
Frontiers in Psychiatry

OPEN ACCESS

EDITED BY

Shinsuke Hidese,
Teikyo University, Japan

REVIEWED BY

Li Wang,
Yantai Infectious Diseases Hospital, China
Du Lei,
University of Cincinnati, United States

*CORRESPONDENCE

Yeke Wu

wuyeke@cdutcm.edu.cn

Lizhou Chen

357850956@qq.com

†These authors have contributed equally to
this work

RECEIVED 21 November 2024
ACCEPTED 30 January 2025

PUBLISHED 20 February 2025

CITATION

Li L, Wu Y, Wu J, Li B, Hua R, Shi F, Chen L
and Wu Y (2025) MRI quantified enlarged
perivascular space volumes as imaging
biomarkers correlating with severity of
anxiety depression in young adults
with long-time mobile phone use.
Front. Psychiatry 16:1532256.
doi: 10.3389/fpsyt.2025.1532256

COPYRIGHT

© 2025 Li, Wu, Wu, Li, Hua, Shi, Chen and Wu.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 20 February 2025

DOI 10.3389/fpsyt.2025.1532256
MRI quantified enlarged
perivascular space volumes as
imaging biomarkers correlating
with severity of anxiety
depression in young adults with
long-time mobile phone use
Li Li1†, Yalan Wu1†, Jiaojiao Wu2†, Bin Li3, Rui Hua2, Feng Shi2,
Lizhou Chen4* and Yeke Wu5*

1Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu,
Sichuan, China, 2Department of Research and Development, Shanghai United Imaging Intelligence
Co., Ltd., Shanghai, China, 3Department of Geriatrics, Hospital of Chengdu University of Traditional
Chinese Medicine, Chengdu, China, 4Department of Radiology, West China Hospital of Sichuan
University, Chengdu, Sichuan, China, 5Department of Stomatology, Hospital of Chengdu University of
Traditional Chinese Medicine, Chengdu, China
Introduction: Long-time mobile phone use (LTMPU) has been linked to

emotional issues such as anxiety and depression while the enlarged

perivascular spaces (EPVS), as marker of neuroinflammation, is closely related

with mental disorders. In the current study, we aim to develop a predictive model

utilizing MRI-quantified EPVS metrics and machine learning algorithms to assess

the severity of anxiety and depression symptoms in patients with LTMPU.

Methods: Eighty-two participants with LTMPU were included, with 37 suffering

from anxiety and 44 suffering from depression. Deep learning algorithms were

used to segment EPVS lesions and extract quantitative metrics. Comparison and

correlation analyses were performed to investigate the relationship between

EPVS and self-reported mood states. Training and testing datasets were

randomly assigned in the ratio of 8:2 to perform radiomics analysis, where

EPVS metrics combined with sex and age were used to select the most

valuable features to construct machine learning models for predicting the

severity of anxiety and depression.

Results: Several EPVS features were significantly different between the two

comparisons. For classifying anxiety status, eight features were selected to

construct a logistic regression model, with an AUC of 0.819 (95%CI 0.573-

1.000) in the testing dataset. For classifying depression status, eight features

were selected to construct a K nearest neighbors model with an AUC value of

0.931 (95%CI 0.814-1.000) in the testing dataset.
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Discussion: The utilization of MRI-quantified EPVS metrics combined with

machine-learning algorithms presents a promising method for evaluating

severity of anxiety and depression symptoms in patients with LTMPU, which

might introduce a non-invasive, objective, and quantitative approach to enhance

diagnostic efficiency and guide personalized treatment strategies.
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1 Introduction

The pervasive use of mobile phones in the modern era has

transformed the way we live and interact. Their convenience and

efficiency have made them an essential tool for young people. As of

June 2022, nearly 1.05 billion people in China accessed the internet

via mobile devices, accounting for 99.6% of internet users (1). Cell

phone usage is highly prevalent among young adults (2), with many

spending an average of 4.4 hours daily on their phones (3). While

mobile phones offer undeniable benefits, their impact on mental

health, particularly in relation to anxiety and depression, warrants

attention. Long-time mobile phone use (LTMPU) is defined as

using mobile phone ≥4 hours/day and previous studies have shown

that LTMPU is associated with increased sleep disturbances and

mental distress (4). In a recent meta-analysis, mobile phone

addiction has been linked to higher levels of anxiety, depression,

impulsivity, and poor sleep quality (5).

Anxiety disorders and depression are among the most prevalent

mental health conditions, characterized by high rates of comorbidity

and chronicity. Despite the significant burden on individuals and

society, these conditions are often underdiagnosed and undertreated

(6, 7). Differentiating between normal anxiety and clinical anxiety

requires careful clinical judgment, considering severity, duration,

persistence, and particularly the distress and impairment levels (6).

Similarly, treatment effectiveness varies based on the severity of

anxiety. A meta-analysis showed that individuals with mild or

subthreshold depression had little or no benefit from therapeutic

guidance while guided internet-based cognitive behavioral therapy

(iCBT) demonstrated greater efficacy in moderate to severe cases (7).

Therefore, an accurate assessment of anxiety and depression severity

is crucial for effective treatment planning.

Currently, clinicians predominantly depend on subjective

clinical observations, patient histories, and self-report

questionnaires, such as the Hamilton Anxiety Scale and Hamilton

Depression Scale, to evaluate symptoms and severity. However,

these methods are not only time-consuming, but also subjective and

difficult to replicate (8, 9). This has resulted in an escalating demand

for objective and early detection methods to assess the severity of

anxiety and depression.

Machine learning presents a promising approach for

automating data analysis and establishing efficient and
02
reproducible pipelines. Its application in psychiatry has grown

rapidly in recent years, aiming to bridge the gap between group-

level diagnostic or prognostic markers and clinical relevance (8).

Specifically, the combination of machine learning and

neuroimaging techniques, such as magnetic resonance imaging

(MRI), has shown potential for detecting and predicting anxiety

disorders and depression more accurately and efficiently (10, 11).

Perivascular spaces (PVS) are fluid-filled areas surrounding blood

vessels in the brain. They typically appear as linear, ovoid or

rounded hyperintensities on T2 scans and are considered to be

enlarged when their diameter exceeds 1 mm. Although enlarged

perivascular spaces (EPVS) are typically considered a normal

finding in subjects, recent research suggests that they may have

significant clinical implications, particularly in relation to

cerebrovascular and neurodegenerative diseases. Although

research on the association between EPVSs and anxiety is limited,

EPVSs are considered a marker of neuroinflammation, which is

closely linked to mental illness (12). Studies have suggested that

EPVSs in the centrum semiovale are associated with poststroke

depression (13), and cerebral small-vessel disease features,

including EPVSs and white matter hyperintensities, are risk

factors for developing depression (12). Computational methods

for quantifying EPVS parameters are now available (12).

This study aims to develop a predictive model utilizing MRI-

quantified EPVS volumes and machine learning to assess anxiety

and depression symptom severity in young adults with LTMPU. By

exploring this novel approach, we hope to elucidate the potential

correlation between EPVS and emotional disturbances in

individuals addicted to mobile phone use.
2 Materials and methods

2.1 Participants

This study was a school-based cross-sectional study, which were

conducted from October 2021 to May 2022. A total of 165 students

and young teachers aged 18 to 50 years in a medical college in

Wenjiang District, Chengdu, China were recruited in this study.

Among them, 146 (88.5%) responded with valid data.

Questionnaires were distributed to the students and young
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teachers during class period. This study was approved by the ethics

committee of Hospital of Chengdu University of Traditional

Chinese Medicine.

The inclusion criteria in this study were as follows: (a) with

LTMPU. The duration of mobile phone use per day was obtained by

the following question: How long do you usually spend on using

mobile phone per day? The response categories for this question

were: less than 2 hours, 2 to 4 hours, 4 to 6 hours, and more than 6

hours. LTMPU was defined as using mobile phone ≥4 hours per day

in consideration of the recent findings (4); (b) ethnic Han; (c) free of

any psychoactive medication at least 2 weeks before and during the

study; (d) right-handedness assessed with the Edinburgh

Handedness Inventory (14). Exclusion criteria in this study were

as follows: (a) with coronavirus disease 2019 (COVID-19)

infections; (b) with any significant neuropsychiatric disease or

brain structural abnormality; (c) with MRI contraindications.

Furthermore, to evaluate mental status, all participants were

asked to complete the Hamilton Anxiety (HAM-A) Scale and

Hamilton Depression (HAM-D) Scale. The HAM-A was used to

assess the severity of anxiety symptom. The total comprehensive

score of HAM-A is in the range of 0 to 56. A HAM-A score ≤ 7

indicates no or minimal anxiety; 8–14 indicates mild anxiety; 15–23

indicates moderate anxiety; and ≥ 24 indicates severe anxiety (15, 16).

The severity of depression symptom was assessed by HAM-D. A

global HAM-D score of 0–54. A HAM-D score ≤ 7 indicates no

depression; 8–16 indicates mild depression; 17–23 indicates moderate

depression; and ≥ 24 indicates severe depression (17).

At baseline, 91 out of 146 participants (62.3%) reported using

mobile phone ≥4 hours per day (LTMPU). Each participant with

LTMPU completed informed written consent before undergoing

magnetic resonance (MR) imaging (within two weeks after

completing the scale). Nine participants were excluded because of

MRI motion artifact. Finally, 82 participants with LTMPU were

included. The power analysis was performed to justify the sample size

(18). We hypothesized that Average_length_of_EPVS_in_left_

frontal_lobe could be an effective factor in distinguishing between

non-anxiety and anxiety groups. The statistical power for the given

parameters was calculated using G*Power software (https://

www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-

und-arbeitspsychologie/gpower). As shown in Supplementary

Figure S1A, the sample sizes of group 1 (non-anxiety) and group

2 (anxiety) were 45 and 37, respectively. And the means of

Average_length_of_EPVS_in_left_frontal_lobe for the two groups

were 3.05 (m0) and 2.44 (mA), respectively, and the effect size

(d = mA−m0
s ) was 0.75. At a setting of a = 0:05, the statistical power

(1 − b) could reach 0.906. Similarly, the Volume_of_EPVS_in_

left_occipital_lobe classified non-depression and depression with

statistical power of up to 0.947 for given parameters (a, sample

sizes, means, and s) (Supplementary Figure S1B).
2.2 MR imaging

All participants were examined using a 3.0 T whole body

scanner (Discovery MR750, GE Healthcare, Milwaukee, WI)

equipped with a 32-channel phased array head coil. T2-weighted
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images (T2WI) acquisition parameters were: TR = 5613 ms,

TE =116 ms, slice thickness= 5.0 mm, slice spacing=1.5 mm,

FOV = 26 mm. 3D T1-weighted imaging (T1WI) was acquired

using spoiled gradient echo sequence with repetition time = 2.9 ms,

echo time = 3.0 ms, inversion time = 450 ms, flip angle = 8°, slice

thickness = 1 mm, matrix = 250 × 250, FOV = 22 cm × 22 cm.
2.3 Data preprocessing and
EPVS quantification

The image preprocessing procedure consisted of several steps,

as illustrated in Figure 1. The details are outlined below (1): N4 bias

field corrections were applied to both T1WI and T2WI to eliminate

magnetic field inhomogeneity; (2) Grayscale values were

standardized, with grayscale intensities normalized to the range of

[-1, 1] by clipping the intensities at 0.1%-99.9%; (3) A deep learning

model (VB-Net), embedded in an image analysis tool named uAI

research portal (uRP, United Imaging Intelligence) (19), was

employed to remove the skull from T1WI and segment the whole

brain into 109 regions of interest (ROIs) based on the DK atlas (20).

Subsequently, these regions were consolidated into 17 brain

subregions as detailed in Supplementary Table S1, including

bilateral frontal lobes, parietal lobes, occipital lobes, temporal

lobes, basal ganglia, cerebellum, thalamus, centrum semiovale,

and brainstem; (4) EPVS lesions were automatically segmented

based on T2WI image with a corresponding mask generated

through a built-in VB-Net model (21). The AI-generated masks

were reviewed and amended by two experienced radiologists as

needed. (5) T1WI and T2WI images were co-registered using a

registration algorithm (22), and the segmentation mask of the

T1WI space was transformed into T2WI space. (6) A series of

quantitative metrics including number, volume, average length, and

average curvature of EPVS lesions were computed for each

brain subregion.
2.4 Radiomics analysis

To explore the ability of EPVS characteristics to predict anxiety

and depression status, radiomics analysis including feature

selection, model construction, and performance evaluation was

performed via the uRP platform (23).

2.4.1 Data grouping
Among 82 participants, 80% served as the training dataset, used

for feature selection and model construction. The rest 20% served as

the testing dataset, used to evaluate the robustness and

generalizability of the model.

2.4.2 Feature selection
A total of 70 EPVS quantitative features (i.e., total number, total

volume, 4 features/subregion * 17 subregions), integrated with 2

clinical features (i.e., sex, age) served as the input to identify the

most valuable biomarkers for clinical outcomes. Notably, feature

standardization was first conducted to eliminate the effect of
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magnitudes between different features. Then, the least absolute

shrinkage and selection operator (LASSO) regression was

performed to select the most relevant feature combinations.

2.4.3 Model construction
Based on the selected features, multiple machine learning

algorithms (e.g., support vector machine [SVM], random forest

[RF], logistic regression [LR], and K nearest neighbors [KNN]) were

used to construct the classification models. For each classification

task, we retained the model with the highest discriminative

performance, where the LR model was used for the HAM-A

classification and the KNN model for the HAM-D classification.

2.4.4 Model evaluation
The performance of models was evaluated in the testing dataset,

which could reflect the robustness and generalizability of models.

The receiver operating characteristic (ROC) curve was first plotted,

where the area under the curve (AUC) could be calculated

quantitatively. Five metrics were calculated to evaluate the

consistency between the actual label and predictive label,

including accuracy, sensitivity, specificity, precision, and F1-score.

These metrics were defined as follows (Equations 1-5):

Accuracy =  
TP + TN

TP + PF + TN + FN
(1)

Sensitivity =  Recall =  
TP

TP + FN  
(2)
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Specificity =
TN

TN + FP 
(3)

Precision =
TP

TP + FP 
(4)

F1score =
2*Precision*Recall
Precision + Recall

(5)

where TP represented true positive, TN represented true

negative, FP represented false positive, and FN represented false

negative. Calibration curves were also used to compare the

predictive output and the actual outcome. Finally, the decision

curves were utilized to show the clinical net benefit for

predicting outcomes.
2.5 Statistical analysis

The Shapiro-Wilk tests were used to check the normal

distribution of continuous variables. For continuous variables that

were approximately normally distributed, they were represented as

mean ± standard deviation. For continuous variables with

asymmetrical distributions, they were represented as median (25th,

75th percentiles). Categorical variables were represented as

counts (percentages), and compared using chi-square tests. To

quantitatively compare the EPVS characteristics in the anxious

(HAM-A > 7) and non-anxious (HAM-A ≤ 7) groups, and in the
TABLE 1 Demographics of participants.

Variables
Overall
(n = 82)

Non-anxiety
(n = 45)

Anxiety
(n = 37)

P(non-anxiety

vs. anxiety)

Non-depression
(n = 38)

Depression
(n = 44)

P(non-depression

vs. depression)

Age (years)
38.0

(33.0, 43.0)
36.0 (30.0, 42.0)

40.0
(35.0, 44.5)

0.045 36.0 (28.5, 43.0) 39.5 (34.0, 43.7) 0.096

Sex (M, %) 24 (29.3%) 17 (37.8%) 7 (18.9%) 0.062 11 (28.9%) 13 (29.6%) 0.953

HAM-A
6.0

(3.8, 14.2)
4.0 (2.0, 5.0)

15.0
(12.0, 18.5)

< 0.001 3.0 (1.0, 5.0) 13.0 (9.2, 18.0) < 0.001

HAM-D
9.0

(4.0, 16.0)
5.0 (3.0, 8.0)

17.0
(12.5, 22.5)

< 0.001 4.0 (2.0, 6.0) 15.5 (11.0, 20.7) < 0.001
To compare the distribution of characteristics between the non-anxiety and anxiety groups, Mann-Whitey U tests were used for continuous variables and the chi-square test was used for the
categorical variable (i.e., sex). Similarly, comparison analyses were performed between the non-depression and depression groups. A two-tailed P-value < 0.05 was considered a
significant difference.
FIGURE 1

Schematics of the image processing and methods.
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depressed (HAM-D > 7) and non-depressed (HAM-D ≤ 7) groups,

statistical analyses were performed using t-tests or Mann-Whitney U

tests. Correlations between EPVS characteristics and clinical scales

(i.e., HAM-A and HAM-D) were analyzed using Pearson’s method if

both continuous variables conformed to a normal distribution,

otherwise, Spearman’s method was used. P values were adjusted by

the false discovery rate (FDR) method. A two-tailed adjusted_p < 0.05

was considered statistically significant. To evaluate the classification

performance of machine learning models, six quantitative

metrics (i.e., AUC, accuracy, sensitivity, specificity, precision, and

F1-score) were calculated. All statistical analyses were implemented

using SPSS (version 26.0, https://www.ibm.com/spss) and R

(version 4.2.2, https://www.R-project.org). All figures were plotted

using Origin 2021 (https://www.originlab.com/), GraphPad

Prism 9 (https://www.graphpad.com/), R (version 4.2.2), and

Adobe I l lustrator CC 2019 (https : / /www.adobe.com/

products/illustrator.html).
3 Results

3.1 Participants characteristics

We recruited 82 participants who underwent MRI

examinations from the Affiliated hospital of Chengdu University

of Traditional Chinese Medicine between October 2021 and May

2022. The demographics and clinical scales of each participant were

collected and presented in Table 1. The median age of all

participants was 38.0 years (Figure 2). Specifically, the median

age of the non-anxious group (HAM-A ≤ 7) was 36.0 years,

whereas the median age of the anxious group (HAM-A > 7) was

40.0 years, which was a significant difference between the two ages.

There were no significant differences in sex distribution between

the non-anxious and anxious groups, and between the non-

depressed (HAM-D ≤ 7) and depressed (HAM-D > 7) groups. In

addition, we observed a strong association between HAM-A status

and HAM-D status. As shown in Figure 2B, up to 86.6% of the

participants shared the same anxiety and depression status,

revealing the intrinsic correlation between the two moods.
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3.2 Correlation analyses of EPVS
characteristics and moods

A total of 70 EPVS quantitative features (i.e., total number, total

volume, 4 features/subregion * 17 subregions) were extracted from

each participant after brain parcellation on T1WI, EPVS definition on

T2WI, and space alignment of the two modalities as detailed in

Materials and Methods. The EPVS characteristics were compared

between the non-anxious and anxious groups, and between the non-

depressed and depressed groups, and the significant differences were

summarized in Supplementary Tables S2, S3, and visualized in

Figure 3. The average length of EPVS lesions in the left basal ganglia

region and the left frontal lobe were smaller in patients in the anxiety

group compared with the non-anxiety group (Figures 3A, B). There

was also a significant difference between the depressed and non-

depressed groups in terms of EPVS features in these two brain

subregions, with smaller average length of EPVS lesions in the left

frontal lobe and larger average length of EPVS lesions in the left basal

ganglia region in the depressed group compared to the non-depressed

group (Figures 3C, D). This suggests that there are similarities in EPVS

feature performance between the two moods, but there are also

some differences.

In addition, we performed a correlation analysis between the

EPVS characteristics and raw clinical scale scores (i.e., HAM-A score

ranging from 0 to 56, and HAM-D score ranging from 0 to 52). As

shown in Figure 4; Supplementary Table S4, EPVS characteristics in

the left temporal, left frontal, and right frontal lobes were significantly

correlated with mood scores. Specifically, the number and volume of

EPVS lesions in the left temporal lobe were negatively correlated with

both HAM-A and HAM-D scores. Moreover, the average length of

EPVS lesions in the left frontal lobe and right frontal lobe were also

negatively correlated with the HAM-A score.
3.3 Radiomics analysis predicting
mood status

Given the clear correlation between EPVS features and mood

scores/categories, we further explored the ability of EPVS features to
FIGURE 2

Characteristics of the participants. (A) Age distribution of all participants. (B) Distribution of anxiety and depression status for all participants.
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FIGURE 4

Correlation analysis of EPVS characteristics with mood scores. Correlation analyses were performed using Pearson’s or Spearman’s method, and
significant correlations were marked with an asterisk (adjusted_p < 0.05).
FIGURE 3

Significant differences in EPVS characteristics across mood status. The anxiety status affected the average length of EPVS lesions in the left basal
ganglia (A) and the left frontal lobe (B), as did depression status (C, D). Asterisk represented a two-tailed adjusted p-value, with * indicating
adjusted_p < 0.05.
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predict mood status. A total of 70 EPVS features were combined

with easily accessible participant demographics (i.e., sex, age) as

inputs for selecting the most valuable features to build the machine

learning model.

As mentioned above, the anxiety status could be classified into

two categories based on HAM-A scores, with HAM-A ≤ 7 being the

non-anxiety group and HAM-A > 7 being the anxiety group. For

classifying anxiety status, eight features were selected using the

LASSO method (Figure 5A), and a unique radiomics score

(Rad_score) was calculated for each participant based on the

feature values and the corresponding LASSO coefficients. As

shown in Figure 5B, the Rad_score was higher for the anxious

group compared to the non-anxious group in both the training and

testing datasets, indicating a significant difference in the distribution
Frontiers in Psychiatry 07
of radiomics features between the two groups. Subsequently, a

classification model was constructed using the logistic regression

(LR) algorithm, with hyperparameters summarized in the

Supplementary Table S5. Receiver operating characteristic (ROC)

curves were plotted in Figure 5C. Specifically, the area under the

ROC curve (AUC) values of the LR model were 0.830 with a 95%

confidence interval (CI) of 0.732-0.927 and 0.819 (95% CI 0.573-

1.000) in the training and testing datasets, respectively. The

classification performance of the LR model was also evaluated by

the other five quantitative metrics, as detailed in Table 2, calculated

from the confusion matrix (Supplementary Figure S2A). It was easy

to find that all metrics in the testing dataset were higher than 0.80,

confirming that the LR model provided good classification

performance. Additionally, the calibration curves demonstrated
FIGURE 5

Model construction and evaluation in classifying anxiety status. (A) Eight features selected by the LASSO method. (B) Rad_score distributions of non-
anxious and anxious groups in the training and testing datasets. Statistical analyses were performed using Mann-Whitney U tests. Asterisks
represented two-tailed p values, with * indicating p<0.05, ** indicating p < 0.01, and *** indicating p<0.001. (C) ROC curves evaluating the trade-off
between sensitivity and specificity of the LR model, with a higher AUC indicating a better discrimination ability of the model across different
threshold settings. (D) Calibration curves evaluating the consistency of predicted probability and the actual HAM-A status. (E) Decision curves
showing the clinical net benefit.
TABLE 2 Performance of two machine learning models in predicting mood status.

AUC (95% CI) Accuracy Sensitivity Specificity Precision F1-score

LR for HAM-A classification

• Training 0.830
(0.732, 0.927)

0.800 0.828 0.778 0.750 0.787

• Testing 0.819
(0.573, 1.000)

0.882 0.875 0.889 0.875 0.875

KNN for HAM-D classification

Training 1.000
(1.000, 1.000)

1.000 1.000 1.000 1.000 1.000

Testing 0.931
(0.814, 1.000)

0.824 0.889 0.750 0.800 0.842
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that the LR model fitted well with the actual anxiety status in the

training dataset, and its performance was slightly degraded in the

testing dataset (Figure 5D). Meanwhile, the LRmodel achieved a net

clinical benefit in the threshold range of 0.3 to 0.7, implying that the

model may be able to provide more meaningful clinical predictions

by limiting the low false-positive rate while maintaining high

sensitivity (Figure 5E).

Similar feature selection and modeling procedures were

performed to classify the non-depressed group (HAM-D ≤ 7) and

the depressed group (HAM-D > 7). Eight features were selected

using the LASSO method (Figure 6A) and the corresponding

Rad_score was computed for each participant (Figure 6B). In the

training dataset, the Rad_score of the depressed group was higher

than that of the non-depressed group, whereas in the testing dataset,

no significant difference was found, which may be due to the limited

sample. Subsequently, the K nearest neighbors (KNN) algorithm

was used to construct the classification model. As shown in

Figure 6C; Table 2, the AUC values of the KNN model were

1.000 (95% CI 1.000-1.000) and 0.931 (95% CI 0.814-1.000) in

the training and testing datasets, respectively. Meanwhile, the KNN

model achieved an accuracy of 100.0% and 82.4% in the training

and testing datasets, respectively, demonstrating its excellent

classification performance. Moreover, the calibration curves

demonstrated good alignment between the KNN-predicted

probabilities and actual depression status (Figure 6D). The

decision curves plotted in Figure 6E showed that the KNN model

achieved high clinical net benefit across a broad range of thresholds

(0.2-1.0), demonstrating its potential to effectively contribute to

improved patient care and decision support.
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4 Discussion

To our knowledge, this paper is the first study that presents a novel

approach to classify anxiety and depression symptom severity in young

adults with LTMPU by integrating MRI-based quantification of EPVS

andmachine-learning algorithms. Our model demonstrated significant

accuracy in classifying anxiety and depression severity, offering a

promising avenue for non-invasive, objective assessment.

Furthermore, our study provides evidence indicating a relationship

between EPVS and the severity of anxiety symptoms, an aspect that, as

far as we know, has received limited attention in previous research.

EPVS and cerebrospinal fluid are integral components of the

glymphatic system, which is responsible for maintaining brain

homeostasis and clearing neural waste throughout the lifespan

(24). The clearance of cellular byproducts associated with mental

health and neurodegenerative processes, such as amyloid-b and tau,

is partly dependent on the integrity of the glymphatic function (25).

EPVS visibility serves as a proxy measure of glymphatic dysfunction

and potential occlusion of drainage pathways (26). It is plausible to

hypothesize that EPVS may be associated with mental illness,

including anxiety and depression, although the evidence base is

limited (27). Previous studies have demonstrated that EPVS are risk

factors for incident depression and are associated with depressive

symptoms in the general population (28). MRI is the gold standard

for in vivo assessment of EPVS (26). Quantitative assessment of

EPVS severity using grading scales offers high reproducibility and

convenience but lacks precision for nuanced analysis and

longitudinal studies (29, 30). Recent advancements in automated

segmentation algorithms have enabled volumetric and
FIGURE 6

Model construction and evaluation in classifying depression status. (A) Eight features selected by the LASSO method. (B) Rad_score distributions of
non-depressed and depressed groups in the training and testing datasets. Statistical analyses were performed using Mann-Whitney U tests. Asterisks
represented two-tailed p values, with *** indicating p<0.001. (C) ROC curves, (D) calibration curves, and (E) decision curves were used to evaluate
the model performance.
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morphological analysis of EPVS, mitigating inconsistencies

observed with different grading methods (30). In our previous

study, we have applied VB-Net to segment EPVS, and the recall

and precision reached 0.953 and 0.923, respectively, highlighting

the model’s reliability in accurately identifying and quantifying

EPVS (21). Notably, the VB-Net incorporates the advantages of an

efficient encoder-decoder framework for feature embedding,

residual connections for information flow, and bottleneck layers

for model compression. The detailed network architecture can be

found in our previously published paper (31).

Our findings indicate a potential glymphatic biomarker of

anxiety symptom, evidenced by the reduced average length of

EPVS lesions in the left basal ganglia region and the left frontal

lobe. This segment of our findings are in conceptual accordance with

existing literature, highlighting individual variability in relative left

frontal electroencephalographic (EEG) activity that may correlate

distinctively with specific symptom clusters of depression (i.e.,

anhedonia), and anxiety (i.e., anxious apprehension versus anxious

arousal) (32). Neuroimaging studies have implicated structural

modifications within regions fundamental to threat response in

anxiety disorders, particularly within the medial temporal,

prefrontal cortex, and cingulate regions (6). However, due to the

scarcity of research in this domain, it remains uncertain whether the

structural changes of basal ganglia detected by neuroimaging method

is associated with anxiety symptoms. Paradiso et al. posited that the

basal ganglia play a pivotal role in emotion perception (33). We

hypothesize that the observed reduction of EPVS lesion length in the

left basal ganglia may be related to emotional disturbances,

specifically anxiety symptom, encountered by young adults with

LTMPU. Further investigation is warranted to substantiate the

correlation between these structural alternations and the emotional

manifestations found in this demographic.

We further found that young adults with depressive symptoms

have smaller average length of EPVS lesions in the left frontal lobe and

larger average length of EPVS lesions in the left basal ganglia.

Functional neuroimaging studies have consistently illuminated the

neural substrates of depression, revealing impairments in emotion

regulation, the tendency toward rumination, disruptions in reward

pathways associated with anhedonia, and alterations in self-awareness

among individuals (34). Our finding of the left frontal lobe is consistent

with recent advancements in the field, which have highlighted the

hypoactive state of the insula and dorsal lateral prefrontal cortex in

those with depression (35). A meta-analysis in unipolar depression

have found that volumetric reductions within the basal ganglia,

including both caudate nucleus and putamen, are characteristic of

this condition, with the putamen exhibiting a more pronounced effect

size (36). Our study introduces a novel finding that diverges from this

narrative, indicating an enhancement in glymphatic function

specifically within the left basal ganglia. The juxtaposition of these

findings accentuates the intricate interplay between structural integrity

and functional dynamics within the basal ganglia and their implications

for depressive symptomatology. It underscores an urgent need for

further inquiry to demystify the precise mechanisms at work within

these structures that contribute to the experience of depression.

A prior study involving 4,333 participants with an 8-month follow-

up period identified the predictive impact of LTMPU on the incidence
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of new cases of depression and anxiety. It also revealed bidirectional

longitudinal relationships between the duration of mobile phone use

and the severity of these conditions (4). An accurate assessment of

anxiety and depression severity is crucial for effective treatment

planning (6, 7). Building upon the growing use of machine learning

techniques for differentiating anxiety and depression severity (37), this

study represents a first attempt to apply this approach specifically to

young adults with LTMPU, which may hold significant potential for

clinical applications. By integrating MRI-quantified EPVS volumes

with machine learning algorithms, our model is capable of extracting

valuable information about glymphatic dysfunction that is challenging

to detect through traditional methods. This approachmay generalize to

assess the severity of anxiety disorders and depression, thereby serving

as an auxiliary tool for psychiatrists. It can assist in accurately gauging

the severity of these conditions in patients, aiding in developing more

personalized treatment plans and facilitating the monitoring of

treatment progress.

This study is subject to several limitations. Firstly, the relatively

small sample size potentially impacts the precision of the model,

underscoring the necessity for larger datasets to enhance

generalizability. Moreover, the single-center nature of the study

necessitates further validation across diverse populations.
5 Conclusions

This study demonstrates the feasibility and potential of utilizing

MRI-quantified EPVS volumes and machine-learning algorithms to

classify anxiety and depression symptom severity in young adults

with LTMPU. The proposed model offers a valuable tool for

clinicians, providing a non-invasive, objective, and quantitative

approach to enhance diagnostic efficiency and guide personalized

treatment strategies. Future research should focus on validating the

model across various populations and exploring the inclusion of

EPVS location analysis to enhance its clinical utility.
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