WR) using an evaluation form provided by the Agency for

Healthcare Research and Quality (AHRQ) for assessment of cross-

sectional studies (37), and any differences were resolved through

discussion. The AHRQ form has 11 items, each answered ‘yes’ (1

point) or ‘no’ (0 points) for a total score from 0 to 11. A total score

of 0 to 3 points is deemed low quality, 4 to 7 points as moderate

quality, and 8 to 11 points as high quality.
2.7 Meta-analysis

The meta-analysis of outcome variables was conducted using

RevMan version 5.2 (38) according to the methods recommended

in the Cochrane Handbook (JPT and Editors 2008). All major

outcomes are continuous variables, and so each is expressed as the

standardized mean difference (SMD) between groups with 95%

confidence interval, while study heterogeneity is expressed by I²

(39). In the absence of significant heterogeneity, the data were

analyzed using a fixed effects model, while pooled data with

heterogeneity across source studies were analyzed using a random

effects model. Subgroup analyses stratified by age and microstate

clustering algorithm were conducted to assess the impacts of these

possible sources of heterogeneity.

For evaluation of stability and robustness, we conducted

stability analysis using the Leave-One-Out method (40), as

applied by the Metan module of Stata15.0. Finally, publication

bias was evaluated using the Egger’s test function of Stata 15.0 with

a two-tailed P < 0.05 considered statistically significant (41).

3 Results

3.1 Search results

A total of 111 articles were retrieved using the search item

strings presented in Supplementary Table 2. Duplicates (n = 36) and
Frontiers in Psychiatry 04
incomplete entries (n = 10) were then removed using the automated

literature management tool EndNote. Another 41 articles were

eliminated for not meeting inclusion criteria after review of the

title and abstract, while the full texts of three articles were

inaccessible. An additional 14 articles were eliminated after full

text review for language, diagnosis, or microstate-related

parameters. The exclusion reasons related to microstate

parameters are as follows:① Insufficient microstate types: Articles

that failed to identify or analyze at least four distinct microstate

types (A, B, C, and D) or only described the global field power were

excluded. This was to ensure a comprehensive comparison between

individuals with ASD and the comparison group.② Inconsistent

microstate definition: Articles that did not describe the

directionality of microstates in text (e.g., microstate B: left

frontal–right posterior), did not provide microstate scalp

topography maps, or did not specify that their defined microstate

images were consistent with those in previous studies were

excluded.③ Lack of Relevant Data: Articles that did not provide

sufficient data on the duration, frequency, or coverage of identified

microstates were excluded.④ Methodological Issues: Studies that

used non-resting-state EEG were excluded. Ultimately, seven

articles were included in the meta-analysis (Figure 1).
3.2 Characteristics of included trials and
participants

The seven studies in the meta-analysis enrolled a total of 194

ASD individuals, of which 133 were minors (66 young children and

67 children/adolescents), and 61 were adults ranging in age from

18.5 to 28.9 years. The total proportion of females was 13.9%, with

one study (28) consisting entirely of males. Diagnostic criteria for

ASD were relatively consistent across studies, with all individuals

diagnosed by specialists according to DSM-IV, DSM-V, or ICD-10

criteria based on the Autism Diagnostic Observation Schedule

(ADOS) (42) or Autism Diagnostic Interview (ADI) (43). In the

seven included studies, 3/7 described the comparison group as

typically developing, 2/7 described the comparison group as

neurotypical, and 4/7 reported exclusion criteria indicating that

the TD/NT groups excluded individuals with common psychiatric

or developmental concerns beyond autism. Regarding intelligence,

three studies partially described the methods and results of

intelligence testing but did not provide specific data. One study

did not provide any information on intelligence. The remaining

studies described the tools used to measure intelligence and the

specific IQ scores, as shown in Table 1.

Microstates were clustered into subtypes using either the T-

AAHC or k-means clustering algorithm (44). All studies provided

either the mean value and standard deviation of each outcome

parameter, a data map to calculate the mean value and standard

deviation (32), or the raw data to calculate the mean value and

standard deviation (29) with the following exceptions (30) did not

provide a mean coverage value for microstate D and takarae et al

(32),. did not provide coverage data for any microstate. Most of

these studies used resting-state closed-eye EEG data, but (30)
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analyzed mixed open-eye and closed-eye EEG data while (32)

analyzed only open-eye EEG data.

3.3 Risk of bias

The clinical design and research methodologies of these studies

were similar in most respects, although they appeared in a variety of

journals with distinct emphases (neuroscience, psychiatry, brain

topology, biomedical engineering). Four of these were classified as

high-quality and three as moderate quality according to the AHRQ

criteria for bias risk assessment. Five studies did not indicate the

time period for individual recruitment, 5 did not explain individual

exclusions from analysis, and five (non-population-based studies)

did not clearly indicate whether participation was consensual. For

deta i l ed in format ion on the r i sks of b ias , re fe r to

Supplementary Table 3.
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3.4 Differences in microstate parameters
between ASD and comparison groups

Results of the meta-analysis are summarized in Table 2. The

mean duration of microstate B was longer in the ASD group than

the comparison group (SMD = 0.83, 95%CI: 0.17–1.5), and the

coverage of microstate B was greater in the ASD group (SMD =

0.54, 95%CI: 0.18–0.90). The occurrence frequency of microstate B

was also greater in the ASD group, although the difference barely

missed statistical significance (SMD = 0.45, 95%CI: 0.00–0.90).

However, heterogeneity among studies reporting these metrics

could not be excluded. In addition, the coverage of microstate C

was lower in the ASD group than the comparison group (SMD =

-0.61, 95%CI: -1.08 to -0.15), and heterogeneity among source

studies was significant. There were no other significant differences

in microstate parameters between groups.
FIGURE 1

PRISMA flowchart (adapted from (35).
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TABLE 1 Summary of included studies.

Study Sample size Age Sex

IQ
(ASD/TD)

Diagnosis
Clustering
method

Outcome
CE/
OE

ASD comparison

females) (%females)

0 (a)No Detail ASD T-AAHC
Duration,
Frequency, Coverage

CE
& OE

% 61.50% No Reported ASD k-means
Duration,
Frequency, Coverage

CE

.40% 15.40%
(b)
101.3/102.1

ASD T-AAHC
Duration,
Frequency, Coverage

CE

.70% 17% (c)73.4/110.4 ASD k-means
Duration,
Frequency, Coverage

CE

61% 7.08%
(d)
106.11/109.64
105.06/106.15

ASD k-means Duration, Frequency OE

.30% 45.50% No Detail ASD k-means
Duration,
Frequency, Coverage

CE

.30% 43.30% (e)No Detail ASD k-means
Duration,
Frequency, Coverage

CE

closed; OE, eye opened.

974).
.
(17.96) 106.15 (12.32) t < 1, n.s.
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al.
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ASD comparison ASD comparison

(n = 194) (n = 180)
(mean

or range)
(mean

or range)
(%

Jia and Yu (30) 15 18 11.6 8.9 0

D’Croz-Baron
et al. (28)

10 13 20–28 20–28 3

Nagabhushan
et al. (31)

13 13 9.7 10.4 1

Bochet et al. (29) 66 47 3.3 3.3 1

Takarae et al. (32) 39 48 12.19 11.68 8

Iftimovici
et al. (25)

21 11 18.5 31 3

Das et al. (33) 30 30 28.91 29.33 3

ASD, autism spectrum disorder; T-AAHC, agglomerate hierarchical clustering; k-means, k-means clustering; CE, ey
(a): No significant difference in IQs between groups; all participant IQs > 66.
(b): Stanford Binet-5 Abbreviated IQ Test (SB5) ABIQ Standard Score: ASD 101.3 (19.8) TD 102.1 (9.9), p=0.13 (0.
(c): Scales of Early Learning composite score (MSEL) Total DQ: ASD 73.4 (24.5, 55); TD: 110.4 (13.7, 35), p<0.0001
(d): Wechsler Abbreviated Scale of Intelligence (WASI): VIQ 106.11 (18.00) 109.64 (11.75) t = 1.02, n.s. PIQ 105.06
(e): All participants were “Intellectually able adults”.
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3.5 Sensitivity analyses

The meta-analysis revealed several group differences in

microstate B and C parameters, so we conducted further

sensitivity analysis to assess the robustness and stability of these

differences (Figures 2, 3). The pooled group difference in microstate

B coverage was not altered by removal of any individual source

study, indicating that the meta-analysis result is stable. However,

the pooled group difference in microstate B duration was

substantially altered by removal of Bochet et al. (29) (ES=0.84,

95% CI=-0.02 to 1.71) and so cannot be considered robust. The

group difference in microstate B frequency was altered by removal

of several studies, indicating that the results are unstable. The

nature of the pooled group difference in microstate C coverage

was also altered by removal of several studies, especially Das et al.

(33) and Iftimovici et al. (25), indicating that the results are

unstable. Similarly, the group difference in microstate C

occurrence was unstable. Finally, removal of individual studies

did not alter the nature of the pooled group difference in

microstate C duration but this difference was never significant.
3.6 Subgroup analysis

To explore the sources of heterogeneity, we conducted

subgroup analyses with stratification by age (children/adolescents

vs. adults) and microstate-based clustering method (k-means vs. T-

AAHC) (Figure 4). There were no significant changes in microstate

A parameters whether stratified by age or clustering method.

However, microstate B coverage was significantly greater in

children/adolescents of the ASD group compared to the

comparison group without significant heterogeneity (SMD = 0.76,

95%CI: 0.41–1.11, I² = 12%), but coverage did not differ between

ASD and comparison adults. Therefore, age may be a significant
Frontiers in Psychiatry 07
source of heterogeneity in microstate B coverage. Microstate C

coverage was also significantly greater among children/adolescents

of the ASD group compared to the comparison group without

significant heterogeneity (SMD = -0.63, 95%CI: -0.95 to -0.31, I² =

4%) but did not differ between ASD and comparison adults.

Therefore, age may also be a source of heterogeneity for

microstate C coverage. All other changes in microstate B and C

parameters due to subgroup stratification demonstrated substantial

heterogeneity. Finally, the heterogeneity of microstate D parameters

were also reduced by age stratification, although there were no

significant differences between ASD and comparison groups.
3.7 Publication bias

As shown in Figure 5, Egger’s tests revealed no publication bias

among studies reporting microstate B duration (t=-1.52, p=0.188),

microstate B coverage (t=-0.6, p=0.581), or microstate C coverage

(t=1.43, p=0.225).
4 Discussion

This meta-analysis revealed multiple EEG microstate

abnormalities in individuals with ASD, including lower microstate

C coverage, higher microstate B coverage, and longer microstate B

duration compared to comparisons. Our main results are consistent

with the previous systematic review (34) and have been

consolidated through quantitative research methods. Many

studies (17, 21, 45, 46) investigating the relationship between

EEG microstates and resting-state fMRI have found that

Microstate B is associated with the DMN and the central

executive network (CEN), while Microstate C is related to the

Visual Network (VIS). Abnormalities in these networks may be
TABLE 2 Meta-analysis results for microstate parameters.

Microstate A B C D

Duration(ms) SMD and 95% CI 0.08 (-0.52, 0.69) 0.83 (0.17, 1.50) -0.27 (-0.95, 0.41) -0.27 (-0.65, 0.11)

n 7 7 7 6

p 0.79 <0.05* 0.43 0.16

heterogeneity (I²) 0.86 0.88 0.89 0.63

Frequency SMD and 95% CI -0.20 (-0.93, 0.52) 0.45 (0.00, 0.90) -0.70 (-1.45, 0.05) -0.55 (-1.91, -0.81)

n 7 7 7 6

p 0.59 0.05 0.07 0.43

heterogeneity (I²) 0.9 0.75 0.9 0.97

Coverage(%) SMD and 95% CI -0.07 (-0.44, 0.30) 0.54 (0.18, 0.90) -0.61 (-1.08, -0.15) 0.15 (-0.32, 0.61)

n 7 6 6 5

p 0.71 <0.01** <0.05* 0.53

heterogeneity (I²) 0.52 0.49 0.68 0.64
Standardized Mean Difference, indicating the effect size.CI: Confidence Interval, added directly to the SMD cell in parentheses. n: Number of studies. p-value: Significance level, where * indicates
p < 0.05 and ** indicates p < 0.01.I²: Heterogeneity index, representing the variability be.
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closely related to the occurrence and development of ASD (13–15).

However, heterogeneity could not be excluded or was significant

across studies included in these pooled comparisons. In fact, only

the difference in microstate B coverage was robust according to

sensitivity analysis. Subgroup analysis further identified age as the

main cause of heterogeneity, while the clustering method used had

little effect and there was no detectable influence of publication bias.

Our finding that age is the main source of heterogeneity in

microstate B and C time parameters is broadly consistent with

previous studies of healthy populations. For example (47), found

that microstate C duration increased with age in comparison

females ranging from 6 to 87 years old and that microstate D

frequency increased with age in comparison males of the same age

range. Similarly, takarae et al. (32) found that microstate C duration

was positively correlated with age among comparison children. In
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the current meta-analysis, microstate C coverage gradually

increased with age, but this increase was not uniform, resulting in

substantial heterogeneity among studies. Age also influences EEG

microstate time parameters in addition to microstate B and C

duration. For example, Bagdasarov et al. (48) found reduced

microstate 4 (D) duration, frequency, and coverage with age

among male children, while Hill (49) found associations of age

with microstate E duration and occurrence frequency among female

children 4–12 years old. Therefore, various microstate time

parameters are differentially influenced by age, leading to marked

results heterogeneity across studies.

These EEG microstates are associated with distinct neural

activity patterns in resting-state functional networks (RSNs) (21,

50), suggesting that abnormalities in microstate features can reflect

network-level disorganization underlying the condition. Watanabe
FIGURE 2

Forest map of meta-analysis. (A–C) The duration, frequency and coverage of Microstate (B, D–F) The duration, frequency and coverage of
Microstate (C) As with (A), (C), and (F), there are differences between the two groups in the duration and coverage of microstate B, as well as the
coverage of microstate C.
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1531694
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Wei et al. 10.3389/fpsyt.2025.1531694
et al. (51) reported that while comparison brain activity usually

transitioned between major states through stable intermediate

states, ASD individuals exhibited fewer neural state transitions

due to intermediate state instability. In turn, an unstable

intermediate state could significantly alter microstate duration,

frequency of occurrence, and coverage. These abnormalities in

network activity may also arise from changes in connectivity

strength among network nodes. For instance, Di Martino et al.

(52) found both network hypoconnectivity and hyperconnectivity

in a large sample of ASD individuals (n = 1112) ranging in age from

7 to 64 years, including weaker connectivity within the default mode

network (DMN). It was posited that these abnormalities could lead

to intermediate state instability, thereby disrupting normal brain

state transitions. Haghighat et al. (53) reported a transition from

general hyperconnectivity to mixed hyper- and hypoconnectivity

with age in ASD. This change in connectivity may be the key to
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atypical development of brain networks and changes in microstate

with age. In addition, abnormalities in myelination (54) and

synaptic pruning (55, 56) during maturation may indirectly

influence network structure and microstate patterns.

However, the studies included in this meta-analysis exhibited

variability in IQ data. In this study (32), the average IQ of the ASD

group was 105.5, which is significantly higher than that of the

general ASD population. This may limit the generalizability of the

results. Since IQ is associated with EEG activity, as demonstrated by

Agcaoglu et al. (57) who found that the lateralization of resting-state

networks is significantly correlated with IQ, it suggests that IQ may

directly influence microstate characteristics. Therefore, there may

be differences in EEG microstate features between high-functioning

and low-functioning individuals with ASD. Additionally, the DSM-

5 requires cognitive or developmental assessments for the diagnosis

of ASD. However, four studies (25, 28, 30, 34) did not report IQ
FIGURE 3

Leave-One-Out sensitivity analysis for the comparisons of microstate parameters between ASD and comparison groups. Panels A–C show the
duration (A), frequency (B), and coverage (C) of Microstate B, with the coverage results of Microstate B remaining stable and unaffected by the
removal of any single study (C). Panels D–F display the duration (D), frequency (E), and coverage (F) of Microstate C.
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data in detail, which may mask the impact of cognitive abilities on

EEG patterns and affect the rigor of sample representation.

Therefore, future studies should strictly adhere to diagnostic

criteria, report IQ data in detail, and use standardized assessment

tools or conduct stratified analyses for ASD groups with different

functional levels to enhance the transparency, reliability, and

generalizability of the results.
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4.1 Limitations

This study has several limitations, most notably the small number

of studies included and the relatively small sample sizes in individual

studies, which reduced statistical power and prevented certain

subgroup analyses. Further, three of the seven studies were of only

moderate quality according to risk of bias assessment. Future studies
FIGURE 5

The results of Egger’s test for publication bias. The null hypothesis of no publication bias cannot be rejected when the 95% CI intercept includes 0.
According to Egger’s test, there is no evidence for publication bias among source studies for (A) microstate B duration, (B) microstate B coverage, or
(C) microstate C coverage.
FIGURE 4

Subgroup analysis of EEG microstates. (A) Microstate B coverage was significantly higher in children and adolescents with ASD compared to the age-
matched comparison group, and heterogeneity could be excluded. (B) Microstate C coverage was significantly lower in children and adolescents
with ASD compared to the age-matched comparison group, and heterogeneity could be excluded.
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on the EEG microstate characteristics of ASD must adhere more

closely to reporting guidelines for reduced bias risk and recruit larger

individual samples within narrower age ranges. Further, future

longitudinal studies are essential to assess the age-dependence of

EEG microstate abnormalities associated with ASD.

5 Conclusion

This meta-analysis reveals abnormalities in EEG microstate

duration, coverage, and occurrence frequency among ASD

individuals, including an increase in microstate B coverage that

was relatively reproducible across studies. However, many other

differences from control study participants were inconsistent across

studies, and we further show that age is a major source of this

heterogeneity. Future studies with expanded sample sizes within

more restricted age ranges and long-term follow-up are essential to

clarify the clinical utility of EEG microstate abnormalities for ASD

diagnosis and monitoring.
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