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Abnormal intrahemispheric and
interhemispheric dynamic
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in male alcohol use disorder
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Jinghan Dang, Jieping Sun, Mengzhe Zhang,
Yong Zhang* and Jingliang Cheng*

Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China
Background: Previous studies have demonstrated abnormal static

intrahemispheric and interhemispheric functional connectivity between

different brain regions in patients with alcohol use disorder (AUD). However,

brain activity is highly dynamic.

Methods: To address this, we analyzed the dynamic changes in intrahemispheric

and interhemispheric connectivity patterns from 55 AUD patients and 32 healthy

controls. The whole-brain functional connectivity was decomposed into

ipsilateral and contralateral components, and the voxel-wise intrahemispheric

and interhemispheric dynamic functional connectivity density (dFCD) was

calculated using a sliding window analysis. At the same time, the relationship

between dFCD values in abnormal brain regions and clinical variables

was conducted.

Results:Our findings revealed that, compared to the HCs, AUD patients exhibited

abnormal global, interhemispheric and intrahemispheric dFCD in the caudate,

insula, parietal lobe, and occipital lobe. Furthermore, the dFCD values of these

abnormal brain regions correlated with the average alcohol consumption and the

severity of alcohol addiction in the AUD group.

Conclusions: The results indicate that brain regions associated with the salience

network, default mode network, and visual network exhibited intrahemispheric

and interhemispheric abnormal functional connectivity. This study underscores

that dynamic metrics can provide overlapping or complementary information

alongside static metrics, contributing to amore comprehensive understanding of

neural activity in AUD.
KEYWORDS

alcohol use disorder, dynamic functional connectivity density, intrahemisphere
connections, interhemisphere connections, resting-state functional magnetic
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1 Introduction

Alcohol Use Disorder (AUD) is a psychiatric condition marked

by an inability to control alcohol intake and a continued pursuit of

drinking despite negative repercussions (1). According to a report

released by the World Health Organization (WHO), more than 4%

of the global population had an alcohol use disorder, and nearly 2.6

million people died due to the hazardous use of alcohol in 2019 (2).

The detrimental consumption of alcohol is one of the primary risk

factors jeopardizing global health, elevating the incidence of mental

and behavioral disorders, infectious diseases, and injuries (3, 4),

thereby imposing significant social and economic costs (5).

Recent advancements in neuroimaging technologies and

sophisticated analysis techniques have made it possible to study

the living human brain non-invasively. Functional magnetic

resonance imaging (fMRI) can be employed to identify

hemodynamic responses caused by neuronal activity in certain

brain regions during task-based or resting states (6). This

advancement presents a novel approach to the examination of

resting-state functional connectivity (FC) and furnishes critical

insights for assessing the integration of functional neuronal

networks in vivo (7, 8). Numerous researchers have identified

substantial alterations in the functional connectivity patterns of

patients with AUD. Vergara, Liu (9) demonstrated that the

precuneus, postcentral gyrus, insula, and visual cortex were the

primary brain regions exhibiting diminished resting-state

functional network connectivity in alcohol consumers. It has been

reported that alcohol consumption adversely affects cognitive and

executive functions (10), and certain research demonstrate that

diminished connectivity within the executive control network

correlates with high-risk alcohol use (11). Conversely, Han, Keedy

(12) discovered that heavy alcohol use significantly enhances

connections associated with the reward system, sensorimotor

function, and cognitive control function. These inconsistent

findings may be partly attributed to differences in methodological

choices. For example, region of interest (ROI)-based methods rely

on the selection of a priori seed points and may miss information

about networks that are not predefined (13), while independent

component analysis (ICA), although a data-driven method, still

requires an artificially determined number of components and may

lead to heterogeneity in network extraction due to different

component selection strategies (14). These limitations may hinder

the systematic exploration of whole-brain connectivity patterns.

To mitigate these restrictions, novel methodologies such as

functional connectivity density (FCD) have been proposed. FCD

is a data-driven method rooted in graph theory, quantifying the

connec t ions between voxe l s throughout the g loba l ,

interhemispheric, or intrahemispheric brain. This method

facilitates the identification of highly interconnected central

distributions inside the network without relying on predefined

seeds or components (15). In addition, previous studies have

demonstrated widespread damage to the white matter

microstructure in AUD, affecting vast areas including the genu

and body of the corpus callosum, along with other commissural

fibers (16–18). Such structural degradation hinders the efficiency of
Frontiers in Psychiatry 02
signal transmission across hemispheres (19). Moreover, Jansen, van

Wingen (20) indicated that the functional connectivity of the

cognitive control network between the left and right hemispheres

in AUD is elevated compared to healthy controls. These findings

collectively suggest that irregularities in anatomical or functional

connection between hemispheres could disrupt functional

interactions within the brain, ultimately undermining brain

integrity in AUD. Consequently, it is imperative to examine the

atypical functional connectivity within both interhemispheric and

intrahemispheric brain networks in AUD with greater precision

and comprehensiveness.

The aforementioned studies on AUD are based on the

underlying assumption of spatial-temporal stability of fMRI data,

which fails to adequately represent transitory fluctuations in

spontaneous brain activity. A burgeoning corpus of research

indicates that resting-state dynamics may be more pronounced

when brain activity is unrestrained (21, 22). The dynamic functional

connectivity density (dFCD) method has shown promise in various

disorders, including major depression disorder (MDD) (23),

generalized anxiety disorder (GAD) (24), and chronic smoking

addiction (25). Additionally, the temporal variability of

interhemispheric and intrahemispheric FCD has been explored in

autism spectrum disorders (ASD) (26) and schizophrenia (27). It

has been well established that integrating static and dynamic

approaches can reveal fresh insights into aberrant functional

connections in impaired brain areas and bilateral hemispheres in

patients with diverse disorders. Nonetheless, to the best of our

knowledge, it remains unclear whether AUD exhibit changes in the

interhemispheric and intrahemispheric dFCD pattern.

This work will analyze the variation of dFCD both

interhemispherically and intrahemispherically, utilizing the sliding

window approach and referencing previous static research (28).

This approach allows us to assess the time variability of brain

activity and to identify the principal hub links in cerebral

hemisphere network distributions. Additionally, we will explore

the correlation between dFCD in abnormal brain regions and

clinical variables.
2 Methods

2.1 Subjects

This study utilized the identical dataset as the prior research,

comprising 32 age- and sex-matched healthy controls (HCs). AUD

patients were recruited from inpatient wards, while participants in

the HC group were volunteers from the local community. All

subjects were male. Previous research indicate a substantial

correlation between body mass index (BMI), smoking, and

alcohol consumption (29, 30); therefore, we documented the BMI

and smoking status of all participants. In addition, we assessed each

subject’s duration of alcohol drinking, alcohol by volume, weekly

frequency of drinking, the amount of alcohol drinking, and mean

amount of pure alcohol per week (daily consumption × weekly

frequency × consumption × 0.8). The subjects in the HC group did
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not consume alcohol. All subjects were male. The inclusion criteria

for the AUD group were as follows: (1) fulfillment of DSM-V

criteria (at least two of the 11 potential AUD symptoms); (2) aged

ranging from 18 to 65 years; (3) average consumption exceeding 14

units of alcohol per week (31); (4) no current use of psychotropic

drugs at the time of recruitment or off anti-addiction medication for

at least 12 hours; (5) no family history of alcohol dependence; and

(6) righthandedness. The exclusion criteria for both the AUD and

HC groups were: (1) a history of psychiatric, neurological, or

physical disorders; (2) the presence of contraindications for

magnetic resonance imaging (MRI); and (3) taking psychotropic

or other medications at the time of recruitment.

We used Montreal cognitive assessment (MoCA) to measure

whether individuals with AUD had cognitive impairment (32).

Further, all patients completed the following assessments to

evaluate the severity of AUD: the alcohol dependence scale

(ADS), the alcohol use disorder identification test (AUDIT), the

cutdown, annoyed, guilty, eye-opener (CAGE) scale, the clinical

institute withdrawal assessment-advanced revised (CIWA-Ar)

scale, the Michigan alcoholism screening test (MAST), the

obsessive compulsive drinking scale (OCDS), and the visual

analogue scale (VAS). All subjects provided informed consent,

and this study was approved by the Ethics Committee of the First

Affiliated Hospital of Zhengzhou University.
2.2 Data collection

All MRI images were acquired using a 3.0T MRI scanner

(MAGNETOM Prisma, SIEMENS, Germany) with a 64-channel

receiver array head coil. Subjects were instructed to close their eyes,

remain still and not sleep during the scan use foam fillers and

earplugs to minimize head movement and scanner noise. And the

subjects were asked again at the end of the scan to ensure that they

had not slept. The simultaneous multi-slice imaging technique was

employed to obtain functional images using a gradient-echo echo-

planar imaging (GRE-EPI) sequence. The acquisition parameters

are as follows: repetition time (TR)/echo time (TE) = 1,000/30 ms;

slice number = 52; slice thickness = 2.2 mm; slice gap = 0.4 mm; flip

angle = 70°; field of view (FOV) = 17.6 × 17.6 cm²; number of

averages = 1; matrix size = 64 × 64; voxel size = 2.75 × 2.75 × 2.2

mm³; slice acceleration factor = 4; integrated parallel acquisition

technology (iPAT) acceleration factor = 2; and acquisition

bandwidth = 1,750 Hz/Px. A total of 400 volumes were acquired

with a scanning time of 6.67 minutes.
2.3 Data processing

Functional images underwent preprocessing using Data

Processing Assistant for Resting-State fMRI (DPARSF) software,

based on Statistical Parametric Mapping (SPM12, http://

www.fil.ion.ucl.ac.uk/spm) and MATLAB 2018b (MathWorks,

Natick, MA USA). The primary preprocessing stages comprised
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the elimination of the initial 10 volumes to reduce early signal

instability, slice timing correction, and realignment. Data on

subjects with translational or rotational head movement above 3

mm or 3° during scanning were excluded. Next, the remaining data

were normalized to the Montreal Neurological Institute (MNI)

space with a resampling voxel size of 3 × 3 × 3 mm³, detrended,

and bandpass filtering (0.01-0.1Hz). Then, image volumes with

framewise displacement (FD) >0.5mm underwent scrubbing using

cubic spline interpolation to further exclude motion artifacts (33).

Linear regression was ultimately employed to eliminate the

influence of nuisance factors, such as the Friston 24 head motion

parameters, as well as signals from white matter and cerebrospinal

fluid (34).
2.4 dFCD calculation and temporal
variability

The sliding window approach was employed to compute global,

contralateral, and ipsilateral FCD time variability. The window

length is a crucial parameter in the calculation of resting-state

dynamics. A brief window length heightens the likelihood of

incorporating spurious fluctuations, whereas extended window

lengths may conceal the examination of lower-frequency

fluctuations pertinent to the signal (35). Consequently, drawing

from prior research (21, 36, 37), we chose a sliding window ranging

from 10 to 180 seconds, with a window length of 100 TRs and a step

size of 2 TR to calculate the temporal variation of FCD. The ensuing

calculations resembled those of our prior investigation on static

FCD (28). In simple terms, we first calculated the global FCD for

each window, representing the mean number of functional

connections between each voxel (seed) and other voxels (target

voxels) over the entire brain. The global FCD is limited to voxels

within the gray matter template. Pearson correlation was used to

evaluate the connectivity between two voxels, with the threshold for

the correlation coefficient set at p < 0.05 without correction.

Connectivity was deemed existent when the correlation coefficient

between two voxels surpassed the threshold. Subsequently, based on

the seed voxel and the relative position of the target voxel, the global

FCD is partitioned into contralateral and ipsilateral FCD. The

contralateral (interhemispheric) FCD of each voxel refers to the

number of voxels with a correlation coefficient above the threshold

in the contralateral hemisphere, while the ipsilateral

(intrahemispheric) FCD of each voxel refers to the number of

voxels with a correlation coefficient above the threshold in the same

hemisphere. Additionally, to investigate the reproducibility of the

results, we replicated our findings with different window lengths (60

and 160 TRs), correlation thresholds (p < 0.01 and p < 0.001), and

moving step sizes (4 TRs). The temporal variability of global,

contralateral, and ipsilateral dFCD was estimated by calculating

the variance of the sliding window FCD. We then transformed the

temporal fluctuations of each figure to a z-score matrix and applied

isotropic Gaussian kernel smoothing (full width at half maximum

(FWHM) = 6 mm).
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2.5 Statistical analysis

Statistical analysis was performed based on IBM SPSS Statistics

version 19.0. The normality of demographic, clinical and head

motion data in each group was examined by the Shapiro-Wilk test.

The two-sample t test was used to check for differences between

groups in normally distributed data, while the Mann-Whitney test

was used for differences between groups in non-normally distributed

data. To further investigate changes in global, interhemispheric and

intrahemispheric dFCD temporal variability, two-sample t tests were

performed between the AUD and HC groups, with age, years of

education and mean FD included as covariates. The findings

presented in this study were adjusted for multiple comparisons

(voxel-wise p < 0.001, cluster-level p < 0.05; Gaussian random field

(GRF) correction). To evaluate the relationship between the

abnormal FC patterns of AUD and clinical variables, the ROI were

delineated as spheres with a radius of 6 mm centered on the brain

regions that showed significant global, interhemispheric and

intrahemispheric FCD differences between the two groups. The

mean variance of dFCD for all ROIs was extracted, and the

correlation with clinical markers was assessed (p < 0.05; two-tailed)

to investigate potential associations.
3 Results

3.1 Clinical demographics

There were no significant differences in age (Z = -1.696, P =

0.09) or BMI (Z = -1.778, P = 0.076) between the AUD and HC

groups. For detailed information, please refer to Table 1. We did not

detect any significant differences between the groups in terms of

mean FD (Z = −1.743, P = 0.081) or in the number of image

volumes scrubbed (Z = −1.166, P = 0.247).
3.2 Dynamic FCD differences

The average global, contralateral, and ipsilateral dFCD variation

maps for the two groups are presented in Figure 1. The HC group

exhibited the greatest variability in dFCD within the bilateral

anterior middle frontal gyrus (MFG), bilateral inferior frontal

gyrus (IFG), bilateral temporal lobe, bilateral supramarginal

gyrus, bilateral angular gyrus, bilateral precentral gyrus, left

postcentral gyrus, and right insula. In contrast, the least variable

dFCD was found in the bilateral thalamus, bilateral precuneus, right

internal superior frontal gyrus (SFG), and left cuneus.

The two-sample t-test results indicated that, relative to the HC

group, AUD patients demonstrated heightened average global

dFCD variability in the right inferior occipital gyrus (IOG), left

lingual gyrus, and left cuneus, while exhibiting diminished

variability in the left caudate and right insula (Table 2; Figure 2).

Compared to the HC group, the AUD group also showed increased

interhemispheric dFCD variability in the left middle occipital gyrus
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(MOG) and left precuneus (Table 2; Figure 3). The variability of

intrahemispheric dFCD exhibited a pattern analogous to that of

global dFCD, characterized by higher intrahemispheric dFCD in the

right IOG and right superior parietal gyrus (SPG), and decreased

levels in the left caudate (Table 2; Figure 4).
3.3 Result-Correlation analysis

Among the abnormal brain regions of AUD patients, the global

dFCD variance in the right IOG exhibited a positive correlation

with the mean amount of pure alcohol (r=0.410, p=0.025)

(Figure 5A). The global dFCD variance in the left lingual gyrus

exhibited a positive correlation with the mean amount of pure

alcohol (r=0.586, p=0.0007) (Figure 5B), AUDIT (r=0.405, p=0.017)

(Figure 5C), and CAGE scores (r=0.349, p=0.047) (Figure 5D). The
frontiersin.o
TABLE 1 The demographic and clinical data of AUD and HC.

AUD (n
= 55)

HC (n
= 32)

P
values

Age (years, SD) 45.56 (8.88) 42.47
(12.34)

0.090

BMI (kg/m2, SD) 25.37 (2.92) 26.31 (2.21) 0.076

Education (years, SD) 9.67(3.6) 10.74(3.56) 0.213

Smoking status (AUD: n = 49;
HC = 17)

Smoker 32 17 –

Non-smoker 17 – –

Duration of alcohol drinking
(years, n = 29, SD)

20.14 (9.89) – –

Alcohol by volume (%, n =
28, SD)

51.71 (1.08) – –

Frequency of alcohol drinking
(days/week, n = 30, SD)

4.09 (1.91) – –

Amount of alcohol drinking
(ml/day, n = 30, SD)

238.33
(108.82)

– –

Mean amount of pure alcohol
(g/week, n = 30, SD)

522.38
(333.83)

– –

CAGE (n = 33, SD) 1.18 (0.98) – –

AUDIT (n = 34, SD) 19.97 (7.22) – –

CIWA-Ar (n = 29, SD) 9.34 (7.63)

MAST (n = 31, SD) 15.00 (8.58) – –

ADS (n = 41, SD) 12.76 (6.66) – –

OCDS (n = 31, SD) 14.42 (9.95) – –

VAS (n = 29, SD) 2.29 (2) – –

MoCA (n = 29, SD) 28.24 (1.27) – –
ADS, alcohol dependence scale; AUD, alcohol use disorder; AUDIT, alcohol use disorder
identification test; BMI, body mass index; CAGE, cutdown, annoyed, guilty, eye-opener;
CIWA-Ar, Clinical Institute Withdrawal Assessment-advanced Revised; HC, healthy control;
MAST, Michigan alcoholism screening test; MoCA, Montreal cognitive assessment; OCDS,
obsessive compulsive drinking scale; VAS, visual analogue scale.
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variance of the variance of ipsilateral dFCD in the left caudate

nucleus exhibited a positive correlation with the duration of alcohol

drinking (r=0.422, p=0.023) (Figure 5E), while ipsilateral dFCD in

the right IOG demonstrated a positive correlation with the mean

amount of pure alcohol (r=0.364, p=0.048) (Figure 5F). The

variance of contralateral dFCD in the left precuneus exhibited a

negative correlation with VAS (r=-0.364, p=0.048) (Figure 5G).
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3.4 Validation analysis

In our study, we corroborated our findings by employing various

window lengths (60 and 160 TRs), correlation thresholds (p <0.01 and p

<0.001), and moving step sizes (4 TRs). The ultimate outcomes aligned

with our primary dFCD findings (Supplementary Figures S1-S3). This

adequately illustrates the stability and reproducibility of our findings.
FIGURE 1

Average dynamic functional connectivity density (dFCD) variance for healthy controls (HCs) and alcohol use disorder (AUD).
TABLE 2 Between-group differences in the global, contralateral, and ipsilateral dFCD variances.

dFCD Regions Hemisphere Cluster size (voxels)
Peak MNI coordinate

Peak T values
X Y Z

Global IOG R 384 36 -93 -9 4.87

Lingual L 199 -33 -87 -12 4.32

Caudate L 244 -12 6 12 -4.73

Insula R 107 36 6 12 -4.50

Cuneus L 284 -9 -78 39 5.50

Contralateral MOG L 105 -33 -90 21 5.34

Precuneus L 110 -3 -57 69 4.90

Ipsilateral IOG R 96 36 -93 -9 4.14

Caudate L 100 -12 2 14 -4.84

SPG R 197 12 -63 72 5.14
The statistically significant threshold was set at P < 0.001 (voxel-wise) and P < 0.05 (cluster-wise) and the minimum cluster size was 72 voxels following Gaussian random field (GRF) correction.
dFCD, dynamic functional connectivity density; IOG, inferior occipital gyrus; L, left; MOG, middle occipital gyrus; R, right; SPG, superior parietal gyrus.
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4 Discussion

This study employs FCD and sliding window analysis to

concurrently decompose global brain FCD into ipsilateral and

contralateral components. This facilitates the analysis of

interhemispheric and intrahemispheric FCD, uncovering the

temporal anomaly patterns within the network in individuals with

AUD. Relative to the HC group, the average global variation pattern

in the AUD group resembled the intrahemispheric pattern,
Frontiers in Psychiatry 06
exhibiting an increase in the right IOG and decreases in the left

caudate. Moreover, AUD patients had distinct augmentations in the

left lingual gyrus and left cuneus, coupled with reductions in the

right insula within the global variation pattern. Interhemispheric

variation revealed enhancements in the left MOG and the left

precuneus. These findings suggest that both interhemispheric and

intrahemispheric dFCD can provide complementary information to

static indices, aiding in a more comprehensive understanding of

neural activity and functional biomarkers in AUD patients.
FIGURE 2

Between-group differences for global dynamic functional connectivity density (dFCD). AUD, alcohol use disorder; HC, healthy control; IOG, inferior
occipital gyrus; L, left; R, right. ***p < 0.001.
FIGURE 3

Between-group differences for contralateral dynamic functional connectivity density (dFCD). AUD, alcohol use disorder; HC, healthy control; L, left;
MOG, middle occipital gyrus; R, right. ***p < 0.001.
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Our results exhibited a decrease in the mean global dFCD in the

insula and caudate of the core regions of the salience network (SN).

Disruption and disconnection of the SN with other networks, such

as the default mode network (DMN), have been documented in

numerous neuropsychiatric disorders (38), particularly in AUD.

The SN is crucial for monitoring, integrating, and filtering pertinent

events and information (39), encompassing cognition and
Frontiers in Psychiatry 07
motivation (40), and for controlling the transition between the

DMN and executive control network (ECN) (41). Additional

studies indicate that the right insula governs this transition; upon

external stimulation, the brain shifts from the DMN, oriented

towards internal processes, to the external perceptual awareness

of the ECN (42, 43). Studies utilizing fMRI and arterial spin labeling

(ASL) indicates reduced insula perfusion and diminished functional
E 4FIGUR

Between-group differences for ipsilateral dynamic functional connectivity density (dFCD). AUD, alcohol use disorder; HC, healthy control; IOG,
inferior occipital gyrus; L, left; R, right; SPG, superior parietal gyrus. ***p < 0.001.
FIGURE 5

Associations between abnormal global, ipsilateral and contralateral dynamic functional connectivity density (dFCD) and the symptom severity of
alcohol use disorder. Among the abnormal brain regions of AUD patients, (a) the global dFCD variance in the right IOG exhibited a positive
correlation with the mean amount of pure alcohol; the global dFCD variance in the left lingual gyrus exhibited a positive correlation with (b) the
mean amount of pure alcohol, (c) AUDIT (r=0.405, p=0.017), and (d) CAGE scores. (e) the variance of the variance of ipsilateral dFCD in the left
caudate nucleus exhibited a positive correlation with the duration of alcohol drinking; (f) the ipsilateral dFCD in the right IOG demonstrated a
positive correlation with the mean amount of pure alcohol; (g) the variance of contralateral dFCD in the left precuneus exhibited a negative
correlation with VAS. AUDIT, alcohol use disorder identification test; CAGE, cutdown, annoyed, guilty, eye-opener; IOG, inferior occipital gyrus; VAS,
visual analogue scale.
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connectivity across the anterior cingulate cortex (ACC), insula,

parietal lobe, and medial frontal regions in AUD (44). It has also

been reported that acute alcohol intake impacts the functional

connectivity between the insula and the frontoparietal control

network, thereby influencing emotional expression (45). Our

results corroborate prior studies, underscoring the insula as a

pivotal center in the interplay of the SN, DMN, and ECN (46).

These results suggest that the insula is crucial in the brain’s

functional changes in AUD patients and may represent a

promising therapeutic target for impulse control issues associated

with alcohol addiction.

The precuneus, a part of the parietal lobule, serves as the functional

core of the DMN (47) and is crucial for self-referential processing,

vigilance, environmental monitoring (48), and the maintenance of

cognition, emotion, and memory (49). Abnormal DMN patterns have

been observed in populations with various substance use disorders

(50). Our study shows that compared to HCs, AUD patients exhibit

increased interhemispheric dFCD variability in the left precuneus and

elevated intrahemispheric dFCD variability in the right SPG. This

probably reflects impaired resting-state DMN connectivity in AUD

patients, especially in the right hemisphere. Previous studies indicate

that the non-dominant hemisphere (often the right) is integral to

major cognitive functions, including visuospatial skills, social

cognition, and socioemotional psychology (51–53). Hence, the

abnormal connection of the DMN to the right hemisphere in AUD

patients leads to dysfunctions in attention, cognition, and control,

potentially fostering alcohol dependency. Moreover, variability in

hyperconnectivity within the DMN may result in overthinking,

causing patients to concentrate excessively on their internal

experiences, engrossed in past or imagined addictive situations, thus

exacerbating addiction (54). These patients exhibit increased

vulnerability to cognitive deficits and psychiatric disorders, including

depression (55). Thus, heightened variability in the DMN may

elucidate a neurological basis for the comorbidity of AUD and

depression, presenting prospective neural targets for the therapy of

these comorbid conditions.

The visual network (VIN) constitutes a component of the

sensory cortical system, encompassing regions such as the IOG,

MOG, lingual gyrus, and cuneus. The occipital lobe, as the hub of

the visual cortex, is accountable for an array of visual processes such

as visual processing and memory encoding (56), and is also linked

to executive function and attention (57). The lingual gyrus is an

essential part of the occipital lobe, associated with the visual cortex

(58), while the cuneus is thought to play a crucial role in visual

information integration (59, 60). Our results reveal that these

regions exhibit heightened global, interhemispheric and

intrahemispheric dFCD variability, compared to HCs, congruent

with our prior findings on static FCD (28). The resemblance

between static and dynamic FCD indices may indicate a

fundamental adjustment mechanism, serving as a compensatory

reaction, wherein the visual network and overall brain connection

in AUD patients are enhanced, but with heightened variability.

Furthermore, correlation analyses indicated that the global and

ipsilateral dFCD values of the IOG and lingual gyrus were positively

correlated with the mean amount of pure alcohol and the intensity
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of addiction. These results validate that AUD patients often

experience visual processing deficits, providing a theoretical

foundation for future targeted treatments or preventive measures

for AUD via visual stimuli interventions. Moreover, the realization

of specific brain functions hinges on real-time information

exchange within and between networks, as well as the reasonable

allocation of different networks (61, 62), which may be the reason

why the abnormal dFCD observed in a wide range of regions.

Notably, comparison of the present study with previous related

static studies (28) revealed that although dynamic FCD focuses on

temporal fluctuation properties while static FCD reflects steady-

state connectivity strengths, the two approaches showed significant

concordance in the pattern of abnormality in key brain regions, viz,

decreased FCD in the left caudate and the right insula; visually

related cortex such as the right IOG, left lingual gyrus, left cuneus,

and sensory integration regions such as the right SPG, the left

precuneus were increased in FCD. This cross-methodological

consistency suggests that functional abnormalities in the above

brain regions may be a core feature of AUD neuropathology,

further supporting their potential as therapeutic targets for AUD.

In addition, static analyses detected additional abnormal regions

such as the thalamus and cingulate gyrus, which may reflect the

cumulative effects of long-term alcohol exposure, and altered

homeostatic connectivity in these regions may be progressively

accentuated during the chronicity of the disease. The results of

the two methods can be complementary (59) suggesting that

combining the spatiotemporal multidimensional perspective can

provide a more complete resolution of the neural mechanisms

of AUD.

Several limitations of our research need to be acknowledged.

Firstly, participants in the AUD group were sourced from hospital

wards, signifying that the patients had consented to or were inclined

to pursue therapy. Nonetheless, the majority of people with these

conditions remain oblivious to their affliction or are reluctant to

pursue treatment. Consequently, the samples in this investigation

may not accurately represent all AUD patients, necessitating

enhancements in future experimental design. Secondly, the

sample size of our study is relatively insufficient, and the

participants exhibit no symptoms of cognitive impairment, with

the severity of symptoms being minimal, which may restrict the

generalizability of our findings. Subsequent research should

encompass a bigger participant pool and examine related

cognitive problems more thoroughly to guarantee clinical

repeatability. Thirdly, as a case-control cross-sectional study, it is

challenging to determine the causal relationship between changes in

FCD patterns and alcohol intake accurately. Longitudinal

investigations are warranted. Fourthly, previous studies indicate

that changes in brain function and structure associated with AUD

vary by gender, race, and age (63). The subjects of this study were

solely middle-aged Han Chinese men, thereby restricting the

generalizability to other demographics, including women,

teenagers, and smokers from various ethnicities. Lastly, as a

single-center study with a small sample size, the findings

necessitate validation through multicenter data. These findings

warrant further confirmation in future studies.
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5 Conclusion

Taken together, our work delineates specific patterns of global,

interhemispheric, and intrahemispheric dFCD deficits in AUD patients,

mainly focusing on the SN, DMN, and essential elements of the visual

pathway. Notably, abnormal connectivity between the DMN and the

right hemisphere may significantly contribute to cognitive dysfunction

in AUD patients. This study maps the distribution of primary hub links

within the hemispherical framework of aberrant brain networks in

AUD patients, proposing that critical nodes, including the insula,

cuneus, and precuneus, may serve as viable therapeutic targets.

Additionally, it enhances the comprehension of the disease’s

pathophysiology, suggesting that factors such as topological location

and anatomical distance ought to be taken into account in forthcoming

investigations of the aberrant brain network in AUD.
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